1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/bug.h> 39 #include <linux/sched/signal.h> 40 #include <linux/module.h> 41 #include <linux/splice.h> 42 #include <crypto/aead.h> 43 44 #include <net/strparser.h> 45 #include <net/tls.h> 46 47 #include "tls.h" 48 49 struct tls_decrypt_arg { 50 struct_group(inargs, 51 bool zc; 52 bool async; 53 u8 tail; 54 ); 55 56 struct sk_buff *skb; 57 }; 58 59 struct tls_decrypt_ctx { 60 u8 iv[MAX_IV_SIZE]; 61 u8 aad[TLS_MAX_AAD_SIZE]; 62 u8 tail; 63 struct scatterlist sg[]; 64 }; 65 66 noinline void tls_err_abort(struct sock *sk, int err) 67 { 68 WARN_ON_ONCE(err >= 0); 69 /* sk->sk_err should contain a positive error code. */ 70 sk->sk_err = -err; 71 sk_error_report(sk); 72 } 73 74 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 75 unsigned int recursion_level) 76 { 77 int start = skb_headlen(skb); 78 int i, chunk = start - offset; 79 struct sk_buff *frag_iter; 80 int elt = 0; 81 82 if (unlikely(recursion_level >= 24)) 83 return -EMSGSIZE; 84 85 if (chunk > 0) { 86 if (chunk > len) 87 chunk = len; 88 elt++; 89 len -= chunk; 90 if (len == 0) 91 return elt; 92 offset += chunk; 93 } 94 95 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 96 int end; 97 98 WARN_ON(start > offset + len); 99 100 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 101 chunk = end - offset; 102 if (chunk > 0) { 103 if (chunk > len) 104 chunk = len; 105 elt++; 106 len -= chunk; 107 if (len == 0) 108 return elt; 109 offset += chunk; 110 } 111 start = end; 112 } 113 114 if (unlikely(skb_has_frag_list(skb))) { 115 skb_walk_frags(skb, frag_iter) { 116 int end, ret; 117 118 WARN_ON(start > offset + len); 119 120 end = start + frag_iter->len; 121 chunk = end - offset; 122 if (chunk > 0) { 123 if (chunk > len) 124 chunk = len; 125 ret = __skb_nsg(frag_iter, offset - start, chunk, 126 recursion_level + 1); 127 if (unlikely(ret < 0)) 128 return ret; 129 elt += ret; 130 len -= chunk; 131 if (len == 0) 132 return elt; 133 offset += chunk; 134 } 135 start = end; 136 } 137 } 138 BUG_ON(len); 139 return elt; 140 } 141 142 /* Return the number of scatterlist elements required to completely map the 143 * skb, or -EMSGSIZE if the recursion depth is exceeded. 144 */ 145 static int skb_nsg(struct sk_buff *skb, int offset, int len) 146 { 147 return __skb_nsg(skb, offset, len, 0); 148 } 149 150 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, 151 struct tls_decrypt_arg *darg) 152 { 153 struct strp_msg *rxm = strp_msg(skb); 154 struct tls_msg *tlm = tls_msg(skb); 155 int sub = 0; 156 157 /* Determine zero-padding length */ 158 if (prot->version == TLS_1_3_VERSION) { 159 int offset = rxm->full_len - TLS_TAG_SIZE - 1; 160 char content_type = darg->zc ? darg->tail : 0; 161 int err; 162 163 while (content_type == 0) { 164 if (offset < prot->prepend_size) 165 return -EBADMSG; 166 err = skb_copy_bits(skb, rxm->offset + offset, 167 &content_type, 1); 168 if (err) 169 return err; 170 if (content_type) 171 break; 172 sub++; 173 offset--; 174 } 175 tlm->control = content_type; 176 } 177 return sub; 178 } 179 180 static void tls_decrypt_done(struct crypto_async_request *req, int err) 181 { 182 struct aead_request *aead_req = (struct aead_request *)req; 183 struct scatterlist *sgout = aead_req->dst; 184 struct scatterlist *sgin = aead_req->src; 185 struct tls_sw_context_rx *ctx; 186 struct tls_context *tls_ctx; 187 struct scatterlist *sg; 188 unsigned int pages; 189 struct sock *sk; 190 191 sk = (struct sock *)req->data; 192 tls_ctx = tls_get_ctx(sk); 193 ctx = tls_sw_ctx_rx(tls_ctx); 194 195 /* Propagate if there was an err */ 196 if (err) { 197 if (err == -EBADMSG) 198 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 199 ctx->async_wait.err = err; 200 tls_err_abort(sk, err); 201 } 202 203 /* Free the destination pages if skb was not decrypted inplace */ 204 if (sgout != sgin) { 205 /* Skip the first S/G entry as it points to AAD */ 206 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 207 if (!sg) 208 break; 209 put_page(sg_page(sg)); 210 } 211 } 212 213 kfree(aead_req); 214 215 spin_lock_bh(&ctx->decrypt_compl_lock); 216 if (!atomic_dec_return(&ctx->decrypt_pending)) 217 complete(&ctx->async_wait.completion); 218 spin_unlock_bh(&ctx->decrypt_compl_lock); 219 } 220 221 static int tls_do_decryption(struct sock *sk, 222 struct scatterlist *sgin, 223 struct scatterlist *sgout, 224 char *iv_recv, 225 size_t data_len, 226 struct aead_request *aead_req, 227 struct tls_decrypt_arg *darg) 228 { 229 struct tls_context *tls_ctx = tls_get_ctx(sk); 230 struct tls_prot_info *prot = &tls_ctx->prot_info; 231 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 232 int ret; 233 234 aead_request_set_tfm(aead_req, ctx->aead_recv); 235 aead_request_set_ad(aead_req, prot->aad_size); 236 aead_request_set_crypt(aead_req, sgin, sgout, 237 data_len + prot->tag_size, 238 (u8 *)iv_recv); 239 240 if (darg->async) { 241 aead_request_set_callback(aead_req, 242 CRYPTO_TFM_REQ_MAY_BACKLOG, 243 tls_decrypt_done, sk); 244 atomic_inc(&ctx->decrypt_pending); 245 } else { 246 aead_request_set_callback(aead_req, 247 CRYPTO_TFM_REQ_MAY_BACKLOG, 248 crypto_req_done, &ctx->async_wait); 249 } 250 251 ret = crypto_aead_decrypt(aead_req); 252 if (ret == -EINPROGRESS) { 253 if (darg->async) 254 return 0; 255 256 ret = crypto_wait_req(ret, &ctx->async_wait); 257 } 258 darg->async = false; 259 260 return ret; 261 } 262 263 static void tls_trim_both_msgs(struct sock *sk, int target_size) 264 { 265 struct tls_context *tls_ctx = tls_get_ctx(sk); 266 struct tls_prot_info *prot = &tls_ctx->prot_info; 267 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 268 struct tls_rec *rec = ctx->open_rec; 269 270 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 271 if (target_size > 0) 272 target_size += prot->overhead_size; 273 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 274 } 275 276 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 277 { 278 struct tls_context *tls_ctx = tls_get_ctx(sk); 279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 280 struct tls_rec *rec = ctx->open_rec; 281 struct sk_msg *msg_en = &rec->msg_encrypted; 282 283 return sk_msg_alloc(sk, msg_en, len, 0); 284 } 285 286 static int tls_clone_plaintext_msg(struct sock *sk, int required) 287 { 288 struct tls_context *tls_ctx = tls_get_ctx(sk); 289 struct tls_prot_info *prot = &tls_ctx->prot_info; 290 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 291 struct tls_rec *rec = ctx->open_rec; 292 struct sk_msg *msg_pl = &rec->msg_plaintext; 293 struct sk_msg *msg_en = &rec->msg_encrypted; 294 int skip, len; 295 296 /* We add page references worth len bytes from encrypted sg 297 * at the end of plaintext sg. It is guaranteed that msg_en 298 * has enough required room (ensured by caller). 299 */ 300 len = required - msg_pl->sg.size; 301 302 /* Skip initial bytes in msg_en's data to be able to use 303 * same offset of both plain and encrypted data. 304 */ 305 skip = prot->prepend_size + msg_pl->sg.size; 306 307 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 308 } 309 310 static struct tls_rec *tls_get_rec(struct sock *sk) 311 { 312 struct tls_context *tls_ctx = tls_get_ctx(sk); 313 struct tls_prot_info *prot = &tls_ctx->prot_info; 314 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 315 struct sk_msg *msg_pl, *msg_en; 316 struct tls_rec *rec; 317 int mem_size; 318 319 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 320 321 rec = kzalloc(mem_size, sk->sk_allocation); 322 if (!rec) 323 return NULL; 324 325 msg_pl = &rec->msg_plaintext; 326 msg_en = &rec->msg_encrypted; 327 328 sk_msg_init(msg_pl); 329 sk_msg_init(msg_en); 330 331 sg_init_table(rec->sg_aead_in, 2); 332 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 333 sg_unmark_end(&rec->sg_aead_in[1]); 334 335 sg_init_table(rec->sg_aead_out, 2); 336 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 337 sg_unmark_end(&rec->sg_aead_out[1]); 338 339 return rec; 340 } 341 342 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 343 { 344 sk_msg_free(sk, &rec->msg_encrypted); 345 sk_msg_free(sk, &rec->msg_plaintext); 346 kfree(rec); 347 } 348 349 static void tls_free_open_rec(struct sock *sk) 350 { 351 struct tls_context *tls_ctx = tls_get_ctx(sk); 352 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 353 struct tls_rec *rec = ctx->open_rec; 354 355 if (rec) { 356 tls_free_rec(sk, rec); 357 ctx->open_rec = NULL; 358 } 359 } 360 361 int tls_tx_records(struct sock *sk, int flags) 362 { 363 struct tls_context *tls_ctx = tls_get_ctx(sk); 364 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 365 struct tls_rec *rec, *tmp; 366 struct sk_msg *msg_en; 367 int tx_flags, rc = 0; 368 369 if (tls_is_partially_sent_record(tls_ctx)) { 370 rec = list_first_entry(&ctx->tx_list, 371 struct tls_rec, list); 372 373 if (flags == -1) 374 tx_flags = rec->tx_flags; 375 else 376 tx_flags = flags; 377 378 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 379 if (rc) 380 goto tx_err; 381 382 /* Full record has been transmitted. 383 * Remove the head of tx_list 384 */ 385 list_del(&rec->list); 386 sk_msg_free(sk, &rec->msg_plaintext); 387 kfree(rec); 388 } 389 390 /* Tx all ready records */ 391 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 392 if (READ_ONCE(rec->tx_ready)) { 393 if (flags == -1) 394 tx_flags = rec->tx_flags; 395 else 396 tx_flags = flags; 397 398 msg_en = &rec->msg_encrypted; 399 rc = tls_push_sg(sk, tls_ctx, 400 &msg_en->sg.data[msg_en->sg.curr], 401 0, tx_flags); 402 if (rc) 403 goto tx_err; 404 405 list_del(&rec->list); 406 sk_msg_free(sk, &rec->msg_plaintext); 407 kfree(rec); 408 } else { 409 break; 410 } 411 } 412 413 tx_err: 414 if (rc < 0 && rc != -EAGAIN) 415 tls_err_abort(sk, -EBADMSG); 416 417 return rc; 418 } 419 420 static void tls_encrypt_done(struct crypto_async_request *req, int err) 421 { 422 struct aead_request *aead_req = (struct aead_request *)req; 423 struct sock *sk = req->data; 424 struct tls_context *tls_ctx = tls_get_ctx(sk); 425 struct tls_prot_info *prot = &tls_ctx->prot_info; 426 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 427 struct scatterlist *sge; 428 struct sk_msg *msg_en; 429 struct tls_rec *rec; 430 bool ready = false; 431 int pending; 432 433 rec = container_of(aead_req, struct tls_rec, aead_req); 434 msg_en = &rec->msg_encrypted; 435 436 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 437 sge->offset -= prot->prepend_size; 438 sge->length += prot->prepend_size; 439 440 /* Check if error is previously set on socket */ 441 if (err || sk->sk_err) { 442 rec = NULL; 443 444 /* If err is already set on socket, return the same code */ 445 if (sk->sk_err) { 446 ctx->async_wait.err = -sk->sk_err; 447 } else { 448 ctx->async_wait.err = err; 449 tls_err_abort(sk, err); 450 } 451 } 452 453 if (rec) { 454 struct tls_rec *first_rec; 455 456 /* Mark the record as ready for transmission */ 457 smp_store_mb(rec->tx_ready, true); 458 459 /* If received record is at head of tx_list, schedule tx */ 460 first_rec = list_first_entry(&ctx->tx_list, 461 struct tls_rec, list); 462 if (rec == first_rec) 463 ready = true; 464 } 465 466 spin_lock_bh(&ctx->encrypt_compl_lock); 467 pending = atomic_dec_return(&ctx->encrypt_pending); 468 469 if (!pending && ctx->async_notify) 470 complete(&ctx->async_wait.completion); 471 spin_unlock_bh(&ctx->encrypt_compl_lock); 472 473 if (!ready) 474 return; 475 476 /* Schedule the transmission */ 477 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 478 schedule_delayed_work(&ctx->tx_work.work, 1); 479 } 480 481 static int tls_do_encryption(struct sock *sk, 482 struct tls_context *tls_ctx, 483 struct tls_sw_context_tx *ctx, 484 struct aead_request *aead_req, 485 size_t data_len, u32 start) 486 { 487 struct tls_prot_info *prot = &tls_ctx->prot_info; 488 struct tls_rec *rec = ctx->open_rec; 489 struct sk_msg *msg_en = &rec->msg_encrypted; 490 struct scatterlist *sge = sk_msg_elem(msg_en, start); 491 int rc, iv_offset = 0; 492 493 /* For CCM based ciphers, first byte of IV is a constant */ 494 switch (prot->cipher_type) { 495 case TLS_CIPHER_AES_CCM_128: 496 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 497 iv_offset = 1; 498 break; 499 case TLS_CIPHER_SM4_CCM: 500 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 501 iv_offset = 1; 502 break; 503 } 504 505 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 506 prot->iv_size + prot->salt_size); 507 508 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, 509 tls_ctx->tx.rec_seq); 510 511 sge->offset += prot->prepend_size; 512 sge->length -= prot->prepend_size; 513 514 msg_en->sg.curr = start; 515 516 aead_request_set_tfm(aead_req, ctx->aead_send); 517 aead_request_set_ad(aead_req, prot->aad_size); 518 aead_request_set_crypt(aead_req, rec->sg_aead_in, 519 rec->sg_aead_out, 520 data_len, rec->iv_data); 521 522 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 523 tls_encrypt_done, sk); 524 525 /* Add the record in tx_list */ 526 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 527 atomic_inc(&ctx->encrypt_pending); 528 529 rc = crypto_aead_encrypt(aead_req); 530 if (!rc || rc != -EINPROGRESS) { 531 atomic_dec(&ctx->encrypt_pending); 532 sge->offset -= prot->prepend_size; 533 sge->length += prot->prepend_size; 534 } 535 536 if (!rc) { 537 WRITE_ONCE(rec->tx_ready, true); 538 } else if (rc != -EINPROGRESS) { 539 list_del(&rec->list); 540 return rc; 541 } 542 543 /* Unhook the record from context if encryption is not failure */ 544 ctx->open_rec = NULL; 545 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 546 return rc; 547 } 548 549 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 550 struct tls_rec **to, struct sk_msg *msg_opl, 551 struct sk_msg *msg_oen, u32 split_point, 552 u32 tx_overhead_size, u32 *orig_end) 553 { 554 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 555 struct scatterlist *sge, *osge, *nsge; 556 u32 orig_size = msg_opl->sg.size; 557 struct scatterlist tmp = { }; 558 struct sk_msg *msg_npl; 559 struct tls_rec *new; 560 int ret; 561 562 new = tls_get_rec(sk); 563 if (!new) 564 return -ENOMEM; 565 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 566 tx_overhead_size, 0); 567 if (ret < 0) { 568 tls_free_rec(sk, new); 569 return ret; 570 } 571 572 *orig_end = msg_opl->sg.end; 573 i = msg_opl->sg.start; 574 sge = sk_msg_elem(msg_opl, i); 575 while (apply && sge->length) { 576 if (sge->length > apply) { 577 u32 len = sge->length - apply; 578 579 get_page(sg_page(sge)); 580 sg_set_page(&tmp, sg_page(sge), len, 581 sge->offset + apply); 582 sge->length = apply; 583 bytes += apply; 584 apply = 0; 585 } else { 586 apply -= sge->length; 587 bytes += sge->length; 588 } 589 590 sk_msg_iter_var_next(i); 591 if (i == msg_opl->sg.end) 592 break; 593 sge = sk_msg_elem(msg_opl, i); 594 } 595 596 msg_opl->sg.end = i; 597 msg_opl->sg.curr = i; 598 msg_opl->sg.copybreak = 0; 599 msg_opl->apply_bytes = 0; 600 msg_opl->sg.size = bytes; 601 602 msg_npl = &new->msg_plaintext; 603 msg_npl->apply_bytes = apply; 604 msg_npl->sg.size = orig_size - bytes; 605 606 j = msg_npl->sg.start; 607 nsge = sk_msg_elem(msg_npl, j); 608 if (tmp.length) { 609 memcpy(nsge, &tmp, sizeof(*nsge)); 610 sk_msg_iter_var_next(j); 611 nsge = sk_msg_elem(msg_npl, j); 612 } 613 614 osge = sk_msg_elem(msg_opl, i); 615 while (osge->length) { 616 memcpy(nsge, osge, sizeof(*nsge)); 617 sg_unmark_end(nsge); 618 sk_msg_iter_var_next(i); 619 sk_msg_iter_var_next(j); 620 if (i == *orig_end) 621 break; 622 osge = sk_msg_elem(msg_opl, i); 623 nsge = sk_msg_elem(msg_npl, j); 624 } 625 626 msg_npl->sg.end = j; 627 msg_npl->sg.curr = j; 628 msg_npl->sg.copybreak = 0; 629 630 *to = new; 631 return 0; 632 } 633 634 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 635 struct tls_rec *from, u32 orig_end) 636 { 637 struct sk_msg *msg_npl = &from->msg_plaintext; 638 struct sk_msg *msg_opl = &to->msg_plaintext; 639 struct scatterlist *osge, *nsge; 640 u32 i, j; 641 642 i = msg_opl->sg.end; 643 sk_msg_iter_var_prev(i); 644 j = msg_npl->sg.start; 645 646 osge = sk_msg_elem(msg_opl, i); 647 nsge = sk_msg_elem(msg_npl, j); 648 649 if (sg_page(osge) == sg_page(nsge) && 650 osge->offset + osge->length == nsge->offset) { 651 osge->length += nsge->length; 652 put_page(sg_page(nsge)); 653 } 654 655 msg_opl->sg.end = orig_end; 656 msg_opl->sg.curr = orig_end; 657 msg_opl->sg.copybreak = 0; 658 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 659 msg_opl->sg.size += msg_npl->sg.size; 660 661 sk_msg_free(sk, &to->msg_encrypted); 662 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 663 664 kfree(from); 665 } 666 667 static int tls_push_record(struct sock *sk, int flags, 668 unsigned char record_type) 669 { 670 struct tls_context *tls_ctx = tls_get_ctx(sk); 671 struct tls_prot_info *prot = &tls_ctx->prot_info; 672 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 673 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 674 u32 i, split_point, orig_end; 675 struct sk_msg *msg_pl, *msg_en; 676 struct aead_request *req; 677 bool split; 678 int rc; 679 680 if (!rec) 681 return 0; 682 683 msg_pl = &rec->msg_plaintext; 684 msg_en = &rec->msg_encrypted; 685 686 split_point = msg_pl->apply_bytes; 687 split = split_point && split_point < msg_pl->sg.size; 688 if (unlikely((!split && 689 msg_pl->sg.size + 690 prot->overhead_size > msg_en->sg.size) || 691 (split && 692 split_point + 693 prot->overhead_size > msg_en->sg.size))) { 694 split = true; 695 split_point = msg_en->sg.size; 696 } 697 if (split) { 698 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 699 split_point, prot->overhead_size, 700 &orig_end); 701 if (rc < 0) 702 return rc; 703 /* This can happen if above tls_split_open_record allocates 704 * a single large encryption buffer instead of two smaller 705 * ones. In this case adjust pointers and continue without 706 * split. 707 */ 708 if (!msg_pl->sg.size) { 709 tls_merge_open_record(sk, rec, tmp, orig_end); 710 msg_pl = &rec->msg_plaintext; 711 msg_en = &rec->msg_encrypted; 712 split = false; 713 } 714 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 715 prot->overhead_size); 716 } 717 718 rec->tx_flags = flags; 719 req = &rec->aead_req; 720 721 i = msg_pl->sg.end; 722 sk_msg_iter_var_prev(i); 723 724 rec->content_type = record_type; 725 if (prot->version == TLS_1_3_VERSION) { 726 /* Add content type to end of message. No padding added */ 727 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 728 sg_mark_end(&rec->sg_content_type); 729 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 730 &rec->sg_content_type); 731 } else { 732 sg_mark_end(sk_msg_elem(msg_pl, i)); 733 } 734 735 if (msg_pl->sg.end < msg_pl->sg.start) { 736 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 737 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 738 msg_pl->sg.data); 739 } 740 741 i = msg_pl->sg.start; 742 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 743 744 i = msg_en->sg.end; 745 sk_msg_iter_var_prev(i); 746 sg_mark_end(sk_msg_elem(msg_en, i)); 747 748 i = msg_en->sg.start; 749 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 750 751 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 752 tls_ctx->tx.rec_seq, record_type, prot); 753 754 tls_fill_prepend(tls_ctx, 755 page_address(sg_page(&msg_en->sg.data[i])) + 756 msg_en->sg.data[i].offset, 757 msg_pl->sg.size + prot->tail_size, 758 record_type); 759 760 tls_ctx->pending_open_record_frags = false; 761 762 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 763 msg_pl->sg.size + prot->tail_size, i); 764 if (rc < 0) { 765 if (rc != -EINPROGRESS) { 766 tls_err_abort(sk, -EBADMSG); 767 if (split) { 768 tls_ctx->pending_open_record_frags = true; 769 tls_merge_open_record(sk, rec, tmp, orig_end); 770 } 771 } 772 ctx->async_capable = 1; 773 return rc; 774 } else if (split) { 775 msg_pl = &tmp->msg_plaintext; 776 msg_en = &tmp->msg_encrypted; 777 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 778 tls_ctx->pending_open_record_frags = true; 779 ctx->open_rec = tmp; 780 } 781 782 return tls_tx_records(sk, flags); 783 } 784 785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 786 bool full_record, u8 record_type, 787 ssize_t *copied, int flags) 788 { 789 struct tls_context *tls_ctx = tls_get_ctx(sk); 790 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 791 struct sk_msg msg_redir = { }; 792 struct sk_psock *psock; 793 struct sock *sk_redir; 794 struct tls_rec *rec; 795 bool enospc, policy; 796 int err = 0, send; 797 u32 delta = 0; 798 799 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 800 psock = sk_psock_get(sk); 801 if (!psock || !policy) { 802 err = tls_push_record(sk, flags, record_type); 803 if (err && sk->sk_err == EBADMSG) { 804 *copied -= sk_msg_free(sk, msg); 805 tls_free_open_rec(sk); 806 err = -sk->sk_err; 807 } 808 if (psock) 809 sk_psock_put(sk, psock); 810 return err; 811 } 812 more_data: 813 enospc = sk_msg_full(msg); 814 if (psock->eval == __SK_NONE) { 815 delta = msg->sg.size; 816 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 817 delta -= msg->sg.size; 818 } 819 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 820 !enospc && !full_record) { 821 err = -ENOSPC; 822 goto out_err; 823 } 824 msg->cork_bytes = 0; 825 send = msg->sg.size; 826 if (msg->apply_bytes && msg->apply_bytes < send) 827 send = msg->apply_bytes; 828 829 switch (psock->eval) { 830 case __SK_PASS: 831 err = tls_push_record(sk, flags, record_type); 832 if (err && sk->sk_err == EBADMSG) { 833 *copied -= sk_msg_free(sk, msg); 834 tls_free_open_rec(sk); 835 err = -sk->sk_err; 836 goto out_err; 837 } 838 break; 839 case __SK_REDIRECT: 840 sk_redir = psock->sk_redir; 841 memcpy(&msg_redir, msg, sizeof(*msg)); 842 if (msg->apply_bytes < send) 843 msg->apply_bytes = 0; 844 else 845 msg->apply_bytes -= send; 846 sk_msg_return_zero(sk, msg, send); 847 msg->sg.size -= send; 848 release_sock(sk); 849 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 850 lock_sock(sk); 851 if (err < 0) { 852 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 853 msg->sg.size = 0; 854 } 855 if (msg->sg.size == 0) 856 tls_free_open_rec(sk); 857 break; 858 case __SK_DROP: 859 default: 860 sk_msg_free_partial(sk, msg, send); 861 if (msg->apply_bytes < send) 862 msg->apply_bytes = 0; 863 else 864 msg->apply_bytes -= send; 865 if (msg->sg.size == 0) 866 tls_free_open_rec(sk); 867 *copied -= (send + delta); 868 err = -EACCES; 869 } 870 871 if (likely(!err)) { 872 bool reset_eval = !ctx->open_rec; 873 874 rec = ctx->open_rec; 875 if (rec) { 876 msg = &rec->msg_plaintext; 877 if (!msg->apply_bytes) 878 reset_eval = true; 879 } 880 if (reset_eval) { 881 psock->eval = __SK_NONE; 882 if (psock->sk_redir) { 883 sock_put(psock->sk_redir); 884 psock->sk_redir = NULL; 885 } 886 } 887 if (rec) 888 goto more_data; 889 } 890 out_err: 891 sk_psock_put(sk, psock); 892 return err; 893 } 894 895 static int tls_sw_push_pending_record(struct sock *sk, int flags) 896 { 897 struct tls_context *tls_ctx = tls_get_ctx(sk); 898 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 899 struct tls_rec *rec = ctx->open_rec; 900 struct sk_msg *msg_pl; 901 size_t copied; 902 903 if (!rec) 904 return 0; 905 906 msg_pl = &rec->msg_plaintext; 907 copied = msg_pl->sg.size; 908 if (!copied) 909 return 0; 910 911 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 912 &copied, flags); 913 } 914 915 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 916 { 917 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 918 struct tls_context *tls_ctx = tls_get_ctx(sk); 919 struct tls_prot_info *prot = &tls_ctx->prot_info; 920 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 921 bool async_capable = ctx->async_capable; 922 unsigned char record_type = TLS_RECORD_TYPE_DATA; 923 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 924 bool eor = !(msg->msg_flags & MSG_MORE); 925 size_t try_to_copy; 926 ssize_t copied = 0; 927 struct sk_msg *msg_pl, *msg_en; 928 struct tls_rec *rec; 929 int required_size; 930 int num_async = 0; 931 bool full_record; 932 int record_room; 933 int num_zc = 0; 934 int orig_size; 935 int ret = 0; 936 int pending; 937 938 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 939 MSG_CMSG_COMPAT)) 940 return -EOPNOTSUPP; 941 942 mutex_lock(&tls_ctx->tx_lock); 943 lock_sock(sk); 944 945 if (unlikely(msg->msg_controllen)) { 946 ret = tls_process_cmsg(sk, msg, &record_type); 947 if (ret) { 948 if (ret == -EINPROGRESS) 949 num_async++; 950 else if (ret != -EAGAIN) 951 goto send_end; 952 } 953 } 954 955 while (msg_data_left(msg)) { 956 if (sk->sk_err) { 957 ret = -sk->sk_err; 958 goto send_end; 959 } 960 961 if (ctx->open_rec) 962 rec = ctx->open_rec; 963 else 964 rec = ctx->open_rec = tls_get_rec(sk); 965 if (!rec) { 966 ret = -ENOMEM; 967 goto send_end; 968 } 969 970 msg_pl = &rec->msg_plaintext; 971 msg_en = &rec->msg_encrypted; 972 973 orig_size = msg_pl->sg.size; 974 full_record = false; 975 try_to_copy = msg_data_left(msg); 976 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 977 if (try_to_copy >= record_room) { 978 try_to_copy = record_room; 979 full_record = true; 980 } 981 982 required_size = msg_pl->sg.size + try_to_copy + 983 prot->overhead_size; 984 985 if (!sk_stream_memory_free(sk)) 986 goto wait_for_sndbuf; 987 988 alloc_encrypted: 989 ret = tls_alloc_encrypted_msg(sk, required_size); 990 if (ret) { 991 if (ret != -ENOSPC) 992 goto wait_for_memory; 993 994 /* Adjust try_to_copy according to the amount that was 995 * actually allocated. The difference is due 996 * to max sg elements limit 997 */ 998 try_to_copy -= required_size - msg_en->sg.size; 999 full_record = true; 1000 } 1001 1002 if (!is_kvec && (full_record || eor) && !async_capable) { 1003 u32 first = msg_pl->sg.end; 1004 1005 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1006 msg_pl, try_to_copy); 1007 if (ret) 1008 goto fallback_to_reg_send; 1009 1010 num_zc++; 1011 copied += try_to_copy; 1012 1013 sk_msg_sg_copy_set(msg_pl, first); 1014 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1015 record_type, &copied, 1016 msg->msg_flags); 1017 if (ret) { 1018 if (ret == -EINPROGRESS) 1019 num_async++; 1020 else if (ret == -ENOMEM) 1021 goto wait_for_memory; 1022 else if (ctx->open_rec && ret == -ENOSPC) 1023 goto rollback_iter; 1024 else if (ret != -EAGAIN) 1025 goto send_end; 1026 } 1027 continue; 1028 rollback_iter: 1029 copied -= try_to_copy; 1030 sk_msg_sg_copy_clear(msg_pl, first); 1031 iov_iter_revert(&msg->msg_iter, 1032 msg_pl->sg.size - orig_size); 1033 fallback_to_reg_send: 1034 sk_msg_trim(sk, msg_pl, orig_size); 1035 } 1036 1037 required_size = msg_pl->sg.size + try_to_copy; 1038 1039 ret = tls_clone_plaintext_msg(sk, required_size); 1040 if (ret) { 1041 if (ret != -ENOSPC) 1042 goto send_end; 1043 1044 /* Adjust try_to_copy according to the amount that was 1045 * actually allocated. The difference is due 1046 * to max sg elements limit 1047 */ 1048 try_to_copy -= required_size - msg_pl->sg.size; 1049 full_record = true; 1050 sk_msg_trim(sk, msg_en, 1051 msg_pl->sg.size + prot->overhead_size); 1052 } 1053 1054 if (try_to_copy) { 1055 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1056 msg_pl, try_to_copy); 1057 if (ret < 0) 1058 goto trim_sgl; 1059 } 1060 1061 /* Open records defined only if successfully copied, otherwise 1062 * we would trim the sg but not reset the open record frags. 1063 */ 1064 tls_ctx->pending_open_record_frags = true; 1065 copied += try_to_copy; 1066 if (full_record || eor) { 1067 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1068 record_type, &copied, 1069 msg->msg_flags); 1070 if (ret) { 1071 if (ret == -EINPROGRESS) 1072 num_async++; 1073 else if (ret == -ENOMEM) 1074 goto wait_for_memory; 1075 else if (ret != -EAGAIN) { 1076 if (ret == -ENOSPC) 1077 ret = 0; 1078 goto send_end; 1079 } 1080 } 1081 } 1082 1083 continue; 1084 1085 wait_for_sndbuf: 1086 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1087 wait_for_memory: 1088 ret = sk_stream_wait_memory(sk, &timeo); 1089 if (ret) { 1090 trim_sgl: 1091 if (ctx->open_rec) 1092 tls_trim_both_msgs(sk, orig_size); 1093 goto send_end; 1094 } 1095 1096 if (ctx->open_rec && msg_en->sg.size < required_size) 1097 goto alloc_encrypted; 1098 } 1099 1100 if (!num_async) { 1101 goto send_end; 1102 } else if (num_zc) { 1103 /* Wait for pending encryptions to get completed */ 1104 spin_lock_bh(&ctx->encrypt_compl_lock); 1105 ctx->async_notify = true; 1106 1107 pending = atomic_read(&ctx->encrypt_pending); 1108 spin_unlock_bh(&ctx->encrypt_compl_lock); 1109 if (pending) 1110 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1111 else 1112 reinit_completion(&ctx->async_wait.completion); 1113 1114 /* There can be no concurrent accesses, since we have no 1115 * pending encrypt operations 1116 */ 1117 WRITE_ONCE(ctx->async_notify, false); 1118 1119 if (ctx->async_wait.err) { 1120 ret = ctx->async_wait.err; 1121 copied = 0; 1122 } 1123 } 1124 1125 /* Transmit if any encryptions have completed */ 1126 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1127 cancel_delayed_work(&ctx->tx_work.work); 1128 tls_tx_records(sk, msg->msg_flags); 1129 } 1130 1131 send_end: 1132 ret = sk_stream_error(sk, msg->msg_flags, ret); 1133 1134 release_sock(sk); 1135 mutex_unlock(&tls_ctx->tx_lock); 1136 return copied > 0 ? copied : ret; 1137 } 1138 1139 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1140 int offset, size_t size, int flags) 1141 { 1142 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1143 struct tls_context *tls_ctx = tls_get_ctx(sk); 1144 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1145 struct tls_prot_info *prot = &tls_ctx->prot_info; 1146 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1147 struct sk_msg *msg_pl; 1148 struct tls_rec *rec; 1149 int num_async = 0; 1150 ssize_t copied = 0; 1151 bool full_record; 1152 int record_room; 1153 int ret = 0; 1154 bool eor; 1155 1156 eor = !(flags & MSG_SENDPAGE_NOTLAST); 1157 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1158 1159 /* Call the sk_stream functions to manage the sndbuf mem. */ 1160 while (size > 0) { 1161 size_t copy, required_size; 1162 1163 if (sk->sk_err) { 1164 ret = -sk->sk_err; 1165 goto sendpage_end; 1166 } 1167 1168 if (ctx->open_rec) 1169 rec = ctx->open_rec; 1170 else 1171 rec = ctx->open_rec = tls_get_rec(sk); 1172 if (!rec) { 1173 ret = -ENOMEM; 1174 goto sendpage_end; 1175 } 1176 1177 msg_pl = &rec->msg_plaintext; 1178 1179 full_record = false; 1180 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1181 copy = size; 1182 if (copy >= record_room) { 1183 copy = record_room; 1184 full_record = true; 1185 } 1186 1187 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1188 1189 if (!sk_stream_memory_free(sk)) 1190 goto wait_for_sndbuf; 1191 alloc_payload: 1192 ret = tls_alloc_encrypted_msg(sk, required_size); 1193 if (ret) { 1194 if (ret != -ENOSPC) 1195 goto wait_for_memory; 1196 1197 /* Adjust copy according to the amount that was 1198 * actually allocated. The difference is due 1199 * to max sg elements limit 1200 */ 1201 copy -= required_size - msg_pl->sg.size; 1202 full_record = true; 1203 } 1204 1205 sk_msg_page_add(msg_pl, page, copy, offset); 1206 sk_mem_charge(sk, copy); 1207 1208 offset += copy; 1209 size -= copy; 1210 copied += copy; 1211 1212 tls_ctx->pending_open_record_frags = true; 1213 if (full_record || eor || sk_msg_full(msg_pl)) { 1214 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1215 record_type, &copied, flags); 1216 if (ret) { 1217 if (ret == -EINPROGRESS) 1218 num_async++; 1219 else if (ret == -ENOMEM) 1220 goto wait_for_memory; 1221 else if (ret != -EAGAIN) { 1222 if (ret == -ENOSPC) 1223 ret = 0; 1224 goto sendpage_end; 1225 } 1226 } 1227 } 1228 continue; 1229 wait_for_sndbuf: 1230 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1231 wait_for_memory: 1232 ret = sk_stream_wait_memory(sk, &timeo); 1233 if (ret) { 1234 if (ctx->open_rec) 1235 tls_trim_both_msgs(sk, msg_pl->sg.size); 1236 goto sendpage_end; 1237 } 1238 1239 if (ctx->open_rec) 1240 goto alloc_payload; 1241 } 1242 1243 if (num_async) { 1244 /* Transmit if any encryptions have completed */ 1245 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1246 cancel_delayed_work(&ctx->tx_work.work); 1247 tls_tx_records(sk, flags); 1248 } 1249 } 1250 sendpage_end: 1251 ret = sk_stream_error(sk, flags, ret); 1252 return copied > 0 ? copied : ret; 1253 } 1254 1255 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1256 int offset, size_t size, int flags) 1257 { 1258 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1259 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | 1260 MSG_NO_SHARED_FRAGS)) 1261 return -EOPNOTSUPP; 1262 1263 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1264 } 1265 1266 int tls_sw_sendpage(struct sock *sk, struct page *page, 1267 int offset, size_t size, int flags) 1268 { 1269 struct tls_context *tls_ctx = tls_get_ctx(sk); 1270 int ret; 1271 1272 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1273 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1274 return -EOPNOTSUPP; 1275 1276 mutex_lock(&tls_ctx->tx_lock); 1277 lock_sock(sk); 1278 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1279 release_sock(sk); 1280 mutex_unlock(&tls_ctx->tx_lock); 1281 return ret; 1282 } 1283 1284 static int 1285 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, 1286 bool released) 1287 { 1288 struct tls_context *tls_ctx = tls_get_ctx(sk); 1289 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1290 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1291 long timeo; 1292 1293 timeo = sock_rcvtimeo(sk, nonblock); 1294 1295 while (!tls_strp_msg_ready(ctx)) { 1296 if (!sk_psock_queue_empty(psock)) 1297 return 0; 1298 1299 if (sk->sk_err) 1300 return sock_error(sk); 1301 1302 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1303 tls_strp_check_rcv(&ctx->strp); 1304 if (tls_strp_msg_ready(ctx)) 1305 break; 1306 } 1307 1308 if (sk->sk_shutdown & RCV_SHUTDOWN) 1309 return 0; 1310 1311 if (sock_flag(sk, SOCK_DONE)) 1312 return 0; 1313 1314 if (!timeo) 1315 return -EAGAIN; 1316 1317 released = true; 1318 add_wait_queue(sk_sleep(sk), &wait); 1319 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1320 sk_wait_event(sk, &timeo, 1321 tls_strp_msg_ready(ctx) || 1322 !sk_psock_queue_empty(psock), 1323 &wait); 1324 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1325 remove_wait_queue(sk_sleep(sk), &wait); 1326 1327 /* Handle signals */ 1328 if (signal_pending(current)) 1329 return sock_intr_errno(timeo); 1330 } 1331 1332 tls_strp_msg_load(&ctx->strp, released); 1333 1334 return 1; 1335 } 1336 1337 static int tls_setup_from_iter(struct iov_iter *from, 1338 int length, int *pages_used, 1339 struct scatterlist *to, 1340 int to_max_pages) 1341 { 1342 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1343 struct page *pages[MAX_SKB_FRAGS]; 1344 unsigned int size = 0; 1345 ssize_t copied, use; 1346 size_t offset; 1347 1348 while (length > 0) { 1349 i = 0; 1350 maxpages = to_max_pages - num_elem; 1351 if (maxpages == 0) { 1352 rc = -EFAULT; 1353 goto out; 1354 } 1355 copied = iov_iter_get_pages2(from, pages, 1356 length, 1357 maxpages, &offset); 1358 if (copied <= 0) { 1359 rc = -EFAULT; 1360 goto out; 1361 } 1362 1363 length -= copied; 1364 size += copied; 1365 while (copied) { 1366 use = min_t(int, copied, PAGE_SIZE - offset); 1367 1368 sg_set_page(&to[num_elem], 1369 pages[i], use, offset); 1370 sg_unmark_end(&to[num_elem]); 1371 /* We do not uncharge memory from this API */ 1372 1373 offset = 0; 1374 copied -= use; 1375 1376 i++; 1377 num_elem++; 1378 } 1379 } 1380 /* Mark the end in the last sg entry if newly added */ 1381 if (num_elem > *pages_used) 1382 sg_mark_end(&to[num_elem - 1]); 1383 out: 1384 if (rc) 1385 iov_iter_revert(from, size); 1386 *pages_used = num_elem; 1387 1388 return rc; 1389 } 1390 1391 static struct sk_buff * 1392 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, 1393 unsigned int full_len) 1394 { 1395 struct strp_msg *clr_rxm; 1396 struct sk_buff *clr_skb; 1397 int err; 1398 1399 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, 1400 &err, sk->sk_allocation); 1401 if (!clr_skb) 1402 return NULL; 1403 1404 skb_copy_header(clr_skb, skb); 1405 clr_skb->len = full_len; 1406 clr_skb->data_len = full_len; 1407 1408 clr_rxm = strp_msg(clr_skb); 1409 clr_rxm->offset = 0; 1410 1411 return clr_skb; 1412 } 1413 1414 /* Decrypt handlers 1415 * 1416 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. 1417 * They must transform the darg in/out argument are as follows: 1418 * | Input | Output 1419 * ------------------------------------------------------------------- 1420 * zc | Zero-copy decrypt allowed | Zero-copy performed 1421 * async | Async decrypt allowed | Async crypto used / in progress 1422 * skb | * | Output skb 1423 * 1424 * If ZC decryption was performed darg.skb will point to the input skb. 1425 */ 1426 1427 /* This function decrypts the input skb into either out_iov or in out_sg 1428 * or in skb buffers itself. The input parameter 'darg->zc' indicates if 1429 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1430 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1431 * NULL, then the decryption happens inside skb buffers itself, i.e. 1432 * zero-copy gets disabled and 'darg->zc' is updated. 1433 */ 1434 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, 1435 struct scatterlist *out_sg, 1436 struct tls_decrypt_arg *darg) 1437 { 1438 struct tls_context *tls_ctx = tls_get_ctx(sk); 1439 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1440 struct tls_prot_info *prot = &tls_ctx->prot_info; 1441 int n_sgin, n_sgout, aead_size, err, pages = 0; 1442 struct sk_buff *skb = tls_strp_msg(ctx); 1443 const struct strp_msg *rxm = strp_msg(skb); 1444 const struct tls_msg *tlm = tls_msg(skb); 1445 struct aead_request *aead_req; 1446 struct scatterlist *sgin = NULL; 1447 struct scatterlist *sgout = NULL; 1448 const int data_len = rxm->full_len - prot->overhead_size; 1449 int tail_pages = !!prot->tail_size; 1450 struct tls_decrypt_ctx *dctx; 1451 struct sk_buff *clear_skb; 1452 int iv_offset = 0; 1453 u8 *mem; 1454 1455 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1456 rxm->full_len - prot->prepend_size); 1457 if (n_sgin < 1) 1458 return n_sgin ?: -EBADMSG; 1459 1460 if (darg->zc && (out_iov || out_sg)) { 1461 clear_skb = NULL; 1462 1463 if (out_iov) 1464 n_sgout = 1 + tail_pages + 1465 iov_iter_npages_cap(out_iov, INT_MAX, data_len); 1466 else 1467 n_sgout = sg_nents(out_sg); 1468 } else { 1469 darg->zc = false; 1470 1471 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); 1472 if (!clear_skb) 1473 return -ENOMEM; 1474 1475 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; 1476 } 1477 1478 /* Increment to accommodate AAD */ 1479 n_sgin = n_sgin + 1; 1480 1481 /* Allocate a single block of memory which contains 1482 * aead_req || tls_decrypt_ctx. 1483 * Both structs are variable length. 1484 */ 1485 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1486 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout), 1487 sk->sk_allocation); 1488 if (!mem) { 1489 err = -ENOMEM; 1490 goto exit_free_skb; 1491 } 1492 1493 /* Segment the allocated memory */ 1494 aead_req = (struct aead_request *)mem; 1495 dctx = (struct tls_decrypt_ctx *)(mem + aead_size); 1496 sgin = &dctx->sg[0]; 1497 sgout = &dctx->sg[n_sgin]; 1498 1499 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1500 switch (prot->cipher_type) { 1501 case TLS_CIPHER_AES_CCM_128: 1502 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1503 iv_offset = 1; 1504 break; 1505 case TLS_CIPHER_SM4_CCM: 1506 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1507 iv_offset = 1; 1508 break; 1509 } 1510 1511 /* Prepare IV */ 1512 if (prot->version == TLS_1_3_VERSION || 1513 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 1514 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, 1515 prot->iv_size + prot->salt_size); 1516 } else { 1517 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1518 &dctx->iv[iv_offset] + prot->salt_size, 1519 prot->iv_size); 1520 if (err < 0) 1521 goto exit_free; 1522 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); 1523 } 1524 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); 1525 1526 /* Prepare AAD */ 1527 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + 1528 prot->tail_size, 1529 tls_ctx->rx.rec_seq, tlm->control, prot); 1530 1531 /* Prepare sgin */ 1532 sg_init_table(sgin, n_sgin); 1533 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); 1534 err = skb_to_sgvec(skb, &sgin[1], 1535 rxm->offset + prot->prepend_size, 1536 rxm->full_len - prot->prepend_size); 1537 if (err < 0) 1538 goto exit_free; 1539 1540 if (clear_skb) { 1541 sg_init_table(sgout, n_sgout); 1542 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1543 1544 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, 1545 data_len + prot->tail_size); 1546 if (err < 0) 1547 goto exit_free; 1548 } else if (out_iov) { 1549 sg_init_table(sgout, n_sgout); 1550 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1551 1552 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], 1553 (n_sgout - 1 - tail_pages)); 1554 if (err < 0) 1555 goto exit_free_pages; 1556 1557 if (prot->tail_size) { 1558 sg_unmark_end(&sgout[pages]); 1559 sg_set_buf(&sgout[pages + 1], &dctx->tail, 1560 prot->tail_size); 1561 sg_mark_end(&sgout[pages + 1]); 1562 } 1563 } else if (out_sg) { 1564 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1565 } 1566 1567 /* Prepare and submit AEAD request */ 1568 err = tls_do_decryption(sk, sgin, sgout, dctx->iv, 1569 data_len + prot->tail_size, aead_req, darg); 1570 if (err) 1571 goto exit_free_pages; 1572 1573 darg->skb = clear_skb ?: tls_strp_msg(ctx); 1574 clear_skb = NULL; 1575 1576 if (unlikely(darg->async)) { 1577 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); 1578 if (err) 1579 __skb_queue_tail(&ctx->async_hold, darg->skb); 1580 return err; 1581 } 1582 1583 if (prot->tail_size) 1584 darg->tail = dctx->tail; 1585 1586 exit_free_pages: 1587 /* Release the pages in case iov was mapped to pages */ 1588 for (; pages > 0; pages--) 1589 put_page(sg_page(&sgout[pages])); 1590 exit_free: 1591 kfree(mem); 1592 exit_free_skb: 1593 consume_skb(clear_skb); 1594 return err; 1595 } 1596 1597 static int 1598 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, 1599 struct msghdr *msg, struct tls_decrypt_arg *darg) 1600 { 1601 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1602 struct tls_prot_info *prot = &tls_ctx->prot_info; 1603 struct strp_msg *rxm; 1604 int pad, err; 1605 1606 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); 1607 if (err < 0) { 1608 if (err == -EBADMSG) 1609 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 1610 return err; 1611 } 1612 /* keep going even for ->async, the code below is TLS 1.3 */ 1613 1614 /* If opportunistic TLS 1.3 ZC failed retry without ZC */ 1615 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && 1616 darg->tail != TLS_RECORD_TYPE_DATA)) { 1617 darg->zc = false; 1618 if (!darg->tail) 1619 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); 1620 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); 1621 return tls_decrypt_sw(sk, tls_ctx, msg, darg); 1622 } 1623 1624 pad = tls_padding_length(prot, darg->skb, darg); 1625 if (pad < 0) { 1626 if (darg->skb != tls_strp_msg(ctx)) 1627 consume_skb(darg->skb); 1628 return pad; 1629 } 1630 1631 rxm = strp_msg(darg->skb); 1632 rxm->full_len -= pad; 1633 1634 return 0; 1635 } 1636 1637 static int 1638 tls_decrypt_device(struct sock *sk, struct msghdr *msg, 1639 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) 1640 { 1641 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1642 struct tls_prot_info *prot = &tls_ctx->prot_info; 1643 struct strp_msg *rxm; 1644 int pad, err; 1645 1646 if (tls_ctx->rx_conf != TLS_HW) 1647 return 0; 1648 1649 err = tls_device_decrypted(sk, tls_ctx); 1650 if (err <= 0) 1651 return err; 1652 1653 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); 1654 if (pad < 0) 1655 return pad; 1656 1657 darg->async = false; 1658 darg->skb = tls_strp_msg(ctx); 1659 /* ->zc downgrade check, in case TLS 1.3 gets here */ 1660 darg->zc &= !(prot->version == TLS_1_3_VERSION && 1661 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); 1662 1663 rxm = strp_msg(darg->skb); 1664 rxm->full_len -= pad; 1665 1666 if (!darg->zc) { 1667 /* Non-ZC case needs a real skb */ 1668 darg->skb = tls_strp_msg_detach(ctx); 1669 if (!darg->skb) 1670 return -ENOMEM; 1671 } else { 1672 unsigned int off, len; 1673 1674 /* In ZC case nobody cares about the output skb. 1675 * Just copy the data here. Note the skb is not fully trimmed. 1676 */ 1677 off = rxm->offset + prot->prepend_size; 1678 len = rxm->full_len - prot->overhead_size; 1679 1680 err = skb_copy_datagram_msg(darg->skb, off, msg, len); 1681 if (err) 1682 return err; 1683 } 1684 return 1; 1685 } 1686 1687 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, 1688 struct tls_decrypt_arg *darg) 1689 { 1690 struct tls_context *tls_ctx = tls_get_ctx(sk); 1691 struct tls_prot_info *prot = &tls_ctx->prot_info; 1692 struct strp_msg *rxm; 1693 int err; 1694 1695 err = tls_decrypt_device(sk, msg, tls_ctx, darg); 1696 if (!err) 1697 err = tls_decrypt_sw(sk, tls_ctx, msg, darg); 1698 if (err < 0) 1699 return err; 1700 1701 rxm = strp_msg(darg->skb); 1702 rxm->offset += prot->prepend_size; 1703 rxm->full_len -= prot->overhead_size; 1704 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1705 1706 return 0; 1707 } 1708 1709 int decrypt_skb(struct sock *sk, struct scatterlist *sgout) 1710 { 1711 struct tls_decrypt_arg darg = { .zc = true, }; 1712 1713 return tls_decrypt_sg(sk, NULL, sgout, &darg); 1714 } 1715 1716 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, 1717 u8 *control) 1718 { 1719 int err; 1720 1721 if (!*control) { 1722 *control = tlm->control; 1723 if (!*control) 1724 return -EBADMSG; 1725 1726 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1727 sizeof(*control), control); 1728 if (*control != TLS_RECORD_TYPE_DATA) { 1729 if (err || msg->msg_flags & MSG_CTRUNC) 1730 return -EIO; 1731 } 1732 } else if (*control != tlm->control) { 1733 return 0; 1734 } 1735 1736 return 1; 1737 } 1738 1739 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) 1740 { 1741 tls_strp_msg_done(&ctx->strp); 1742 } 1743 1744 /* This function traverses the rx_list in tls receive context to copies the 1745 * decrypted records into the buffer provided by caller zero copy is not 1746 * true. Further, the records are removed from the rx_list if it is not a peek 1747 * case and the record has been consumed completely. 1748 */ 1749 static int process_rx_list(struct tls_sw_context_rx *ctx, 1750 struct msghdr *msg, 1751 u8 *control, 1752 size_t skip, 1753 size_t len, 1754 bool is_peek) 1755 { 1756 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1757 struct tls_msg *tlm; 1758 ssize_t copied = 0; 1759 int err; 1760 1761 while (skip && skb) { 1762 struct strp_msg *rxm = strp_msg(skb); 1763 tlm = tls_msg(skb); 1764 1765 err = tls_record_content_type(msg, tlm, control); 1766 if (err <= 0) 1767 goto out; 1768 1769 if (skip < rxm->full_len) 1770 break; 1771 1772 skip = skip - rxm->full_len; 1773 skb = skb_peek_next(skb, &ctx->rx_list); 1774 } 1775 1776 while (len && skb) { 1777 struct sk_buff *next_skb; 1778 struct strp_msg *rxm = strp_msg(skb); 1779 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1780 1781 tlm = tls_msg(skb); 1782 1783 err = tls_record_content_type(msg, tlm, control); 1784 if (err <= 0) 1785 goto out; 1786 1787 err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1788 msg, chunk); 1789 if (err < 0) 1790 goto out; 1791 1792 len = len - chunk; 1793 copied = copied + chunk; 1794 1795 /* Consume the data from record if it is non-peek case*/ 1796 if (!is_peek) { 1797 rxm->offset = rxm->offset + chunk; 1798 rxm->full_len = rxm->full_len - chunk; 1799 1800 /* Return if there is unconsumed data in the record */ 1801 if (rxm->full_len - skip) 1802 break; 1803 } 1804 1805 /* The remaining skip-bytes must lie in 1st record in rx_list. 1806 * So from the 2nd record, 'skip' should be 0. 1807 */ 1808 skip = 0; 1809 1810 if (msg) 1811 msg->msg_flags |= MSG_EOR; 1812 1813 next_skb = skb_peek_next(skb, &ctx->rx_list); 1814 1815 if (!is_peek) { 1816 __skb_unlink(skb, &ctx->rx_list); 1817 consume_skb(skb); 1818 } 1819 1820 skb = next_skb; 1821 } 1822 err = 0; 1823 1824 out: 1825 return copied ? : err; 1826 } 1827 1828 static bool 1829 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, 1830 size_t len_left, size_t decrypted, ssize_t done, 1831 size_t *flushed_at) 1832 { 1833 size_t max_rec; 1834 1835 if (len_left <= decrypted) 1836 return false; 1837 1838 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; 1839 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) 1840 return false; 1841 1842 *flushed_at = done; 1843 return sk_flush_backlog(sk); 1844 } 1845 1846 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, 1847 bool nonblock) 1848 { 1849 long timeo; 1850 int err; 1851 1852 lock_sock(sk); 1853 1854 timeo = sock_rcvtimeo(sk, nonblock); 1855 1856 while (unlikely(ctx->reader_present)) { 1857 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1858 1859 ctx->reader_contended = 1; 1860 1861 add_wait_queue(&ctx->wq, &wait); 1862 sk_wait_event(sk, &timeo, 1863 !READ_ONCE(ctx->reader_present), &wait); 1864 remove_wait_queue(&ctx->wq, &wait); 1865 1866 if (timeo <= 0) { 1867 err = -EAGAIN; 1868 goto err_unlock; 1869 } 1870 if (signal_pending(current)) { 1871 err = sock_intr_errno(timeo); 1872 goto err_unlock; 1873 } 1874 } 1875 1876 WRITE_ONCE(ctx->reader_present, 1); 1877 1878 return 0; 1879 1880 err_unlock: 1881 release_sock(sk); 1882 return err; 1883 } 1884 1885 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) 1886 { 1887 if (unlikely(ctx->reader_contended)) { 1888 if (wq_has_sleeper(&ctx->wq)) 1889 wake_up(&ctx->wq); 1890 else 1891 ctx->reader_contended = 0; 1892 1893 WARN_ON_ONCE(!ctx->reader_present); 1894 } 1895 1896 WRITE_ONCE(ctx->reader_present, 0); 1897 release_sock(sk); 1898 } 1899 1900 int tls_sw_recvmsg(struct sock *sk, 1901 struct msghdr *msg, 1902 size_t len, 1903 int flags, 1904 int *addr_len) 1905 { 1906 struct tls_context *tls_ctx = tls_get_ctx(sk); 1907 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1908 struct tls_prot_info *prot = &tls_ctx->prot_info; 1909 ssize_t decrypted = 0, async_copy_bytes = 0; 1910 struct sk_psock *psock; 1911 unsigned char control = 0; 1912 size_t flushed_at = 0; 1913 struct strp_msg *rxm; 1914 struct tls_msg *tlm; 1915 ssize_t copied = 0; 1916 bool async = false; 1917 int target, err; 1918 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1919 bool is_peek = flags & MSG_PEEK; 1920 bool released = true; 1921 bool bpf_strp_enabled; 1922 bool zc_capable; 1923 1924 if (unlikely(flags & MSG_ERRQUEUE)) 1925 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1926 1927 psock = sk_psock_get(sk); 1928 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); 1929 if (err < 0) 1930 return err; 1931 bpf_strp_enabled = sk_psock_strp_enabled(psock); 1932 1933 /* If crypto failed the connection is broken */ 1934 err = ctx->async_wait.err; 1935 if (err) 1936 goto end; 1937 1938 /* Process pending decrypted records. It must be non-zero-copy */ 1939 err = process_rx_list(ctx, msg, &control, 0, len, is_peek); 1940 if (err < 0) 1941 goto end; 1942 1943 copied = err; 1944 if (len <= copied) 1945 goto end; 1946 1947 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1948 len = len - copied; 1949 1950 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && 1951 ctx->zc_capable; 1952 decrypted = 0; 1953 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { 1954 struct tls_decrypt_arg darg; 1955 int to_decrypt, chunk; 1956 1957 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, 1958 released); 1959 if (err <= 0) { 1960 if (psock) { 1961 chunk = sk_msg_recvmsg(sk, psock, msg, len, 1962 flags); 1963 if (chunk > 0) { 1964 decrypted += chunk; 1965 len -= chunk; 1966 continue; 1967 } 1968 } 1969 goto recv_end; 1970 } 1971 1972 memset(&darg.inargs, 0, sizeof(darg.inargs)); 1973 1974 rxm = strp_msg(tls_strp_msg(ctx)); 1975 tlm = tls_msg(tls_strp_msg(ctx)); 1976 1977 to_decrypt = rxm->full_len - prot->overhead_size; 1978 1979 if (zc_capable && to_decrypt <= len && 1980 tlm->control == TLS_RECORD_TYPE_DATA) 1981 darg.zc = true; 1982 1983 /* Do not use async mode if record is non-data */ 1984 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 1985 darg.async = ctx->async_capable; 1986 else 1987 darg.async = false; 1988 1989 err = tls_rx_one_record(sk, msg, &darg); 1990 if (err < 0) { 1991 tls_err_abort(sk, -EBADMSG); 1992 goto recv_end; 1993 } 1994 1995 async |= darg.async; 1996 1997 /* If the type of records being processed is not known yet, 1998 * set it to record type just dequeued. If it is already known, 1999 * but does not match the record type just dequeued, go to end. 2000 * We always get record type here since for tls1.2, record type 2001 * is known just after record is dequeued from stream parser. 2002 * For tls1.3, we disable async. 2003 */ 2004 err = tls_record_content_type(msg, tls_msg(darg.skb), &control); 2005 if (err <= 0) { 2006 DEBUG_NET_WARN_ON_ONCE(darg.zc); 2007 tls_rx_rec_done(ctx); 2008 put_on_rx_list_err: 2009 __skb_queue_tail(&ctx->rx_list, darg.skb); 2010 goto recv_end; 2011 } 2012 2013 /* periodically flush backlog, and feed strparser */ 2014 released = tls_read_flush_backlog(sk, prot, len, to_decrypt, 2015 decrypted + copied, 2016 &flushed_at); 2017 2018 /* TLS 1.3 may have updated the length by more than overhead */ 2019 rxm = strp_msg(darg.skb); 2020 chunk = rxm->full_len; 2021 tls_rx_rec_done(ctx); 2022 2023 if (!darg.zc) { 2024 bool partially_consumed = chunk > len; 2025 struct sk_buff *skb = darg.skb; 2026 2027 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); 2028 2029 if (async) { 2030 /* TLS 1.2-only, to_decrypt must be text len */ 2031 chunk = min_t(int, to_decrypt, len); 2032 async_copy_bytes += chunk; 2033 put_on_rx_list: 2034 decrypted += chunk; 2035 len -= chunk; 2036 __skb_queue_tail(&ctx->rx_list, skb); 2037 continue; 2038 } 2039 2040 if (bpf_strp_enabled) { 2041 released = true; 2042 err = sk_psock_tls_strp_read(psock, skb); 2043 if (err != __SK_PASS) { 2044 rxm->offset = rxm->offset + rxm->full_len; 2045 rxm->full_len = 0; 2046 if (err == __SK_DROP) 2047 consume_skb(skb); 2048 continue; 2049 } 2050 } 2051 2052 if (partially_consumed) 2053 chunk = len; 2054 2055 err = skb_copy_datagram_msg(skb, rxm->offset, 2056 msg, chunk); 2057 if (err < 0) 2058 goto put_on_rx_list_err; 2059 2060 if (is_peek) 2061 goto put_on_rx_list; 2062 2063 if (partially_consumed) { 2064 rxm->offset += chunk; 2065 rxm->full_len -= chunk; 2066 goto put_on_rx_list; 2067 } 2068 2069 consume_skb(skb); 2070 } 2071 2072 decrypted += chunk; 2073 len -= chunk; 2074 2075 /* Return full control message to userspace before trying 2076 * to parse another message type 2077 */ 2078 msg->msg_flags |= MSG_EOR; 2079 if (control != TLS_RECORD_TYPE_DATA) 2080 break; 2081 } 2082 2083 recv_end: 2084 if (async) { 2085 int ret, pending; 2086 2087 /* Wait for all previously submitted records to be decrypted */ 2088 spin_lock_bh(&ctx->decrypt_compl_lock); 2089 reinit_completion(&ctx->async_wait.completion); 2090 pending = atomic_read(&ctx->decrypt_pending); 2091 spin_unlock_bh(&ctx->decrypt_compl_lock); 2092 ret = 0; 2093 if (pending) 2094 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2095 __skb_queue_purge(&ctx->async_hold); 2096 2097 if (ret) { 2098 if (err >= 0 || err == -EINPROGRESS) 2099 err = ret; 2100 decrypted = 0; 2101 goto end; 2102 } 2103 2104 /* Drain records from the rx_list & copy if required */ 2105 if (is_peek || is_kvec) 2106 err = process_rx_list(ctx, msg, &control, copied, 2107 decrypted, is_peek); 2108 else 2109 err = process_rx_list(ctx, msg, &control, 0, 2110 async_copy_bytes, is_peek); 2111 decrypted = max(err, 0); 2112 } 2113 2114 copied += decrypted; 2115 2116 end: 2117 tls_rx_reader_unlock(sk, ctx); 2118 if (psock) 2119 sk_psock_put(sk, psock); 2120 return copied ? : err; 2121 } 2122 2123 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 2124 struct pipe_inode_info *pipe, 2125 size_t len, unsigned int flags) 2126 { 2127 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 2128 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2129 struct strp_msg *rxm = NULL; 2130 struct sock *sk = sock->sk; 2131 struct tls_msg *tlm; 2132 struct sk_buff *skb; 2133 ssize_t copied = 0; 2134 int chunk; 2135 int err; 2136 2137 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); 2138 if (err < 0) 2139 return err; 2140 2141 if (!skb_queue_empty(&ctx->rx_list)) { 2142 skb = __skb_dequeue(&ctx->rx_list); 2143 } else { 2144 struct tls_decrypt_arg darg; 2145 2146 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, 2147 true); 2148 if (err <= 0) 2149 goto splice_read_end; 2150 2151 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2152 2153 err = tls_rx_one_record(sk, NULL, &darg); 2154 if (err < 0) { 2155 tls_err_abort(sk, -EBADMSG); 2156 goto splice_read_end; 2157 } 2158 2159 tls_rx_rec_done(ctx); 2160 skb = darg.skb; 2161 } 2162 2163 rxm = strp_msg(skb); 2164 tlm = tls_msg(skb); 2165 2166 /* splice does not support reading control messages */ 2167 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2168 err = -EINVAL; 2169 goto splice_requeue; 2170 } 2171 2172 chunk = min_t(unsigned int, rxm->full_len, len); 2173 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2174 if (copied < 0) 2175 goto splice_requeue; 2176 2177 if (chunk < rxm->full_len) { 2178 rxm->offset += len; 2179 rxm->full_len -= len; 2180 goto splice_requeue; 2181 } 2182 2183 consume_skb(skb); 2184 2185 splice_read_end: 2186 tls_rx_reader_unlock(sk, ctx); 2187 return copied ? : err; 2188 2189 splice_requeue: 2190 __skb_queue_head(&ctx->rx_list, skb); 2191 goto splice_read_end; 2192 } 2193 2194 bool tls_sw_sock_is_readable(struct sock *sk) 2195 { 2196 struct tls_context *tls_ctx = tls_get_ctx(sk); 2197 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2198 bool ingress_empty = true; 2199 struct sk_psock *psock; 2200 2201 rcu_read_lock(); 2202 psock = sk_psock(sk); 2203 if (psock) 2204 ingress_empty = list_empty(&psock->ingress_msg); 2205 rcu_read_unlock(); 2206 2207 return !ingress_empty || tls_strp_msg_ready(ctx) || 2208 !skb_queue_empty(&ctx->rx_list); 2209 } 2210 2211 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) 2212 { 2213 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2214 struct tls_prot_info *prot = &tls_ctx->prot_info; 2215 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 2216 size_t cipher_overhead; 2217 size_t data_len = 0; 2218 int ret; 2219 2220 /* Verify that we have a full TLS header, or wait for more data */ 2221 if (strp->stm.offset + prot->prepend_size > skb->len) 2222 return 0; 2223 2224 /* Sanity-check size of on-stack buffer. */ 2225 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2226 ret = -EINVAL; 2227 goto read_failure; 2228 } 2229 2230 /* Linearize header to local buffer */ 2231 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); 2232 if (ret < 0) 2233 goto read_failure; 2234 2235 strp->mark = header[0]; 2236 2237 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2238 2239 cipher_overhead = prot->tag_size; 2240 if (prot->version != TLS_1_3_VERSION && 2241 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2242 cipher_overhead += prot->iv_size; 2243 2244 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2245 prot->tail_size) { 2246 ret = -EMSGSIZE; 2247 goto read_failure; 2248 } 2249 if (data_len < cipher_overhead) { 2250 ret = -EBADMSG; 2251 goto read_failure; 2252 } 2253 2254 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2255 if (header[1] != TLS_1_2_VERSION_MINOR || 2256 header[2] != TLS_1_2_VERSION_MAJOR) { 2257 ret = -EINVAL; 2258 goto read_failure; 2259 } 2260 2261 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2262 TCP_SKB_CB(skb)->seq + strp->stm.offset); 2263 return data_len + TLS_HEADER_SIZE; 2264 2265 read_failure: 2266 tls_err_abort(strp->sk, ret); 2267 2268 return ret; 2269 } 2270 2271 void tls_rx_msg_ready(struct tls_strparser *strp) 2272 { 2273 struct tls_sw_context_rx *ctx; 2274 2275 ctx = container_of(strp, struct tls_sw_context_rx, strp); 2276 ctx->saved_data_ready(strp->sk); 2277 } 2278 2279 static void tls_data_ready(struct sock *sk) 2280 { 2281 struct tls_context *tls_ctx = tls_get_ctx(sk); 2282 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2283 struct sk_psock *psock; 2284 2285 tls_strp_data_ready(&ctx->strp); 2286 2287 psock = sk_psock_get(sk); 2288 if (psock) { 2289 if (!list_empty(&psock->ingress_msg)) 2290 ctx->saved_data_ready(sk); 2291 sk_psock_put(sk, psock); 2292 } 2293 } 2294 2295 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2296 { 2297 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2298 2299 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2300 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2301 cancel_delayed_work_sync(&ctx->tx_work.work); 2302 } 2303 2304 void tls_sw_release_resources_tx(struct sock *sk) 2305 { 2306 struct tls_context *tls_ctx = tls_get_ctx(sk); 2307 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2308 struct tls_rec *rec, *tmp; 2309 int pending; 2310 2311 /* Wait for any pending async encryptions to complete */ 2312 spin_lock_bh(&ctx->encrypt_compl_lock); 2313 ctx->async_notify = true; 2314 pending = atomic_read(&ctx->encrypt_pending); 2315 spin_unlock_bh(&ctx->encrypt_compl_lock); 2316 2317 if (pending) 2318 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2319 2320 tls_tx_records(sk, -1); 2321 2322 /* Free up un-sent records in tx_list. First, free 2323 * the partially sent record if any at head of tx_list. 2324 */ 2325 if (tls_ctx->partially_sent_record) { 2326 tls_free_partial_record(sk, tls_ctx); 2327 rec = list_first_entry(&ctx->tx_list, 2328 struct tls_rec, list); 2329 list_del(&rec->list); 2330 sk_msg_free(sk, &rec->msg_plaintext); 2331 kfree(rec); 2332 } 2333 2334 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2335 list_del(&rec->list); 2336 sk_msg_free(sk, &rec->msg_encrypted); 2337 sk_msg_free(sk, &rec->msg_plaintext); 2338 kfree(rec); 2339 } 2340 2341 crypto_free_aead(ctx->aead_send); 2342 tls_free_open_rec(sk); 2343 } 2344 2345 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2346 { 2347 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2348 2349 kfree(ctx); 2350 } 2351 2352 void tls_sw_release_resources_rx(struct sock *sk) 2353 { 2354 struct tls_context *tls_ctx = tls_get_ctx(sk); 2355 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2356 2357 kfree(tls_ctx->rx.rec_seq); 2358 kfree(tls_ctx->rx.iv); 2359 2360 if (ctx->aead_recv) { 2361 __skb_queue_purge(&ctx->rx_list); 2362 crypto_free_aead(ctx->aead_recv); 2363 tls_strp_stop(&ctx->strp); 2364 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2365 * we still want to tls_strp_stop(), but sk->sk_data_ready was 2366 * never swapped. 2367 */ 2368 if (ctx->saved_data_ready) { 2369 write_lock_bh(&sk->sk_callback_lock); 2370 sk->sk_data_ready = ctx->saved_data_ready; 2371 write_unlock_bh(&sk->sk_callback_lock); 2372 } 2373 } 2374 } 2375 2376 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2377 { 2378 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2379 2380 tls_strp_done(&ctx->strp); 2381 } 2382 2383 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2384 { 2385 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2386 2387 kfree(ctx); 2388 } 2389 2390 void tls_sw_free_resources_rx(struct sock *sk) 2391 { 2392 struct tls_context *tls_ctx = tls_get_ctx(sk); 2393 2394 tls_sw_release_resources_rx(sk); 2395 tls_sw_free_ctx_rx(tls_ctx); 2396 } 2397 2398 /* The work handler to transmitt the encrypted records in tx_list */ 2399 static void tx_work_handler(struct work_struct *work) 2400 { 2401 struct delayed_work *delayed_work = to_delayed_work(work); 2402 struct tx_work *tx_work = container_of(delayed_work, 2403 struct tx_work, work); 2404 struct sock *sk = tx_work->sk; 2405 struct tls_context *tls_ctx = tls_get_ctx(sk); 2406 struct tls_sw_context_tx *ctx; 2407 2408 if (unlikely(!tls_ctx)) 2409 return; 2410 2411 ctx = tls_sw_ctx_tx(tls_ctx); 2412 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2413 return; 2414 2415 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2416 return; 2417 mutex_lock(&tls_ctx->tx_lock); 2418 lock_sock(sk); 2419 tls_tx_records(sk, -1); 2420 release_sock(sk); 2421 mutex_unlock(&tls_ctx->tx_lock); 2422 } 2423 2424 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) 2425 { 2426 struct tls_rec *rec; 2427 2428 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 2429 if (!rec) 2430 return false; 2431 2432 return READ_ONCE(rec->tx_ready); 2433 } 2434 2435 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2436 { 2437 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2438 2439 /* Schedule the transmission if tx list is ready */ 2440 if (tls_is_tx_ready(tx_ctx) && 2441 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2442 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2443 } 2444 2445 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2446 { 2447 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2448 2449 write_lock_bh(&sk->sk_callback_lock); 2450 rx_ctx->saved_data_ready = sk->sk_data_ready; 2451 sk->sk_data_ready = tls_data_ready; 2452 write_unlock_bh(&sk->sk_callback_lock); 2453 } 2454 2455 void tls_update_rx_zc_capable(struct tls_context *tls_ctx) 2456 { 2457 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2458 2459 rx_ctx->zc_capable = tls_ctx->rx_no_pad || 2460 tls_ctx->prot_info.version != TLS_1_3_VERSION; 2461 } 2462 2463 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2464 { 2465 struct tls_context *tls_ctx = tls_get_ctx(sk); 2466 struct tls_prot_info *prot = &tls_ctx->prot_info; 2467 struct tls_crypto_info *crypto_info; 2468 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2469 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2470 struct cipher_context *cctx; 2471 struct crypto_aead **aead; 2472 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2473 struct crypto_tfm *tfm; 2474 char *iv, *rec_seq, *key, *salt, *cipher_name; 2475 size_t keysize; 2476 int rc = 0; 2477 2478 if (!ctx) { 2479 rc = -EINVAL; 2480 goto out; 2481 } 2482 2483 if (tx) { 2484 if (!ctx->priv_ctx_tx) { 2485 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2486 if (!sw_ctx_tx) { 2487 rc = -ENOMEM; 2488 goto out; 2489 } 2490 ctx->priv_ctx_tx = sw_ctx_tx; 2491 } else { 2492 sw_ctx_tx = 2493 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2494 } 2495 } else { 2496 if (!ctx->priv_ctx_rx) { 2497 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2498 if (!sw_ctx_rx) { 2499 rc = -ENOMEM; 2500 goto out; 2501 } 2502 ctx->priv_ctx_rx = sw_ctx_rx; 2503 } else { 2504 sw_ctx_rx = 2505 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2506 } 2507 } 2508 2509 if (tx) { 2510 crypto_init_wait(&sw_ctx_tx->async_wait); 2511 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); 2512 crypto_info = &ctx->crypto_send.info; 2513 cctx = &ctx->tx; 2514 aead = &sw_ctx_tx->aead_send; 2515 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2516 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2517 sw_ctx_tx->tx_work.sk = sk; 2518 } else { 2519 crypto_init_wait(&sw_ctx_rx->async_wait); 2520 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); 2521 init_waitqueue_head(&sw_ctx_rx->wq); 2522 crypto_info = &ctx->crypto_recv.info; 2523 cctx = &ctx->rx; 2524 skb_queue_head_init(&sw_ctx_rx->rx_list); 2525 skb_queue_head_init(&sw_ctx_rx->async_hold); 2526 aead = &sw_ctx_rx->aead_recv; 2527 } 2528 2529 switch (crypto_info->cipher_type) { 2530 case TLS_CIPHER_AES_GCM_128: { 2531 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2532 2533 gcm_128_info = (void *)crypto_info; 2534 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2535 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2536 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2537 iv = gcm_128_info->iv; 2538 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2539 rec_seq = gcm_128_info->rec_seq; 2540 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2541 key = gcm_128_info->key; 2542 salt = gcm_128_info->salt; 2543 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2544 cipher_name = "gcm(aes)"; 2545 break; 2546 } 2547 case TLS_CIPHER_AES_GCM_256: { 2548 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2549 2550 gcm_256_info = (void *)crypto_info; 2551 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2552 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2553 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2554 iv = gcm_256_info->iv; 2555 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2556 rec_seq = gcm_256_info->rec_seq; 2557 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2558 key = gcm_256_info->key; 2559 salt = gcm_256_info->salt; 2560 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2561 cipher_name = "gcm(aes)"; 2562 break; 2563 } 2564 case TLS_CIPHER_AES_CCM_128: { 2565 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2566 2567 ccm_128_info = (void *)crypto_info; 2568 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2569 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2570 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2571 iv = ccm_128_info->iv; 2572 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2573 rec_seq = ccm_128_info->rec_seq; 2574 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2575 key = ccm_128_info->key; 2576 salt = ccm_128_info->salt; 2577 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2578 cipher_name = "ccm(aes)"; 2579 break; 2580 } 2581 case TLS_CIPHER_CHACHA20_POLY1305: { 2582 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info; 2583 2584 chacha20_poly1305_info = (void *)crypto_info; 2585 nonce_size = 0; 2586 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE; 2587 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE; 2588 iv = chacha20_poly1305_info->iv; 2589 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE; 2590 rec_seq = chacha20_poly1305_info->rec_seq; 2591 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE; 2592 key = chacha20_poly1305_info->key; 2593 salt = chacha20_poly1305_info->salt; 2594 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE; 2595 cipher_name = "rfc7539(chacha20,poly1305)"; 2596 break; 2597 } 2598 case TLS_CIPHER_SM4_GCM: { 2599 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info; 2600 2601 sm4_gcm_info = (void *)crypto_info; 2602 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2603 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE; 2604 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2605 iv = sm4_gcm_info->iv; 2606 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE; 2607 rec_seq = sm4_gcm_info->rec_seq; 2608 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE; 2609 key = sm4_gcm_info->key; 2610 salt = sm4_gcm_info->salt; 2611 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE; 2612 cipher_name = "gcm(sm4)"; 2613 break; 2614 } 2615 case TLS_CIPHER_SM4_CCM: { 2616 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info; 2617 2618 sm4_ccm_info = (void *)crypto_info; 2619 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2620 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE; 2621 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2622 iv = sm4_ccm_info->iv; 2623 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE; 2624 rec_seq = sm4_ccm_info->rec_seq; 2625 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE; 2626 key = sm4_ccm_info->key; 2627 salt = sm4_ccm_info->salt; 2628 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE; 2629 cipher_name = "ccm(sm4)"; 2630 break; 2631 } 2632 default: 2633 rc = -EINVAL; 2634 goto free_priv; 2635 } 2636 2637 if (crypto_info->version == TLS_1_3_VERSION) { 2638 nonce_size = 0; 2639 prot->aad_size = TLS_HEADER_SIZE; 2640 prot->tail_size = 1; 2641 } else { 2642 prot->aad_size = TLS_AAD_SPACE_SIZE; 2643 prot->tail_size = 0; 2644 } 2645 2646 /* Sanity-check the sizes for stack allocations. */ 2647 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2648 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE || 2649 prot->aad_size > TLS_MAX_AAD_SIZE) { 2650 rc = -EINVAL; 2651 goto free_priv; 2652 } 2653 2654 prot->version = crypto_info->version; 2655 prot->cipher_type = crypto_info->cipher_type; 2656 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2657 prot->tag_size = tag_size; 2658 prot->overhead_size = prot->prepend_size + 2659 prot->tag_size + prot->tail_size; 2660 prot->iv_size = iv_size; 2661 prot->salt_size = salt_size; 2662 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2663 if (!cctx->iv) { 2664 rc = -ENOMEM; 2665 goto free_priv; 2666 } 2667 /* Note: 128 & 256 bit salt are the same size */ 2668 prot->rec_seq_size = rec_seq_size; 2669 memcpy(cctx->iv, salt, salt_size); 2670 memcpy(cctx->iv + salt_size, iv, iv_size); 2671 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2672 if (!cctx->rec_seq) { 2673 rc = -ENOMEM; 2674 goto free_iv; 2675 } 2676 2677 if (!*aead) { 2678 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2679 if (IS_ERR(*aead)) { 2680 rc = PTR_ERR(*aead); 2681 *aead = NULL; 2682 goto free_rec_seq; 2683 } 2684 } 2685 2686 ctx->push_pending_record = tls_sw_push_pending_record; 2687 2688 rc = crypto_aead_setkey(*aead, key, keysize); 2689 2690 if (rc) 2691 goto free_aead; 2692 2693 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2694 if (rc) 2695 goto free_aead; 2696 2697 if (sw_ctx_rx) { 2698 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2699 2700 tls_update_rx_zc_capable(ctx); 2701 sw_ctx_rx->async_capable = 2702 crypto_info->version != TLS_1_3_VERSION && 2703 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); 2704 2705 rc = tls_strp_init(&sw_ctx_rx->strp, sk); 2706 if (rc) 2707 goto free_aead; 2708 } 2709 2710 goto out; 2711 2712 free_aead: 2713 crypto_free_aead(*aead); 2714 *aead = NULL; 2715 free_rec_seq: 2716 kfree(cctx->rec_seq); 2717 cctx->rec_seq = NULL; 2718 free_iv: 2719 kfree(cctx->iv); 2720 cctx->iv = NULL; 2721 free_priv: 2722 if (tx) { 2723 kfree(ctx->priv_ctx_tx); 2724 ctx->priv_ctx_tx = NULL; 2725 } else { 2726 kfree(ctx->priv_ctx_rx); 2727 ctx->priv_ctx_rx = NULL; 2728 } 2729 out: 2730 return rc; 2731 } 2732