xref: /linux/net/tls/tls_main.c (revision a90e8608eb0ed93d31ac0feb055f77ce59512542)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43 
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47 
48 #include "tls.h"
49 
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54 
55 enum {
56 	TLSV4,
57 	TLSV6,
58 	TLS_NUM_PROTS,
59 };
60 
61 #define CIPHER_SIZE_DESC(cipher) [cipher] = { \
62 	.iv = cipher ## _IV_SIZE, \
63 	.key = cipher ## _KEY_SIZE, \
64 	.salt = cipher ## _SALT_SIZE, \
65 	.tag = cipher ## _TAG_SIZE, \
66 	.rec_seq = cipher ## _REC_SEQ_SIZE, \
67 }
68 
69 const struct tls_cipher_size_desc tls_cipher_size_desc[] = {
70 	CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128),
71 	CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256),
72 	CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128),
73 	CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305),
74 	CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM),
75 	CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM),
76 };
77 
78 static const struct proto *saved_tcpv6_prot;
79 static DEFINE_MUTEX(tcpv6_prot_mutex);
80 static const struct proto *saved_tcpv4_prot;
81 static DEFINE_MUTEX(tcpv4_prot_mutex);
82 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
83 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
84 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
85 			 const struct proto *base);
86 
87 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
88 {
89 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
90 
91 	WRITE_ONCE(sk->sk_prot,
92 		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
93 	WRITE_ONCE(sk->sk_socket->ops,
94 		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
95 }
96 
97 int wait_on_pending_writer(struct sock *sk, long *timeo)
98 {
99 	int rc = 0;
100 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
101 
102 	add_wait_queue(sk_sleep(sk), &wait);
103 	while (1) {
104 		if (!*timeo) {
105 			rc = -EAGAIN;
106 			break;
107 		}
108 
109 		if (signal_pending(current)) {
110 			rc = sock_intr_errno(*timeo);
111 			break;
112 		}
113 
114 		if (sk_wait_event(sk, timeo,
115 				  !READ_ONCE(sk->sk_write_pending), &wait))
116 			break;
117 	}
118 	remove_wait_queue(sk_sleep(sk), &wait);
119 	return rc;
120 }
121 
122 int tls_push_sg(struct sock *sk,
123 		struct tls_context *ctx,
124 		struct scatterlist *sg,
125 		u16 first_offset,
126 		int flags)
127 {
128 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
129 	int ret = 0;
130 	struct page *p;
131 	size_t size;
132 	int offset = first_offset;
133 
134 	size = sg->length - offset;
135 	offset += sg->offset;
136 
137 	ctx->in_tcp_sendpages = true;
138 	while (1) {
139 		if (sg_is_last(sg))
140 			sendpage_flags = flags;
141 
142 		/* is sending application-limited? */
143 		tcp_rate_check_app_limited(sk);
144 		p = sg_page(sg);
145 retry:
146 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
147 
148 		if (ret != size) {
149 			if (ret > 0) {
150 				offset += ret;
151 				size -= ret;
152 				goto retry;
153 			}
154 
155 			offset -= sg->offset;
156 			ctx->partially_sent_offset = offset;
157 			ctx->partially_sent_record = (void *)sg;
158 			ctx->in_tcp_sendpages = false;
159 			return ret;
160 		}
161 
162 		put_page(p);
163 		sk_mem_uncharge(sk, sg->length);
164 		sg = sg_next(sg);
165 		if (!sg)
166 			break;
167 
168 		offset = sg->offset;
169 		size = sg->length;
170 	}
171 
172 	ctx->in_tcp_sendpages = false;
173 
174 	return 0;
175 }
176 
177 static int tls_handle_open_record(struct sock *sk, int flags)
178 {
179 	struct tls_context *ctx = tls_get_ctx(sk);
180 
181 	if (tls_is_pending_open_record(ctx))
182 		return ctx->push_pending_record(sk, flags);
183 
184 	return 0;
185 }
186 
187 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
188 		     unsigned char *record_type)
189 {
190 	struct cmsghdr *cmsg;
191 	int rc = -EINVAL;
192 
193 	for_each_cmsghdr(cmsg, msg) {
194 		if (!CMSG_OK(msg, cmsg))
195 			return -EINVAL;
196 		if (cmsg->cmsg_level != SOL_TLS)
197 			continue;
198 
199 		switch (cmsg->cmsg_type) {
200 		case TLS_SET_RECORD_TYPE:
201 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
202 				return -EINVAL;
203 
204 			if (msg->msg_flags & MSG_MORE)
205 				return -EINVAL;
206 
207 			rc = tls_handle_open_record(sk, msg->msg_flags);
208 			if (rc)
209 				return rc;
210 
211 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
212 			rc = 0;
213 			break;
214 		default:
215 			return -EINVAL;
216 		}
217 	}
218 
219 	return rc;
220 }
221 
222 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
223 			    int flags)
224 {
225 	struct scatterlist *sg;
226 	u16 offset;
227 
228 	sg = ctx->partially_sent_record;
229 	offset = ctx->partially_sent_offset;
230 
231 	ctx->partially_sent_record = NULL;
232 	return tls_push_sg(sk, ctx, sg, offset, flags);
233 }
234 
235 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
236 {
237 	struct scatterlist *sg;
238 
239 	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
240 		put_page(sg_page(sg));
241 		sk_mem_uncharge(sk, sg->length);
242 	}
243 	ctx->partially_sent_record = NULL;
244 }
245 
246 static void tls_write_space(struct sock *sk)
247 {
248 	struct tls_context *ctx = tls_get_ctx(sk);
249 
250 	/* If in_tcp_sendpages call lower protocol write space handler
251 	 * to ensure we wake up any waiting operations there. For example
252 	 * if do_tcp_sendpages where to call sk_wait_event.
253 	 */
254 	if (ctx->in_tcp_sendpages) {
255 		ctx->sk_write_space(sk);
256 		return;
257 	}
258 
259 #ifdef CONFIG_TLS_DEVICE
260 	if (ctx->tx_conf == TLS_HW)
261 		tls_device_write_space(sk, ctx);
262 	else
263 #endif
264 		tls_sw_write_space(sk, ctx);
265 
266 	ctx->sk_write_space(sk);
267 }
268 
269 /**
270  * tls_ctx_free() - free TLS ULP context
271  * @sk:  socket to with @ctx is attached
272  * @ctx: TLS context structure
273  *
274  * Free TLS context. If @sk is %NULL caller guarantees that the socket
275  * to which @ctx was attached has no outstanding references.
276  */
277 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
278 {
279 	if (!ctx)
280 		return;
281 
282 	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
283 	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
284 	mutex_destroy(&ctx->tx_lock);
285 
286 	if (sk)
287 		kfree_rcu(ctx, rcu);
288 	else
289 		kfree(ctx);
290 }
291 
292 static void tls_sk_proto_cleanup(struct sock *sk,
293 				 struct tls_context *ctx, long timeo)
294 {
295 	if (unlikely(sk->sk_write_pending) &&
296 	    !wait_on_pending_writer(sk, &timeo))
297 		tls_handle_open_record(sk, 0);
298 
299 	/* We need these for tls_sw_fallback handling of other packets */
300 	if (ctx->tx_conf == TLS_SW) {
301 		kfree(ctx->tx.rec_seq);
302 		kfree(ctx->tx.iv);
303 		tls_sw_release_resources_tx(sk);
304 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
305 	} else if (ctx->tx_conf == TLS_HW) {
306 		tls_device_free_resources_tx(sk);
307 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
308 	}
309 
310 	if (ctx->rx_conf == TLS_SW) {
311 		tls_sw_release_resources_rx(sk);
312 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
313 	} else if (ctx->rx_conf == TLS_HW) {
314 		tls_device_offload_cleanup_rx(sk);
315 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
316 	}
317 }
318 
319 static void tls_sk_proto_close(struct sock *sk, long timeout)
320 {
321 	struct inet_connection_sock *icsk = inet_csk(sk);
322 	struct tls_context *ctx = tls_get_ctx(sk);
323 	long timeo = sock_sndtimeo(sk, 0);
324 	bool free_ctx;
325 
326 	if (ctx->tx_conf == TLS_SW)
327 		tls_sw_cancel_work_tx(ctx);
328 
329 	lock_sock(sk);
330 	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
331 
332 	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
333 		tls_sk_proto_cleanup(sk, ctx, timeo);
334 
335 	write_lock_bh(&sk->sk_callback_lock);
336 	if (free_ctx)
337 		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
338 	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
339 	if (sk->sk_write_space == tls_write_space)
340 		sk->sk_write_space = ctx->sk_write_space;
341 	write_unlock_bh(&sk->sk_callback_lock);
342 	release_sock(sk);
343 	if (ctx->tx_conf == TLS_SW)
344 		tls_sw_free_ctx_tx(ctx);
345 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
346 		tls_sw_strparser_done(ctx);
347 	if (ctx->rx_conf == TLS_SW)
348 		tls_sw_free_ctx_rx(ctx);
349 	ctx->sk_proto->close(sk, timeout);
350 
351 	if (free_ctx)
352 		tls_ctx_free(sk, ctx);
353 }
354 
355 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
356 				  int __user *optlen, int tx)
357 {
358 	int rc = 0;
359 	struct tls_context *ctx = tls_get_ctx(sk);
360 	struct tls_crypto_info *crypto_info;
361 	struct cipher_context *cctx;
362 	int len;
363 
364 	if (get_user(len, optlen))
365 		return -EFAULT;
366 
367 	if (!optval || (len < sizeof(*crypto_info))) {
368 		rc = -EINVAL;
369 		goto out;
370 	}
371 
372 	if (!ctx) {
373 		rc = -EBUSY;
374 		goto out;
375 	}
376 
377 	/* get user crypto info */
378 	if (tx) {
379 		crypto_info = &ctx->crypto_send.info;
380 		cctx = &ctx->tx;
381 	} else {
382 		crypto_info = &ctx->crypto_recv.info;
383 		cctx = &ctx->rx;
384 	}
385 
386 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
387 		rc = -EBUSY;
388 		goto out;
389 	}
390 
391 	if (len == sizeof(*crypto_info)) {
392 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
393 			rc = -EFAULT;
394 		goto out;
395 	}
396 
397 	switch (crypto_info->cipher_type) {
398 	case TLS_CIPHER_AES_GCM_128: {
399 		struct tls12_crypto_info_aes_gcm_128 *
400 		  crypto_info_aes_gcm_128 =
401 		  container_of(crypto_info,
402 			       struct tls12_crypto_info_aes_gcm_128,
403 			       info);
404 
405 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
406 			rc = -EINVAL;
407 			goto out;
408 		}
409 		memcpy(crypto_info_aes_gcm_128->iv,
410 		       cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
411 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
412 		memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
413 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
414 		if (copy_to_user(optval,
415 				 crypto_info_aes_gcm_128,
416 				 sizeof(*crypto_info_aes_gcm_128)))
417 			rc = -EFAULT;
418 		break;
419 	}
420 	case TLS_CIPHER_AES_GCM_256: {
421 		struct tls12_crypto_info_aes_gcm_256 *
422 		  crypto_info_aes_gcm_256 =
423 		  container_of(crypto_info,
424 			       struct tls12_crypto_info_aes_gcm_256,
425 			       info);
426 
427 		if (len != sizeof(*crypto_info_aes_gcm_256)) {
428 			rc = -EINVAL;
429 			goto out;
430 		}
431 		memcpy(crypto_info_aes_gcm_256->iv,
432 		       cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
433 		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
434 		memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
435 		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
436 		if (copy_to_user(optval,
437 				 crypto_info_aes_gcm_256,
438 				 sizeof(*crypto_info_aes_gcm_256)))
439 			rc = -EFAULT;
440 		break;
441 	}
442 	case TLS_CIPHER_AES_CCM_128: {
443 		struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
444 			container_of(crypto_info,
445 				struct tls12_crypto_info_aes_ccm_128, info);
446 
447 		if (len != sizeof(*aes_ccm_128)) {
448 			rc = -EINVAL;
449 			goto out;
450 		}
451 		memcpy(aes_ccm_128->iv,
452 		       cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
453 		       TLS_CIPHER_AES_CCM_128_IV_SIZE);
454 		memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
455 		       TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
456 		if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
457 			rc = -EFAULT;
458 		break;
459 	}
460 	case TLS_CIPHER_CHACHA20_POLY1305: {
461 		struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
462 			container_of(crypto_info,
463 				struct tls12_crypto_info_chacha20_poly1305,
464 				info);
465 
466 		if (len != sizeof(*chacha20_poly1305)) {
467 			rc = -EINVAL;
468 			goto out;
469 		}
470 		memcpy(chacha20_poly1305->iv,
471 		       cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
472 		       TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
473 		memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
474 		       TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
475 		if (copy_to_user(optval, chacha20_poly1305,
476 				sizeof(*chacha20_poly1305)))
477 			rc = -EFAULT;
478 		break;
479 	}
480 	case TLS_CIPHER_SM4_GCM: {
481 		struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
482 			container_of(crypto_info,
483 				struct tls12_crypto_info_sm4_gcm, info);
484 
485 		if (len != sizeof(*sm4_gcm_info)) {
486 			rc = -EINVAL;
487 			goto out;
488 		}
489 		memcpy(sm4_gcm_info->iv,
490 		       cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
491 		       TLS_CIPHER_SM4_GCM_IV_SIZE);
492 		memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
493 		       TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
494 		if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
495 			rc = -EFAULT;
496 		break;
497 	}
498 	case TLS_CIPHER_SM4_CCM: {
499 		struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
500 			container_of(crypto_info,
501 				struct tls12_crypto_info_sm4_ccm, info);
502 
503 		if (len != sizeof(*sm4_ccm_info)) {
504 			rc = -EINVAL;
505 			goto out;
506 		}
507 		memcpy(sm4_ccm_info->iv,
508 		       cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
509 		       TLS_CIPHER_SM4_CCM_IV_SIZE);
510 		memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
511 		       TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
512 		if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
513 			rc = -EFAULT;
514 		break;
515 	}
516 	case TLS_CIPHER_ARIA_GCM_128: {
517 		struct tls12_crypto_info_aria_gcm_128 *
518 		  crypto_info_aria_gcm_128 =
519 		  container_of(crypto_info,
520 			       struct tls12_crypto_info_aria_gcm_128,
521 			       info);
522 
523 		if (len != sizeof(*crypto_info_aria_gcm_128)) {
524 			rc = -EINVAL;
525 			goto out;
526 		}
527 		memcpy(crypto_info_aria_gcm_128->iv,
528 		       cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE,
529 		       TLS_CIPHER_ARIA_GCM_128_IV_SIZE);
530 		memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq,
531 		       TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE);
532 		if (copy_to_user(optval,
533 				 crypto_info_aria_gcm_128,
534 				 sizeof(*crypto_info_aria_gcm_128)))
535 			rc = -EFAULT;
536 		break;
537 	}
538 	case TLS_CIPHER_ARIA_GCM_256: {
539 		struct tls12_crypto_info_aria_gcm_256 *
540 		  crypto_info_aria_gcm_256 =
541 		  container_of(crypto_info,
542 			       struct tls12_crypto_info_aria_gcm_256,
543 			       info);
544 
545 		if (len != sizeof(*crypto_info_aria_gcm_256)) {
546 			rc = -EINVAL;
547 			goto out;
548 		}
549 		memcpy(crypto_info_aria_gcm_256->iv,
550 		       cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE,
551 		       TLS_CIPHER_ARIA_GCM_256_IV_SIZE);
552 		memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq,
553 		       TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE);
554 		if (copy_to_user(optval,
555 				 crypto_info_aria_gcm_256,
556 				 sizeof(*crypto_info_aria_gcm_256)))
557 			rc = -EFAULT;
558 		break;
559 	}
560 	default:
561 		rc = -EINVAL;
562 	}
563 
564 out:
565 	return rc;
566 }
567 
568 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
569 				   int __user *optlen)
570 {
571 	struct tls_context *ctx = tls_get_ctx(sk);
572 	unsigned int value;
573 	int len;
574 
575 	if (get_user(len, optlen))
576 		return -EFAULT;
577 
578 	if (len != sizeof(value))
579 		return -EINVAL;
580 
581 	value = ctx->zerocopy_sendfile;
582 	if (copy_to_user(optval, &value, sizeof(value)))
583 		return -EFAULT;
584 
585 	return 0;
586 }
587 
588 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
589 				    int __user *optlen)
590 {
591 	struct tls_context *ctx = tls_get_ctx(sk);
592 	int value, len;
593 
594 	if (ctx->prot_info.version != TLS_1_3_VERSION)
595 		return -EINVAL;
596 
597 	if (get_user(len, optlen))
598 		return -EFAULT;
599 	if (len < sizeof(value))
600 		return -EINVAL;
601 
602 	value = -EINVAL;
603 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
604 		value = ctx->rx_no_pad;
605 	if (value < 0)
606 		return value;
607 
608 	if (put_user(sizeof(value), optlen))
609 		return -EFAULT;
610 	if (copy_to_user(optval, &value, sizeof(value)))
611 		return -EFAULT;
612 
613 	return 0;
614 }
615 
616 static int do_tls_getsockopt(struct sock *sk, int optname,
617 			     char __user *optval, int __user *optlen)
618 {
619 	int rc = 0;
620 
621 	lock_sock(sk);
622 
623 	switch (optname) {
624 	case TLS_TX:
625 	case TLS_RX:
626 		rc = do_tls_getsockopt_conf(sk, optval, optlen,
627 					    optname == TLS_TX);
628 		break;
629 	case TLS_TX_ZEROCOPY_RO:
630 		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
631 		break;
632 	case TLS_RX_EXPECT_NO_PAD:
633 		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
634 		break;
635 	default:
636 		rc = -ENOPROTOOPT;
637 		break;
638 	}
639 
640 	release_sock(sk);
641 
642 	return rc;
643 }
644 
645 static int tls_getsockopt(struct sock *sk, int level, int optname,
646 			  char __user *optval, int __user *optlen)
647 {
648 	struct tls_context *ctx = tls_get_ctx(sk);
649 
650 	if (level != SOL_TLS)
651 		return ctx->sk_proto->getsockopt(sk, level,
652 						 optname, optval, optlen);
653 
654 	return do_tls_getsockopt(sk, optname, optval, optlen);
655 }
656 
657 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
658 				  unsigned int optlen, int tx)
659 {
660 	struct tls_crypto_info *crypto_info;
661 	struct tls_crypto_info *alt_crypto_info;
662 	struct tls_context *ctx = tls_get_ctx(sk);
663 	size_t optsize;
664 	int rc = 0;
665 	int conf;
666 
667 	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
668 		return -EINVAL;
669 
670 	if (tx) {
671 		crypto_info = &ctx->crypto_send.info;
672 		alt_crypto_info = &ctx->crypto_recv.info;
673 	} else {
674 		crypto_info = &ctx->crypto_recv.info;
675 		alt_crypto_info = &ctx->crypto_send.info;
676 	}
677 
678 	/* Currently we don't support set crypto info more than one time */
679 	if (TLS_CRYPTO_INFO_READY(crypto_info))
680 		return -EBUSY;
681 
682 	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
683 	if (rc) {
684 		rc = -EFAULT;
685 		goto err_crypto_info;
686 	}
687 
688 	/* check version */
689 	if (crypto_info->version != TLS_1_2_VERSION &&
690 	    crypto_info->version != TLS_1_3_VERSION) {
691 		rc = -EINVAL;
692 		goto err_crypto_info;
693 	}
694 
695 	/* Ensure that TLS version and ciphers are same in both directions */
696 	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
697 		if (alt_crypto_info->version != crypto_info->version ||
698 		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
699 			rc = -EINVAL;
700 			goto err_crypto_info;
701 		}
702 	}
703 
704 	switch (crypto_info->cipher_type) {
705 	case TLS_CIPHER_AES_GCM_128:
706 		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
707 		break;
708 	case TLS_CIPHER_AES_GCM_256: {
709 		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
710 		break;
711 	}
712 	case TLS_CIPHER_AES_CCM_128:
713 		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
714 		break;
715 	case TLS_CIPHER_CHACHA20_POLY1305:
716 		optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
717 		break;
718 	case TLS_CIPHER_SM4_GCM:
719 		optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
720 		break;
721 	case TLS_CIPHER_SM4_CCM:
722 		optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
723 		break;
724 	case TLS_CIPHER_ARIA_GCM_128:
725 		if (crypto_info->version != TLS_1_2_VERSION) {
726 			rc = -EINVAL;
727 			goto err_crypto_info;
728 		}
729 		optsize = sizeof(struct tls12_crypto_info_aria_gcm_128);
730 		break;
731 	case TLS_CIPHER_ARIA_GCM_256:
732 		if (crypto_info->version != TLS_1_2_VERSION) {
733 			rc = -EINVAL;
734 			goto err_crypto_info;
735 		}
736 		optsize = sizeof(struct tls12_crypto_info_aria_gcm_256);
737 		break;
738 	default:
739 		rc = -EINVAL;
740 		goto err_crypto_info;
741 	}
742 
743 	if (optlen != optsize) {
744 		rc = -EINVAL;
745 		goto err_crypto_info;
746 	}
747 
748 	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
749 				      sizeof(*crypto_info),
750 				      optlen - sizeof(*crypto_info));
751 	if (rc) {
752 		rc = -EFAULT;
753 		goto err_crypto_info;
754 	}
755 
756 	if (tx) {
757 		rc = tls_set_device_offload(sk, ctx);
758 		conf = TLS_HW;
759 		if (!rc) {
760 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
761 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
762 		} else {
763 			rc = tls_set_sw_offload(sk, ctx, 1);
764 			if (rc)
765 				goto err_crypto_info;
766 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
767 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
768 			conf = TLS_SW;
769 		}
770 	} else {
771 		rc = tls_set_device_offload_rx(sk, ctx);
772 		conf = TLS_HW;
773 		if (!rc) {
774 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
775 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
776 		} else {
777 			rc = tls_set_sw_offload(sk, ctx, 0);
778 			if (rc)
779 				goto err_crypto_info;
780 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
781 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
782 			conf = TLS_SW;
783 		}
784 		tls_sw_strparser_arm(sk, ctx);
785 	}
786 
787 	if (tx)
788 		ctx->tx_conf = conf;
789 	else
790 		ctx->rx_conf = conf;
791 	update_sk_prot(sk, ctx);
792 	if (tx) {
793 		ctx->sk_write_space = sk->sk_write_space;
794 		sk->sk_write_space = tls_write_space;
795 	} else {
796 		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
797 
798 		tls_strp_check_rcv(&rx_ctx->strp);
799 	}
800 	return 0;
801 
802 err_crypto_info:
803 	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
804 	return rc;
805 }
806 
807 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
808 				   unsigned int optlen)
809 {
810 	struct tls_context *ctx = tls_get_ctx(sk);
811 	unsigned int value;
812 
813 	if (sockptr_is_null(optval) || optlen != sizeof(value))
814 		return -EINVAL;
815 
816 	if (copy_from_sockptr(&value, optval, sizeof(value)))
817 		return -EFAULT;
818 
819 	if (value > 1)
820 		return -EINVAL;
821 
822 	ctx->zerocopy_sendfile = value;
823 
824 	return 0;
825 }
826 
827 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
828 				    unsigned int optlen)
829 {
830 	struct tls_context *ctx = tls_get_ctx(sk);
831 	u32 val;
832 	int rc;
833 
834 	if (ctx->prot_info.version != TLS_1_3_VERSION ||
835 	    sockptr_is_null(optval) || optlen < sizeof(val))
836 		return -EINVAL;
837 
838 	rc = copy_from_sockptr(&val, optval, sizeof(val));
839 	if (rc)
840 		return -EFAULT;
841 	if (val > 1)
842 		return -EINVAL;
843 	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
844 	if (rc < 1)
845 		return rc == 0 ? -EINVAL : rc;
846 
847 	lock_sock(sk);
848 	rc = -EINVAL;
849 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
850 		ctx->rx_no_pad = val;
851 		tls_update_rx_zc_capable(ctx);
852 		rc = 0;
853 	}
854 	release_sock(sk);
855 
856 	return rc;
857 }
858 
859 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
860 			     unsigned int optlen)
861 {
862 	int rc = 0;
863 
864 	switch (optname) {
865 	case TLS_TX:
866 	case TLS_RX:
867 		lock_sock(sk);
868 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
869 					    optname == TLS_TX);
870 		release_sock(sk);
871 		break;
872 	case TLS_TX_ZEROCOPY_RO:
873 		lock_sock(sk);
874 		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
875 		release_sock(sk);
876 		break;
877 	case TLS_RX_EXPECT_NO_PAD:
878 		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
879 		break;
880 	default:
881 		rc = -ENOPROTOOPT;
882 		break;
883 	}
884 	return rc;
885 }
886 
887 static int tls_setsockopt(struct sock *sk, int level, int optname,
888 			  sockptr_t optval, unsigned int optlen)
889 {
890 	struct tls_context *ctx = tls_get_ctx(sk);
891 
892 	if (level != SOL_TLS)
893 		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
894 						 optlen);
895 
896 	return do_tls_setsockopt(sk, optname, optval, optlen);
897 }
898 
899 struct tls_context *tls_ctx_create(struct sock *sk)
900 {
901 	struct inet_connection_sock *icsk = inet_csk(sk);
902 	struct tls_context *ctx;
903 
904 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
905 	if (!ctx)
906 		return NULL;
907 
908 	mutex_init(&ctx->tx_lock);
909 	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
910 	ctx->sk_proto = READ_ONCE(sk->sk_prot);
911 	ctx->sk = sk;
912 	return ctx;
913 }
914 
915 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
916 			    const struct proto_ops *base)
917 {
918 	ops[TLS_BASE][TLS_BASE] = *base;
919 
920 	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
921 	ops[TLS_SW  ][TLS_BASE].sendpage_locked	= tls_sw_sendpage_locked;
922 
923 	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
924 	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
925 
926 	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
927 	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
928 
929 #ifdef CONFIG_TLS_DEVICE
930 	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
931 	ops[TLS_HW  ][TLS_BASE].sendpage_locked	= NULL;
932 
933 	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
934 	ops[TLS_HW  ][TLS_SW  ].sendpage_locked	= NULL;
935 
936 	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
937 
938 	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
939 
940 	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
941 	ops[TLS_HW  ][TLS_HW  ].sendpage_locked	= NULL;
942 #endif
943 #ifdef CONFIG_TLS_TOE
944 	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
945 #endif
946 }
947 
948 static void tls_build_proto(struct sock *sk)
949 {
950 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
951 	struct proto *prot = READ_ONCE(sk->sk_prot);
952 
953 	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
954 	if (ip_ver == TLSV6 &&
955 	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
956 		mutex_lock(&tcpv6_prot_mutex);
957 		if (likely(prot != saved_tcpv6_prot)) {
958 			build_protos(tls_prots[TLSV6], prot);
959 			build_proto_ops(tls_proto_ops[TLSV6],
960 					sk->sk_socket->ops);
961 			smp_store_release(&saved_tcpv6_prot, prot);
962 		}
963 		mutex_unlock(&tcpv6_prot_mutex);
964 	}
965 
966 	if (ip_ver == TLSV4 &&
967 	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
968 		mutex_lock(&tcpv4_prot_mutex);
969 		if (likely(prot != saved_tcpv4_prot)) {
970 			build_protos(tls_prots[TLSV4], prot);
971 			build_proto_ops(tls_proto_ops[TLSV4],
972 					sk->sk_socket->ops);
973 			smp_store_release(&saved_tcpv4_prot, prot);
974 		}
975 		mutex_unlock(&tcpv4_prot_mutex);
976 	}
977 }
978 
979 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
980 			 const struct proto *base)
981 {
982 	prot[TLS_BASE][TLS_BASE] = *base;
983 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
984 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
985 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
986 
987 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
988 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
989 	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
990 
991 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
992 	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
993 	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
994 	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
995 
996 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
997 	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
998 	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
999 	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
1000 
1001 #ifdef CONFIG_TLS_DEVICE
1002 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1003 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
1004 	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
1005 
1006 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
1007 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
1008 	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
1009 
1010 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
1011 
1012 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
1013 
1014 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
1015 #endif
1016 #ifdef CONFIG_TLS_TOE
1017 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
1018 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
1019 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
1020 #endif
1021 }
1022 
1023 static int tls_init(struct sock *sk)
1024 {
1025 	struct tls_context *ctx;
1026 	int rc = 0;
1027 
1028 	tls_build_proto(sk);
1029 
1030 #ifdef CONFIG_TLS_TOE
1031 	if (tls_toe_bypass(sk))
1032 		return 0;
1033 #endif
1034 
1035 	/* The TLS ulp is currently supported only for TCP sockets
1036 	 * in ESTABLISHED state.
1037 	 * Supporting sockets in LISTEN state will require us
1038 	 * to modify the accept implementation to clone rather then
1039 	 * share the ulp context.
1040 	 */
1041 	if (sk->sk_state != TCP_ESTABLISHED)
1042 		return -ENOTCONN;
1043 
1044 	/* allocate tls context */
1045 	write_lock_bh(&sk->sk_callback_lock);
1046 	ctx = tls_ctx_create(sk);
1047 	if (!ctx) {
1048 		rc = -ENOMEM;
1049 		goto out;
1050 	}
1051 
1052 	ctx->tx_conf = TLS_BASE;
1053 	ctx->rx_conf = TLS_BASE;
1054 	update_sk_prot(sk, ctx);
1055 out:
1056 	write_unlock_bh(&sk->sk_callback_lock);
1057 	return rc;
1058 }
1059 
1060 static void tls_update(struct sock *sk, struct proto *p,
1061 		       void (*write_space)(struct sock *sk))
1062 {
1063 	struct tls_context *ctx;
1064 
1065 	WARN_ON_ONCE(sk->sk_prot == p);
1066 
1067 	ctx = tls_get_ctx(sk);
1068 	if (likely(ctx)) {
1069 		ctx->sk_write_space = write_space;
1070 		ctx->sk_proto = p;
1071 	} else {
1072 		/* Pairs with lockless read in sk_clone_lock(). */
1073 		WRITE_ONCE(sk->sk_prot, p);
1074 		sk->sk_write_space = write_space;
1075 	}
1076 }
1077 
1078 static u16 tls_user_config(struct tls_context *ctx, bool tx)
1079 {
1080 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1081 
1082 	switch (config) {
1083 	case TLS_BASE:
1084 		return TLS_CONF_BASE;
1085 	case TLS_SW:
1086 		return TLS_CONF_SW;
1087 	case TLS_HW:
1088 		return TLS_CONF_HW;
1089 	case TLS_HW_RECORD:
1090 		return TLS_CONF_HW_RECORD;
1091 	}
1092 	return 0;
1093 }
1094 
1095 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1096 {
1097 	u16 version, cipher_type;
1098 	struct tls_context *ctx;
1099 	struct nlattr *start;
1100 	int err;
1101 
1102 	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1103 	if (!start)
1104 		return -EMSGSIZE;
1105 
1106 	rcu_read_lock();
1107 	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1108 	if (!ctx) {
1109 		err = 0;
1110 		goto nla_failure;
1111 	}
1112 	version = ctx->prot_info.version;
1113 	if (version) {
1114 		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1115 		if (err)
1116 			goto nla_failure;
1117 	}
1118 	cipher_type = ctx->prot_info.cipher_type;
1119 	if (cipher_type) {
1120 		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1121 		if (err)
1122 			goto nla_failure;
1123 	}
1124 	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1125 	if (err)
1126 		goto nla_failure;
1127 
1128 	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1129 	if (err)
1130 		goto nla_failure;
1131 
1132 	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1133 		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1134 		if (err)
1135 			goto nla_failure;
1136 	}
1137 	if (ctx->rx_no_pad) {
1138 		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1139 		if (err)
1140 			goto nla_failure;
1141 	}
1142 
1143 	rcu_read_unlock();
1144 	nla_nest_end(skb, start);
1145 	return 0;
1146 
1147 nla_failure:
1148 	rcu_read_unlock();
1149 	nla_nest_cancel(skb, start);
1150 	return err;
1151 }
1152 
1153 static size_t tls_get_info_size(const struct sock *sk)
1154 {
1155 	size_t size = 0;
1156 
1157 	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1158 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1159 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1160 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1161 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1162 		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1163 		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1164 		0;
1165 
1166 	return size;
1167 }
1168 
1169 static int __net_init tls_init_net(struct net *net)
1170 {
1171 	int err;
1172 
1173 	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1174 	if (!net->mib.tls_statistics)
1175 		return -ENOMEM;
1176 
1177 	err = tls_proc_init(net);
1178 	if (err)
1179 		goto err_free_stats;
1180 
1181 	return 0;
1182 err_free_stats:
1183 	free_percpu(net->mib.tls_statistics);
1184 	return err;
1185 }
1186 
1187 static void __net_exit tls_exit_net(struct net *net)
1188 {
1189 	tls_proc_fini(net);
1190 	free_percpu(net->mib.tls_statistics);
1191 }
1192 
1193 static struct pernet_operations tls_proc_ops = {
1194 	.init = tls_init_net,
1195 	.exit = tls_exit_net,
1196 };
1197 
1198 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1199 	.name			= "tls",
1200 	.owner			= THIS_MODULE,
1201 	.init			= tls_init,
1202 	.update			= tls_update,
1203 	.get_info		= tls_get_info,
1204 	.get_info_size		= tls_get_info_size,
1205 };
1206 
1207 static int __init tls_register(void)
1208 {
1209 	int err;
1210 
1211 	err = register_pernet_subsys(&tls_proc_ops);
1212 	if (err)
1213 		return err;
1214 
1215 	err = tls_strp_dev_init();
1216 	if (err)
1217 		goto err_pernet;
1218 
1219 	err = tls_device_init();
1220 	if (err)
1221 		goto err_strp;
1222 
1223 	tcp_register_ulp(&tcp_tls_ulp_ops);
1224 
1225 	return 0;
1226 err_strp:
1227 	tls_strp_dev_exit();
1228 err_pernet:
1229 	unregister_pernet_subsys(&tls_proc_ops);
1230 	return err;
1231 }
1232 
1233 static void __exit tls_unregister(void)
1234 {
1235 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1236 	tls_strp_dev_exit();
1237 	tls_device_cleanup();
1238 	unregister_pernet_subsys(&tls_proc_ops);
1239 }
1240 
1241 module_init(tls_register);
1242 module_exit(tls_unregister);
1243