1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/snmp.h> 45 #include <net/tls.h> 46 #include <net/tls_toe.h> 47 48 #include "tls.h" 49 50 MODULE_AUTHOR("Mellanox Technologies"); 51 MODULE_DESCRIPTION("Transport Layer Security Support"); 52 MODULE_LICENSE("Dual BSD/GPL"); 53 MODULE_ALIAS_TCP_ULP("tls"); 54 55 enum { 56 TLSV4, 57 TLSV6, 58 TLS_NUM_PROTS, 59 }; 60 61 #define CHECK_CIPHER_DESC(cipher,ci) \ 62 static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE); \ 63 static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE); \ 64 static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \ 65 static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE); \ 66 static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE); \ 67 static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE); \ 68 static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE); \ 69 static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE); 70 71 #define __CIPHER_DESC(ci) \ 72 .iv_offset = offsetof(struct ci, iv), \ 73 .key_offset = offsetof(struct ci, key), \ 74 .salt_offset = offsetof(struct ci, salt), \ 75 .rec_seq_offset = offsetof(struct ci, rec_seq), \ 76 .crypto_info = sizeof(struct ci) 77 78 #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \ 79 .nonce = cipher ## _IV_SIZE, \ 80 .iv = cipher ## _IV_SIZE, \ 81 .key = cipher ## _KEY_SIZE, \ 82 .salt = cipher ## _SALT_SIZE, \ 83 .tag = cipher ## _TAG_SIZE, \ 84 .rec_seq = cipher ## _REC_SEQ_SIZE, \ 85 .cipher_name = algname, \ 86 .offloadable = _offloadable, \ 87 __CIPHER_DESC(ci), \ 88 } 89 90 #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \ 91 .nonce = 0, \ 92 .iv = cipher ## _IV_SIZE, \ 93 .key = cipher ## _KEY_SIZE, \ 94 .salt = cipher ## _SALT_SIZE, \ 95 .tag = cipher ## _TAG_SIZE, \ 96 .rec_seq = cipher ## _REC_SEQ_SIZE, \ 97 .cipher_name = algname, \ 98 .offloadable = _offloadable, \ 99 __CIPHER_DESC(ci), \ 100 } 101 102 const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = { 103 CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true), 104 CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true), 105 CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false), 106 CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false), 107 CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false), 108 CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false), 109 CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false), 110 CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false), 111 }; 112 113 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128); 114 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256); 115 CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128); 116 CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305); 117 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm); 118 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm); 119 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128); 120 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256); 121 122 static const struct proto *saved_tcpv6_prot; 123 static DEFINE_MUTEX(tcpv6_prot_mutex); 124 static const struct proto *saved_tcpv4_prot; 125 static DEFINE_MUTEX(tcpv4_prot_mutex); 126 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 127 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 128 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 129 const struct proto *base); 130 131 void update_sk_prot(struct sock *sk, struct tls_context *ctx) 132 { 133 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 134 135 WRITE_ONCE(sk->sk_prot, 136 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); 137 WRITE_ONCE(sk->sk_socket->ops, 138 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]); 139 } 140 141 int wait_on_pending_writer(struct sock *sk, long *timeo) 142 { 143 DEFINE_WAIT_FUNC(wait, woken_wake_function); 144 int ret, rc = 0; 145 146 add_wait_queue(sk_sleep(sk), &wait); 147 while (1) { 148 if (!*timeo) { 149 rc = -EAGAIN; 150 break; 151 } 152 153 if (signal_pending(current)) { 154 rc = sock_intr_errno(*timeo); 155 break; 156 } 157 158 ret = sk_wait_event(sk, timeo, 159 !READ_ONCE(sk->sk_write_pending), &wait); 160 if (ret) { 161 if (ret < 0) 162 rc = ret; 163 break; 164 } 165 } 166 remove_wait_queue(sk_sleep(sk), &wait); 167 return rc; 168 } 169 170 int tls_push_sg(struct sock *sk, 171 struct tls_context *ctx, 172 struct scatterlist *sg, 173 u16 first_offset, 174 int flags) 175 { 176 struct bio_vec bvec; 177 struct msghdr msg = { 178 .msg_flags = MSG_SPLICE_PAGES | flags, 179 }; 180 int ret = 0; 181 struct page *p; 182 size_t size; 183 int offset = first_offset; 184 185 size = sg->length - offset; 186 offset += sg->offset; 187 188 ctx->splicing_pages = true; 189 while (1) { 190 /* is sending application-limited? */ 191 tcp_rate_check_app_limited(sk); 192 p = sg_page(sg); 193 retry: 194 bvec_set_page(&bvec, p, size, offset); 195 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); 196 197 ret = tcp_sendmsg_locked(sk, &msg, size); 198 199 if (ret != size) { 200 if (ret > 0) { 201 offset += ret; 202 size -= ret; 203 goto retry; 204 } 205 206 offset -= sg->offset; 207 ctx->partially_sent_offset = offset; 208 ctx->partially_sent_record = (void *)sg; 209 ctx->splicing_pages = false; 210 return ret; 211 } 212 213 put_page(p); 214 sk_mem_uncharge(sk, sg->length); 215 sg = sg_next(sg); 216 if (!sg) 217 break; 218 219 offset = sg->offset; 220 size = sg->length; 221 } 222 223 ctx->splicing_pages = false; 224 225 return 0; 226 } 227 228 static int tls_handle_open_record(struct sock *sk, int flags) 229 { 230 struct tls_context *ctx = tls_get_ctx(sk); 231 232 if (tls_is_pending_open_record(ctx)) 233 return ctx->push_pending_record(sk, flags); 234 235 return 0; 236 } 237 238 int tls_process_cmsg(struct sock *sk, struct msghdr *msg, 239 unsigned char *record_type) 240 { 241 struct cmsghdr *cmsg; 242 int rc = -EINVAL; 243 244 for_each_cmsghdr(cmsg, msg) { 245 if (!CMSG_OK(msg, cmsg)) 246 return -EINVAL; 247 if (cmsg->cmsg_level != SOL_TLS) 248 continue; 249 250 switch (cmsg->cmsg_type) { 251 case TLS_SET_RECORD_TYPE: 252 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 253 return -EINVAL; 254 255 if (msg->msg_flags & MSG_MORE) 256 return -EINVAL; 257 258 rc = tls_handle_open_record(sk, msg->msg_flags); 259 if (rc) 260 return rc; 261 262 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 263 rc = 0; 264 break; 265 default: 266 return -EINVAL; 267 } 268 } 269 270 return rc; 271 } 272 273 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 274 int flags) 275 { 276 struct scatterlist *sg; 277 u16 offset; 278 279 sg = ctx->partially_sent_record; 280 offset = ctx->partially_sent_offset; 281 282 ctx->partially_sent_record = NULL; 283 return tls_push_sg(sk, ctx, sg, offset, flags); 284 } 285 286 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 287 { 288 struct scatterlist *sg; 289 290 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { 291 put_page(sg_page(sg)); 292 sk_mem_uncharge(sk, sg->length); 293 } 294 ctx->partially_sent_record = NULL; 295 } 296 297 static void tls_write_space(struct sock *sk) 298 { 299 struct tls_context *ctx = tls_get_ctx(sk); 300 301 /* If splicing_pages call lower protocol write space handler 302 * to ensure we wake up any waiting operations there. For example 303 * if splicing pages where to call sk_wait_event. 304 */ 305 if (ctx->splicing_pages) { 306 ctx->sk_write_space(sk); 307 return; 308 } 309 310 #ifdef CONFIG_TLS_DEVICE 311 if (ctx->tx_conf == TLS_HW) 312 tls_device_write_space(sk, ctx); 313 else 314 #endif 315 tls_sw_write_space(sk, ctx); 316 317 ctx->sk_write_space(sk); 318 } 319 320 /** 321 * tls_ctx_free() - free TLS ULP context 322 * @sk: socket to with @ctx is attached 323 * @ctx: TLS context structure 324 * 325 * Free TLS context. If @sk is %NULL caller guarantees that the socket 326 * to which @ctx was attached has no outstanding references. 327 */ 328 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 329 { 330 if (!ctx) 331 return; 332 333 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 334 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 335 mutex_destroy(&ctx->tx_lock); 336 337 if (sk) 338 kfree_rcu(ctx, rcu); 339 else 340 kfree(ctx); 341 } 342 343 static void tls_sk_proto_cleanup(struct sock *sk, 344 struct tls_context *ctx, long timeo) 345 { 346 if (unlikely(sk->sk_write_pending) && 347 !wait_on_pending_writer(sk, &timeo)) 348 tls_handle_open_record(sk, 0); 349 350 /* We need these for tls_sw_fallback handling of other packets */ 351 if (ctx->tx_conf == TLS_SW) { 352 tls_sw_release_resources_tx(sk); 353 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 354 } else if (ctx->tx_conf == TLS_HW) { 355 tls_device_free_resources_tx(sk); 356 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 357 } 358 359 if (ctx->rx_conf == TLS_SW) { 360 tls_sw_release_resources_rx(sk); 361 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 362 } else if (ctx->rx_conf == TLS_HW) { 363 tls_device_offload_cleanup_rx(sk); 364 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 365 } 366 } 367 368 static void tls_sk_proto_close(struct sock *sk, long timeout) 369 { 370 struct inet_connection_sock *icsk = inet_csk(sk); 371 struct tls_context *ctx = tls_get_ctx(sk); 372 long timeo = sock_sndtimeo(sk, 0); 373 bool free_ctx; 374 375 if (ctx->tx_conf == TLS_SW) 376 tls_sw_cancel_work_tx(ctx); 377 378 lock_sock(sk); 379 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 380 381 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 382 tls_sk_proto_cleanup(sk, ctx, timeo); 383 384 write_lock_bh(&sk->sk_callback_lock); 385 if (free_ctx) 386 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 387 WRITE_ONCE(sk->sk_prot, ctx->sk_proto); 388 if (sk->sk_write_space == tls_write_space) 389 sk->sk_write_space = ctx->sk_write_space; 390 write_unlock_bh(&sk->sk_callback_lock); 391 release_sock(sk); 392 if (ctx->tx_conf == TLS_SW) 393 tls_sw_free_ctx_tx(ctx); 394 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 395 tls_sw_strparser_done(ctx); 396 if (ctx->rx_conf == TLS_SW) 397 tls_sw_free_ctx_rx(ctx); 398 ctx->sk_proto->close(sk, timeout); 399 400 if (free_ctx) 401 tls_ctx_free(sk, ctx); 402 } 403 404 static __poll_t tls_sk_poll(struct file *file, struct socket *sock, 405 struct poll_table_struct *wait) 406 { 407 struct tls_sw_context_rx *ctx; 408 struct tls_context *tls_ctx; 409 struct sock *sk = sock->sk; 410 struct sk_psock *psock; 411 __poll_t mask = 0; 412 u8 shutdown; 413 int state; 414 415 mask = tcp_poll(file, sock, wait); 416 417 state = inet_sk_state_load(sk); 418 shutdown = READ_ONCE(sk->sk_shutdown); 419 if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN)) 420 return mask; 421 422 tls_ctx = tls_get_ctx(sk); 423 ctx = tls_sw_ctx_rx(tls_ctx); 424 psock = sk_psock_get(sk); 425 426 if ((skb_queue_empty_lockless(&ctx->rx_list) && 427 !tls_strp_msg_ready(ctx) && 428 sk_psock_queue_empty(psock)) || 429 READ_ONCE(ctx->key_update_pending)) 430 mask &= ~(EPOLLIN | EPOLLRDNORM); 431 432 if (psock) 433 sk_psock_put(sk, psock); 434 435 return mask; 436 } 437 438 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval, 439 int __user *optlen, int tx) 440 { 441 int rc = 0; 442 const struct tls_cipher_desc *cipher_desc; 443 struct tls_context *ctx = tls_get_ctx(sk); 444 struct tls_crypto_info *crypto_info; 445 struct cipher_context *cctx; 446 int len; 447 448 if (get_user(len, optlen)) 449 return -EFAULT; 450 451 if (!optval || (len < sizeof(*crypto_info))) { 452 rc = -EINVAL; 453 goto out; 454 } 455 456 if (!ctx) { 457 rc = -EBUSY; 458 goto out; 459 } 460 461 /* get user crypto info */ 462 if (tx) { 463 crypto_info = &ctx->crypto_send.info; 464 cctx = &ctx->tx; 465 } else { 466 crypto_info = &ctx->crypto_recv.info; 467 cctx = &ctx->rx; 468 } 469 470 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 471 rc = -EBUSY; 472 goto out; 473 } 474 475 if (len == sizeof(*crypto_info)) { 476 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 477 rc = -EFAULT; 478 goto out; 479 } 480 481 cipher_desc = get_cipher_desc(crypto_info->cipher_type); 482 if (!cipher_desc || len != cipher_desc->crypto_info) { 483 rc = -EINVAL; 484 goto out; 485 } 486 487 memcpy(crypto_info_iv(crypto_info, cipher_desc), 488 cctx->iv + cipher_desc->salt, cipher_desc->iv); 489 memcpy(crypto_info_rec_seq(crypto_info, cipher_desc), 490 cctx->rec_seq, cipher_desc->rec_seq); 491 492 if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info)) 493 rc = -EFAULT; 494 495 out: 496 return rc; 497 } 498 499 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval, 500 int __user *optlen) 501 { 502 struct tls_context *ctx = tls_get_ctx(sk); 503 unsigned int value; 504 int len; 505 506 if (get_user(len, optlen)) 507 return -EFAULT; 508 509 if (len != sizeof(value)) 510 return -EINVAL; 511 512 value = ctx->zerocopy_sendfile; 513 if (copy_to_user(optval, &value, sizeof(value))) 514 return -EFAULT; 515 516 return 0; 517 } 518 519 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval, 520 int __user *optlen) 521 { 522 struct tls_context *ctx = tls_get_ctx(sk); 523 int value, len; 524 525 if (ctx->prot_info.version != TLS_1_3_VERSION) 526 return -EINVAL; 527 528 if (get_user(len, optlen)) 529 return -EFAULT; 530 if (len < sizeof(value)) 531 return -EINVAL; 532 533 value = -EINVAL; 534 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 535 value = ctx->rx_no_pad; 536 if (value < 0) 537 return value; 538 539 if (put_user(sizeof(value), optlen)) 540 return -EFAULT; 541 if (copy_to_user(optval, &value, sizeof(value))) 542 return -EFAULT; 543 544 return 0; 545 } 546 547 static int do_tls_getsockopt(struct sock *sk, int optname, 548 char __user *optval, int __user *optlen) 549 { 550 int rc = 0; 551 552 lock_sock(sk); 553 554 switch (optname) { 555 case TLS_TX: 556 case TLS_RX: 557 rc = do_tls_getsockopt_conf(sk, optval, optlen, 558 optname == TLS_TX); 559 break; 560 case TLS_TX_ZEROCOPY_RO: 561 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen); 562 break; 563 case TLS_RX_EXPECT_NO_PAD: 564 rc = do_tls_getsockopt_no_pad(sk, optval, optlen); 565 break; 566 default: 567 rc = -ENOPROTOOPT; 568 break; 569 } 570 571 release_sock(sk); 572 573 return rc; 574 } 575 576 static int tls_getsockopt(struct sock *sk, int level, int optname, 577 char __user *optval, int __user *optlen) 578 { 579 struct tls_context *ctx = tls_get_ctx(sk); 580 581 if (level != SOL_TLS) 582 return ctx->sk_proto->getsockopt(sk, level, 583 optname, optval, optlen); 584 585 return do_tls_getsockopt(sk, optname, optval, optlen); 586 } 587 588 static int validate_crypto_info(const struct tls_crypto_info *crypto_info, 589 const struct tls_crypto_info *alt_crypto_info) 590 { 591 if (crypto_info->version != TLS_1_2_VERSION && 592 crypto_info->version != TLS_1_3_VERSION) 593 return -EINVAL; 594 595 switch (crypto_info->cipher_type) { 596 case TLS_CIPHER_ARIA_GCM_128: 597 case TLS_CIPHER_ARIA_GCM_256: 598 if (crypto_info->version != TLS_1_2_VERSION) 599 return -EINVAL; 600 break; 601 } 602 603 /* Ensure that TLS version and ciphers are same in both directions */ 604 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 605 if (alt_crypto_info->version != crypto_info->version || 606 alt_crypto_info->cipher_type != crypto_info->cipher_type) 607 return -EINVAL; 608 } 609 610 return 0; 611 } 612 613 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, 614 unsigned int optlen, int tx) 615 { 616 struct tls_crypto_info *crypto_info, *alt_crypto_info; 617 struct tls_crypto_info *old_crypto_info = NULL; 618 struct tls_context *ctx = tls_get_ctx(sk); 619 const struct tls_cipher_desc *cipher_desc; 620 union tls_crypto_context *crypto_ctx; 621 union tls_crypto_context tmp = {}; 622 bool update = false; 623 int rc = 0; 624 int conf; 625 626 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) 627 return -EINVAL; 628 629 if (tx) { 630 crypto_ctx = &ctx->crypto_send; 631 alt_crypto_info = &ctx->crypto_recv.info; 632 } else { 633 crypto_ctx = &ctx->crypto_recv; 634 alt_crypto_info = &ctx->crypto_send.info; 635 } 636 637 crypto_info = &crypto_ctx->info; 638 639 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 640 /* Currently we only support setting crypto info more 641 * than one time for TLS 1.3 642 */ 643 if (crypto_info->version != TLS_1_3_VERSION) { 644 TLS_INC_STATS(sock_net(sk), tx ? LINUX_MIB_TLSTXREKEYERROR 645 : LINUX_MIB_TLSRXREKEYERROR); 646 return -EBUSY; 647 } 648 649 update = true; 650 old_crypto_info = crypto_info; 651 crypto_info = &tmp.info; 652 crypto_ctx = &tmp; 653 } 654 655 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); 656 if (rc) { 657 rc = -EFAULT; 658 goto err_crypto_info; 659 } 660 661 if (update) { 662 /* Ensure that TLS version and ciphers are not modified */ 663 if (crypto_info->version != old_crypto_info->version || 664 crypto_info->cipher_type != old_crypto_info->cipher_type) 665 rc = -EINVAL; 666 } else { 667 rc = validate_crypto_info(crypto_info, alt_crypto_info); 668 } 669 if (rc) 670 goto err_crypto_info; 671 672 cipher_desc = get_cipher_desc(crypto_info->cipher_type); 673 if (!cipher_desc) { 674 rc = -EINVAL; 675 goto err_crypto_info; 676 } 677 678 if (optlen != cipher_desc->crypto_info) { 679 rc = -EINVAL; 680 goto err_crypto_info; 681 } 682 683 rc = copy_from_sockptr_offset(crypto_info + 1, optval, 684 sizeof(*crypto_info), 685 optlen - sizeof(*crypto_info)); 686 if (rc) { 687 rc = -EFAULT; 688 goto err_crypto_info; 689 } 690 691 if (tx) { 692 rc = tls_set_device_offload(sk); 693 conf = TLS_HW; 694 if (!rc) { 695 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); 696 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 697 } else { 698 rc = tls_set_sw_offload(sk, 1, 699 update ? crypto_info : NULL); 700 if (rc) 701 goto err_crypto_info; 702 703 if (update) { 704 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXREKEYOK); 705 } else { 706 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); 707 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 708 } 709 conf = TLS_SW; 710 } 711 } else { 712 rc = tls_set_device_offload_rx(sk, ctx); 713 conf = TLS_HW; 714 if (!rc) { 715 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); 716 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 717 } else { 718 rc = tls_set_sw_offload(sk, 0, 719 update ? crypto_info : NULL); 720 if (rc) 721 goto err_crypto_info; 722 723 if (update) { 724 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYOK); 725 } else { 726 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); 727 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 728 } 729 conf = TLS_SW; 730 } 731 if (!update) 732 tls_sw_strparser_arm(sk, ctx); 733 } 734 735 if (tx) 736 ctx->tx_conf = conf; 737 else 738 ctx->rx_conf = conf; 739 update_sk_prot(sk, ctx); 740 741 if (update) 742 return 0; 743 744 if (tx) { 745 ctx->sk_write_space = sk->sk_write_space; 746 sk->sk_write_space = tls_write_space; 747 } else { 748 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx); 749 750 tls_strp_check_rcv(&rx_ctx->strp); 751 } 752 return 0; 753 754 err_crypto_info: 755 if (update) { 756 TLS_INC_STATS(sock_net(sk), tx ? LINUX_MIB_TLSTXREKEYERROR 757 : LINUX_MIB_TLSRXREKEYERROR); 758 } 759 memzero_explicit(crypto_ctx, sizeof(*crypto_ctx)); 760 return rc; 761 } 762 763 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval, 764 unsigned int optlen) 765 { 766 struct tls_context *ctx = tls_get_ctx(sk); 767 unsigned int value; 768 769 if (sockptr_is_null(optval) || optlen != sizeof(value)) 770 return -EINVAL; 771 772 if (copy_from_sockptr(&value, optval, sizeof(value))) 773 return -EFAULT; 774 775 if (value > 1) 776 return -EINVAL; 777 778 ctx->zerocopy_sendfile = value; 779 780 return 0; 781 } 782 783 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval, 784 unsigned int optlen) 785 { 786 struct tls_context *ctx = tls_get_ctx(sk); 787 u32 val; 788 int rc; 789 790 if (ctx->prot_info.version != TLS_1_3_VERSION || 791 sockptr_is_null(optval) || optlen < sizeof(val)) 792 return -EINVAL; 793 794 rc = copy_from_sockptr(&val, optval, sizeof(val)); 795 if (rc) 796 return -EFAULT; 797 if (val > 1) 798 return -EINVAL; 799 rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val)); 800 if (rc < 1) 801 return rc == 0 ? -EINVAL : rc; 802 803 lock_sock(sk); 804 rc = -EINVAL; 805 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) { 806 ctx->rx_no_pad = val; 807 tls_update_rx_zc_capable(ctx); 808 rc = 0; 809 } 810 release_sock(sk); 811 812 return rc; 813 } 814 815 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, 816 unsigned int optlen) 817 { 818 int rc = 0; 819 820 switch (optname) { 821 case TLS_TX: 822 case TLS_RX: 823 lock_sock(sk); 824 rc = do_tls_setsockopt_conf(sk, optval, optlen, 825 optname == TLS_TX); 826 release_sock(sk); 827 break; 828 case TLS_TX_ZEROCOPY_RO: 829 lock_sock(sk); 830 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen); 831 release_sock(sk); 832 break; 833 case TLS_RX_EXPECT_NO_PAD: 834 rc = do_tls_setsockopt_no_pad(sk, optval, optlen); 835 break; 836 default: 837 rc = -ENOPROTOOPT; 838 break; 839 } 840 return rc; 841 } 842 843 static int tls_setsockopt(struct sock *sk, int level, int optname, 844 sockptr_t optval, unsigned int optlen) 845 { 846 struct tls_context *ctx = tls_get_ctx(sk); 847 848 if (level != SOL_TLS) 849 return ctx->sk_proto->setsockopt(sk, level, optname, optval, 850 optlen); 851 852 return do_tls_setsockopt(sk, optname, optval, optlen); 853 } 854 855 struct tls_context *tls_ctx_create(struct sock *sk) 856 { 857 struct inet_connection_sock *icsk = inet_csk(sk); 858 struct tls_context *ctx; 859 860 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 861 if (!ctx) 862 return NULL; 863 864 mutex_init(&ctx->tx_lock); 865 ctx->sk_proto = READ_ONCE(sk->sk_prot); 866 ctx->sk = sk; 867 /* Release semantic of rcu_assign_pointer() ensures that 868 * ctx->sk_proto is visible before changing sk->sk_prot in 869 * update_sk_prot(), and prevents reading uninitialized value in 870 * tls_{getsockopt, setsockopt}. Note that we do not need a 871 * read barrier in tls_{getsockopt,setsockopt} as there is an 872 * address dependency between sk->sk_proto->{getsockopt,setsockopt} 873 * and ctx->sk_proto. 874 */ 875 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 876 return ctx; 877 } 878 879 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 880 const struct proto_ops *base) 881 { 882 ops[TLS_BASE][TLS_BASE] = *base; 883 884 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; 885 ops[TLS_SW ][TLS_BASE].splice_eof = tls_sw_splice_eof; 886 887 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE]; 888 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read; 889 ops[TLS_BASE][TLS_SW ].poll = tls_sk_poll; 890 ops[TLS_BASE][TLS_SW ].read_sock = tls_sw_read_sock; 891 892 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE]; 893 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read; 894 ops[TLS_SW ][TLS_SW ].poll = tls_sk_poll; 895 ops[TLS_SW ][TLS_SW ].read_sock = tls_sw_read_sock; 896 897 #ifdef CONFIG_TLS_DEVICE 898 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; 899 900 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ]; 901 902 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ]; 903 904 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ]; 905 906 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ]; 907 #endif 908 #ifdef CONFIG_TLS_TOE 909 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 910 #endif 911 } 912 913 static void tls_build_proto(struct sock *sk) 914 { 915 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 916 struct proto *prot = READ_ONCE(sk->sk_prot); 917 918 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 919 if (ip_ver == TLSV6 && 920 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { 921 mutex_lock(&tcpv6_prot_mutex); 922 if (likely(prot != saved_tcpv6_prot)) { 923 build_protos(tls_prots[TLSV6], prot); 924 build_proto_ops(tls_proto_ops[TLSV6], 925 sk->sk_socket->ops); 926 smp_store_release(&saved_tcpv6_prot, prot); 927 } 928 mutex_unlock(&tcpv6_prot_mutex); 929 } 930 931 if (ip_ver == TLSV4 && 932 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { 933 mutex_lock(&tcpv4_prot_mutex); 934 if (likely(prot != saved_tcpv4_prot)) { 935 build_protos(tls_prots[TLSV4], prot); 936 build_proto_ops(tls_proto_ops[TLSV4], 937 sk->sk_socket->ops); 938 smp_store_release(&saved_tcpv4_prot, prot); 939 } 940 mutex_unlock(&tcpv4_prot_mutex); 941 } 942 } 943 944 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 945 const struct proto *base) 946 { 947 prot[TLS_BASE][TLS_BASE] = *base; 948 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 949 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 950 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 951 952 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 953 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 954 prot[TLS_SW][TLS_BASE].splice_eof = tls_sw_splice_eof; 955 956 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 957 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 958 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 959 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 960 961 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 962 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 963 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 964 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 965 966 #ifdef CONFIG_TLS_DEVICE 967 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 968 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 969 prot[TLS_HW][TLS_BASE].splice_eof = tls_device_splice_eof; 970 971 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 972 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 973 prot[TLS_HW][TLS_SW].splice_eof = tls_device_splice_eof; 974 975 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 976 977 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 978 979 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 980 #endif 981 #ifdef CONFIG_TLS_TOE 982 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 983 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; 984 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; 985 #endif 986 } 987 988 static int tls_init(struct sock *sk) 989 { 990 struct tls_context *ctx; 991 int rc = 0; 992 993 tls_build_proto(sk); 994 995 #ifdef CONFIG_TLS_TOE 996 if (tls_toe_bypass(sk)) 997 return 0; 998 #endif 999 1000 /* The TLS ulp is currently supported only for TCP sockets 1001 * in ESTABLISHED state. 1002 * Supporting sockets in LISTEN state will require us 1003 * to modify the accept implementation to clone rather then 1004 * share the ulp context. 1005 */ 1006 if (sk->sk_state != TCP_ESTABLISHED) 1007 return -ENOTCONN; 1008 1009 /* allocate tls context */ 1010 write_lock_bh(&sk->sk_callback_lock); 1011 ctx = tls_ctx_create(sk); 1012 if (!ctx) { 1013 rc = -ENOMEM; 1014 goto out; 1015 } 1016 1017 ctx->tx_conf = TLS_BASE; 1018 ctx->rx_conf = TLS_BASE; 1019 update_sk_prot(sk, ctx); 1020 out: 1021 write_unlock_bh(&sk->sk_callback_lock); 1022 return rc; 1023 } 1024 1025 static void tls_update(struct sock *sk, struct proto *p, 1026 void (*write_space)(struct sock *sk)) 1027 { 1028 struct tls_context *ctx; 1029 1030 WARN_ON_ONCE(sk->sk_prot == p); 1031 1032 ctx = tls_get_ctx(sk); 1033 if (likely(ctx)) { 1034 ctx->sk_write_space = write_space; 1035 ctx->sk_proto = p; 1036 } else { 1037 /* Pairs with lockless read in sk_clone_lock(). */ 1038 WRITE_ONCE(sk->sk_prot, p); 1039 sk->sk_write_space = write_space; 1040 } 1041 } 1042 1043 static u16 tls_user_config(struct tls_context *ctx, bool tx) 1044 { 1045 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 1046 1047 switch (config) { 1048 case TLS_BASE: 1049 return TLS_CONF_BASE; 1050 case TLS_SW: 1051 return TLS_CONF_SW; 1052 case TLS_HW: 1053 return TLS_CONF_HW; 1054 case TLS_HW_RECORD: 1055 return TLS_CONF_HW_RECORD; 1056 } 1057 return 0; 1058 } 1059 1060 static int tls_get_info(struct sock *sk, struct sk_buff *skb) 1061 { 1062 u16 version, cipher_type; 1063 struct tls_context *ctx; 1064 struct nlattr *start; 1065 int err; 1066 1067 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 1068 if (!start) 1069 return -EMSGSIZE; 1070 1071 rcu_read_lock(); 1072 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 1073 if (!ctx) { 1074 err = 0; 1075 goto nla_failure; 1076 } 1077 version = ctx->prot_info.version; 1078 if (version) { 1079 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 1080 if (err) 1081 goto nla_failure; 1082 } 1083 cipher_type = ctx->prot_info.cipher_type; 1084 if (cipher_type) { 1085 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 1086 if (err) 1087 goto nla_failure; 1088 } 1089 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 1090 if (err) 1091 goto nla_failure; 1092 1093 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 1094 if (err) 1095 goto nla_failure; 1096 1097 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) { 1098 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX); 1099 if (err) 1100 goto nla_failure; 1101 } 1102 if (ctx->rx_no_pad) { 1103 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD); 1104 if (err) 1105 goto nla_failure; 1106 } 1107 1108 rcu_read_unlock(); 1109 nla_nest_end(skb, start); 1110 return 0; 1111 1112 nla_failure: 1113 rcu_read_unlock(); 1114 nla_nest_cancel(skb, start); 1115 return err; 1116 } 1117 1118 static size_t tls_get_info_size(const struct sock *sk) 1119 { 1120 size_t size = 0; 1121 1122 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 1123 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 1124 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 1125 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 1126 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 1127 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */ 1128 nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */ 1129 0; 1130 1131 return size; 1132 } 1133 1134 static int __net_init tls_init_net(struct net *net) 1135 { 1136 int err; 1137 1138 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); 1139 if (!net->mib.tls_statistics) 1140 return -ENOMEM; 1141 1142 err = tls_proc_init(net); 1143 if (err) 1144 goto err_free_stats; 1145 1146 return 0; 1147 err_free_stats: 1148 free_percpu(net->mib.tls_statistics); 1149 return err; 1150 } 1151 1152 static void __net_exit tls_exit_net(struct net *net) 1153 { 1154 tls_proc_fini(net); 1155 free_percpu(net->mib.tls_statistics); 1156 } 1157 1158 static struct pernet_operations tls_proc_ops = { 1159 .init = tls_init_net, 1160 .exit = tls_exit_net, 1161 }; 1162 1163 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 1164 .name = "tls", 1165 .owner = THIS_MODULE, 1166 .init = tls_init, 1167 .update = tls_update, 1168 .get_info = tls_get_info, 1169 .get_info_size = tls_get_info_size, 1170 }; 1171 1172 static int __init tls_register(void) 1173 { 1174 int err; 1175 1176 err = register_pernet_subsys(&tls_proc_ops); 1177 if (err) 1178 return err; 1179 1180 err = tls_strp_dev_init(); 1181 if (err) 1182 goto err_pernet; 1183 1184 err = tls_device_init(); 1185 if (err) 1186 goto err_strp; 1187 1188 tcp_register_ulp(&tcp_tls_ulp_ops); 1189 1190 return 0; 1191 err_strp: 1192 tls_strp_dev_exit(); 1193 err_pernet: 1194 unregister_pernet_subsys(&tls_proc_ops); 1195 return err; 1196 } 1197 1198 static void __exit tls_unregister(void) 1199 { 1200 tcp_unregister_ulp(&tcp_tls_ulp_ops); 1201 tls_strp_dev_exit(); 1202 tls_device_cleanup(); 1203 unregister_pernet_subsys(&tls_proc_ops); 1204 } 1205 1206 module_init(tls_register); 1207 module_exit(tls_unregister); 1208