xref: /linux/net/tls/tls_main.c (revision 95f68e06b41b9e88291796efa3969409d13fdd4c)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43 
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47 
48 #include "tls.h"
49 
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54 
55 enum {
56 	TLSV4,
57 	TLSV6,
58 	TLS_NUM_PROTS,
59 };
60 
61 #define CHECK_CIPHER_DESC(cipher,ci)				\
62 	static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE);		\
63 	static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE);		\
64 	static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE);	\
65 	static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE);		\
66 	static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE);	\
67 	static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE);	\
68 	static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE);	\
69 	static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
70 
71 #define __CIPHER_DESC(ci) \
72 	.iv_offset = offsetof(struct ci, iv), \
73 	.key_offset = offsetof(struct ci, key), \
74 	.salt_offset = offsetof(struct ci, salt), \
75 	.rec_seq_offset = offsetof(struct ci, rec_seq), \
76 	.crypto_info = sizeof(struct ci)
77 
78 #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = {	\
79 	.nonce = cipher ## _IV_SIZE, \
80 	.iv = cipher ## _IV_SIZE, \
81 	.key = cipher ## _KEY_SIZE, \
82 	.salt = cipher ## _SALT_SIZE, \
83 	.tag = cipher ## _TAG_SIZE, \
84 	.rec_seq = cipher ## _REC_SEQ_SIZE, \
85 	.cipher_name = algname,	\
86 	.offloadable = _offloadable, \
87 	__CIPHER_DESC(ci), \
88 }
89 
90 #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
91 	.nonce = 0, \
92 	.iv = cipher ## _IV_SIZE, \
93 	.key = cipher ## _KEY_SIZE, \
94 	.salt = cipher ## _SALT_SIZE, \
95 	.tag = cipher ## _TAG_SIZE, \
96 	.rec_seq = cipher ## _REC_SEQ_SIZE, \
97 	.cipher_name = algname,	\
98 	.offloadable = _offloadable, \
99 	__CIPHER_DESC(ci), \
100 }
101 
102 const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
103 	CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
104 	CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
105 	CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
106 	CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
107 	CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
108 	CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
109 	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
110 	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
111 };
112 
113 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
114 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
115 CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
116 CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
117 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
118 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
119 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
120 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
121 
122 static const struct proto *saved_tcpv6_prot;
123 static DEFINE_MUTEX(tcpv6_prot_mutex);
124 static const struct proto *saved_tcpv4_prot;
125 static DEFINE_MUTEX(tcpv4_prot_mutex);
126 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
128 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
129 			 const struct proto *base);
130 
131 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
132 {
133 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
134 
135 	WRITE_ONCE(sk->sk_prot,
136 		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
137 	WRITE_ONCE(sk->sk_socket->ops,
138 		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
139 }
140 
141 int wait_on_pending_writer(struct sock *sk, long *timeo)
142 {
143 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
144 	int ret, rc = 0;
145 
146 	add_wait_queue(sk_sleep(sk), &wait);
147 	while (1) {
148 		if (!*timeo) {
149 			rc = -EAGAIN;
150 			break;
151 		}
152 
153 		if (signal_pending(current)) {
154 			rc = sock_intr_errno(*timeo);
155 			break;
156 		}
157 
158 		ret = sk_wait_event(sk, timeo,
159 				    !READ_ONCE(sk->sk_write_pending), &wait);
160 		if (ret) {
161 			if (ret < 0)
162 				rc = ret;
163 			break;
164 		}
165 	}
166 	remove_wait_queue(sk_sleep(sk), &wait);
167 	return rc;
168 }
169 
170 int tls_push_sg(struct sock *sk,
171 		struct tls_context *ctx,
172 		struct scatterlist *sg,
173 		u16 first_offset,
174 		int flags)
175 {
176 	struct bio_vec bvec;
177 	struct msghdr msg = {
178 		.msg_flags = MSG_SPLICE_PAGES | flags,
179 	};
180 	int ret = 0;
181 	struct page *p;
182 	size_t size;
183 	int offset = first_offset;
184 
185 	size = sg->length - offset;
186 	offset += sg->offset;
187 
188 	ctx->splicing_pages = true;
189 	while (1) {
190 		/* is sending application-limited? */
191 		tcp_rate_check_app_limited(sk);
192 		p = sg_page(sg);
193 retry:
194 		bvec_set_page(&bvec, p, size, offset);
195 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
196 
197 		ret = tcp_sendmsg_locked(sk, &msg, size);
198 
199 		if (ret != size) {
200 			if (ret > 0) {
201 				offset += ret;
202 				size -= ret;
203 				goto retry;
204 			}
205 
206 			offset -= sg->offset;
207 			ctx->partially_sent_offset = offset;
208 			ctx->partially_sent_record = (void *)sg;
209 			ctx->splicing_pages = false;
210 			return ret;
211 		}
212 
213 		put_page(p);
214 		sk_mem_uncharge(sk, sg->length);
215 		sg = sg_next(sg);
216 		if (!sg)
217 			break;
218 
219 		offset = sg->offset;
220 		size = sg->length;
221 	}
222 
223 	ctx->splicing_pages = false;
224 
225 	return 0;
226 }
227 
228 static int tls_handle_open_record(struct sock *sk, int flags)
229 {
230 	struct tls_context *ctx = tls_get_ctx(sk);
231 
232 	if (tls_is_pending_open_record(ctx))
233 		return ctx->push_pending_record(sk, flags);
234 
235 	return 0;
236 }
237 
238 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
239 		     unsigned char *record_type)
240 {
241 	struct cmsghdr *cmsg;
242 	int rc = -EINVAL;
243 
244 	for_each_cmsghdr(cmsg, msg) {
245 		if (!CMSG_OK(msg, cmsg))
246 			return -EINVAL;
247 		if (cmsg->cmsg_level != SOL_TLS)
248 			continue;
249 
250 		switch (cmsg->cmsg_type) {
251 		case TLS_SET_RECORD_TYPE:
252 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
253 				return -EINVAL;
254 
255 			if (msg->msg_flags & MSG_MORE)
256 				return -EINVAL;
257 
258 			rc = tls_handle_open_record(sk, msg->msg_flags);
259 			if (rc)
260 				return rc;
261 
262 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
263 			rc = 0;
264 			break;
265 		default:
266 			return -EINVAL;
267 		}
268 	}
269 
270 	return rc;
271 }
272 
273 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
274 			    int flags)
275 {
276 	struct scatterlist *sg;
277 	u16 offset;
278 
279 	sg = ctx->partially_sent_record;
280 	offset = ctx->partially_sent_offset;
281 
282 	ctx->partially_sent_record = NULL;
283 	return tls_push_sg(sk, ctx, sg, offset, flags);
284 }
285 
286 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
287 {
288 	struct scatterlist *sg;
289 
290 	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
291 		put_page(sg_page(sg));
292 		sk_mem_uncharge(sk, sg->length);
293 	}
294 	ctx->partially_sent_record = NULL;
295 }
296 
297 static void tls_write_space(struct sock *sk)
298 {
299 	struct tls_context *ctx = tls_get_ctx(sk);
300 
301 	/* If splicing_pages call lower protocol write space handler
302 	 * to ensure we wake up any waiting operations there. For example
303 	 * if splicing pages where to call sk_wait_event.
304 	 */
305 	if (ctx->splicing_pages) {
306 		ctx->sk_write_space(sk);
307 		return;
308 	}
309 
310 #ifdef CONFIG_TLS_DEVICE
311 	if (ctx->tx_conf == TLS_HW)
312 		tls_device_write_space(sk, ctx);
313 	else
314 #endif
315 		tls_sw_write_space(sk, ctx);
316 
317 	ctx->sk_write_space(sk);
318 }
319 
320 /**
321  * tls_ctx_free() - free TLS ULP context
322  * @sk:  socket to with @ctx is attached
323  * @ctx: TLS context structure
324  *
325  * Free TLS context. If @sk is %NULL caller guarantees that the socket
326  * to which @ctx was attached has no outstanding references.
327  */
328 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
329 {
330 	if (!ctx)
331 		return;
332 
333 	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
334 	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
335 	mutex_destroy(&ctx->tx_lock);
336 
337 	if (sk)
338 		kfree_rcu(ctx, rcu);
339 	else
340 		kfree(ctx);
341 }
342 
343 static void tls_sk_proto_cleanup(struct sock *sk,
344 				 struct tls_context *ctx, long timeo)
345 {
346 	if (unlikely(sk->sk_write_pending) &&
347 	    !wait_on_pending_writer(sk, &timeo))
348 		tls_handle_open_record(sk, 0);
349 
350 	/* We need these for tls_sw_fallback handling of other packets */
351 	if (ctx->tx_conf == TLS_SW) {
352 		tls_sw_release_resources_tx(sk);
353 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
354 	} else if (ctx->tx_conf == TLS_HW) {
355 		tls_device_free_resources_tx(sk);
356 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
357 	}
358 
359 	if (ctx->rx_conf == TLS_SW) {
360 		tls_sw_release_resources_rx(sk);
361 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
362 	} else if (ctx->rx_conf == TLS_HW) {
363 		tls_device_offload_cleanup_rx(sk);
364 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
365 	}
366 }
367 
368 static void tls_sk_proto_close(struct sock *sk, long timeout)
369 {
370 	struct inet_connection_sock *icsk = inet_csk(sk);
371 	struct tls_context *ctx = tls_get_ctx(sk);
372 	long timeo = sock_sndtimeo(sk, 0);
373 	bool free_ctx;
374 
375 	if (ctx->tx_conf == TLS_SW)
376 		tls_sw_cancel_work_tx(ctx);
377 
378 	lock_sock(sk);
379 	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
380 
381 	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
382 		tls_sk_proto_cleanup(sk, ctx, timeo);
383 
384 	write_lock_bh(&sk->sk_callback_lock);
385 	if (free_ctx)
386 		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
387 	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
388 	if (sk->sk_write_space == tls_write_space)
389 		sk->sk_write_space = ctx->sk_write_space;
390 	write_unlock_bh(&sk->sk_callback_lock);
391 	release_sock(sk);
392 	if (ctx->tx_conf == TLS_SW)
393 		tls_sw_free_ctx_tx(ctx);
394 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
395 		tls_sw_strparser_done(ctx);
396 	if (ctx->rx_conf == TLS_SW)
397 		tls_sw_free_ctx_rx(ctx);
398 	ctx->sk_proto->close(sk, timeout);
399 
400 	if (free_ctx)
401 		tls_ctx_free(sk, ctx);
402 }
403 
404 static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
405 			    struct poll_table_struct *wait)
406 {
407 	struct tls_sw_context_rx *ctx;
408 	struct tls_context *tls_ctx;
409 	struct sock *sk = sock->sk;
410 	struct sk_psock *psock;
411 	__poll_t mask = 0;
412 	u8 shutdown;
413 	int state;
414 
415 	mask = tcp_poll(file, sock, wait);
416 
417 	state = inet_sk_state_load(sk);
418 	shutdown = READ_ONCE(sk->sk_shutdown);
419 	if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
420 		return mask;
421 
422 	tls_ctx = tls_get_ctx(sk);
423 	ctx = tls_sw_ctx_rx(tls_ctx);
424 	psock = sk_psock_get(sk);
425 
426 	if ((skb_queue_empty_lockless(&ctx->rx_list) &&
427 	     !tls_strp_msg_ready(ctx) &&
428 	     sk_psock_queue_empty(psock)) ||
429 	    READ_ONCE(ctx->key_update_pending))
430 		mask &= ~(EPOLLIN | EPOLLRDNORM);
431 
432 	if (psock)
433 		sk_psock_put(sk, psock);
434 
435 	return mask;
436 }
437 
438 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
439 				  int __user *optlen, int tx)
440 {
441 	int rc = 0;
442 	const struct tls_cipher_desc *cipher_desc;
443 	struct tls_context *ctx = tls_get_ctx(sk);
444 	struct tls_crypto_info *crypto_info;
445 	struct cipher_context *cctx;
446 	int len;
447 
448 	if (get_user(len, optlen))
449 		return -EFAULT;
450 
451 	if (!optval || (len < sizeof(*crypto_info))) {
452 		rc = -EINVAL;
453 		goto out;
454 	}
455 
456 	if (!ctx) {
457 		rc = -EBUSY;
458 		goto out;
459 	}
460 
461 	/* get user crypto info */
462 	if (tx) {
463 		crypto_info = &ctx->crypto_send.info;
464 		cctx = &ctx->tx;
465 	} else {
466 		crypto_info = &ctx->crypto_recv.info;
467 		cctx = &ctx->rx;
468 	}
469 
470 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
471 		rc = -EBUSY;
472 		goto out;
473 	}
474 
475 	if (len == sizeof(*crypto_info)) {
476 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
477 			rc = -EFAULT;
478 		goto out;
479 	}
480 
481 	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
482 	if (!cipher_desc || len != cipher_desc->crypto_info) {
483 		rc = -EINVAL;
484 		goto out;
485 	}
486 
487 	memcpy(crypto_info_iv(crypto_info, cipher_desc),
488 	       cctx->iv + cipher_desc->salt, cipher_desc->iv);
489 	memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
490 	       cctx->rec_seq, cipher_desc->rec_seq);
491 
492 	if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
493 		rc = -EFAULT;
494 
495 out:
496 	return rc;
497 }
498 
499 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
500 				   int __user *optlen)
501 {
502 	struct tls_context *ctx = tls_get_ctx(sk);
503 	unsigned int value;
504 	int len;
505 
506 	if (get_user(len, optlen))
507 		return -EFAULT;
508 
509 	if (len != sizeof(value))
510 		return -EINVAL;
511 
512 	value = ctx->zerocopy_sendfile;
513 	if (copy_to_user(optval, &value, sizeof(value)))
514 		return -EFAULT;
515 
516 	return 0;
517 }
518 
519 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
520 				    int __user *optlen)
521 {
522 	struct tls_context *ctx = tls_get_ctx(sk);
523 	int value, len;
524 
525 	if (ctx->prot_info.version != TLS_1_3_VERSION)
526 		return -EINVAL;
527 
528 	if (get_user(len, optlen))
529 		return -EFAULT;
530 	if (len < sizeof(value))
531 		return -EINVAL;
532 
533 	value = -EINVAL;
534 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
535 		value = ctx->rx_no_pad;
536 	if (value < 0)
537 		return value;
538 
539 	if (put_user(sizeof(value), optlen))
540 		return -EFAULT;
541 	if (copy_to_user(optval, &value, sizeof(value)))
542 		return -EFAULT;
543 
544 	return 0;
545 }
546 
547 static int do_tls_getsockopt(struct sock *sk, int optname,
548 			     char __user *optval, int __user *optlen)
549 {
550 	int rc = 0;
551 
552 	lock_sock(sk);
553 
554 	switch (optname) {
555 	case TLS_TX:
556 	case TLS_RX:
557 		rc = do_tls_getsockopt_conf(sk, optval, optlen,
558 					    optname == TLS_TX);
559 		break;
560 	case TLS_TX_ZEROCOPY_RO:
561 		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
562 		break;
563 	case TLS_RX_EXPECT_NO_PAD:
564 		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
565 		break;
566 	default:
567 		rc = -ENOPROTOOPT;
568 		break;
569 	}
570 
571 	release_sock(sk);
572 
573 	return rc;
574 }
575 
576 static int tls_getsockopt(struct sock *sk, int level, int optname,
577 			  char __user *optval, int __user *optlen)
578 {
579 	struct tls_context *ctx = tls_get_ctx(sk);
580 
581 	if (level != SOL_TLS)
582 		return ctx->sk_proto->getsockopt(sk, level,
583 						 optname, optval, optlen);
584 
585 	return do_tls_getsockopt(sk, optname, optval, optlen);
586 }
587 
588 static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
589 				const struct tls_crypto_info *alt_crypto_info)
590 {
591 	if (crypto_info->version != TLS_1_2_VERSION &&
592 	    crypto_info->version != TLS_1_3_VERSION)
593 		return -EINVAL;
594 
595 	switch (crypto_info->cipher_type) {
596 	case TLS_CIPHER_ARIA_GCM_128:
597 	case TLS_CIPHER_ARIA_GCM_256:
598 		if (crypto_info->version != TLS_1_2_VERSION)
599 			return -EINVAL;
600 		break;
601 	}
602 
603 	/* Ensure that TLS version and ciphers are same in both directions */
604 	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
605 		if (alt_crypto_info->version != crypto_info->version ||
606 		    alt_crypto_info->cipher_type != crypto_info->cipher_type)
607 			return -EINVAL;
608 	}
609 
610 	return 0;
611 }
612 
613 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
614 				  unsigned int optlen, int tx)
615 {
616 	struct tls_crypto_info *crypto_info, *alt_crypto_info;
617 	struct tls_crypto_info *old_crypto_info = NULL;
618 	struct tls_context *ctx = tls_get_ctx(sk);
619 	const struct tls_cipher_desc *cipher_desc;
620 	union tls_crypto_context *crypto_ctx;
621 	union tls_crypto_context tmp = {};
622 	bool update = false;
623 	int rc = 0;
624 	int conf;
625 
626 	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
627 		return -EINVAL;
628 
629 	if (tx) {
630 		crypto_ctx = &ctx->crypto_send;
631 		alt_crypto_info = &ctx->crypto_recv.info;
632 	} else {
633 		crypto_ctx = &ctx->crypto_recv;
634 		alt_crypto_info = &ctx->crypto_send.info;
635 	}
636 
637 	crypto_info = &crypto_ctx->info;
638 
639 	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
640 		/* Currently we only support setting crypto info more
641 		 * than one time for TLS 1.3
642 		 */
643 		if (crypto_info->version != TLS_1_3_VERSION) {
644 			TLS_INC_STATS(sock_net(sk), tx ? LINUX_MIB_TLSTXREKEYERROR
645 						       : LINUX_MIB_TLSRXREKEYERROR);
646 			return -EBUSY;
647 		}
648 
649 		update = true;
650 		old_crypto_info = crypto_info;
651 		crypto_info = &tmp.info;
652 		crypto_ctx = &tmp;
653 	}
654 
655 	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
656 	if (rc) {
657 		rc = -EFAULT;
658 		goto err_crypto_info;
659 	}
660 
661 	if (update) {
662 		/* Ensure that TLS version and ciphers are not modified */
663 		if (crypto_info->version != old_crypto_info->version ||
664 		    crypto_info->cipher_type != old_crypto_info->cipher_type)
665 			rc = -EINVAL;
666 	} else {
667 		rc = validate_crypto_info(crypto_info, alt_crypto_info);
668 	}
669 	if (rc)
670 		goto err_crypto_info;
671 
672 	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
673 	if (!cipher_desc) {
674 		rc = -EINVAL;
675 		goto err_crypto_info;
676 	}
677 
678 	if (optlen != cipher_desc->crypto_info) {
679 		rc = -EINVAL;
680 		goto err_crypto_info;
681 	}
682 
683 	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
684 				      sizeof(*crypto_info),
685 				      optlen - sizeof(*crypto_info));
686 	if (rc) {
687 		rc = -EFAULT;
688 		goto err_crypto_info;
689 	}
690 
691 	if (tx) {
692 		rc = tls_set_device_offload(sk);
693 		conf = TLS_HW;
694 		if (!rc) {
695 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
696 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
697 		} else {
698 			rc = tls_set_sw_offload(sk, 1,
699 						update ? crypto_info : NULL);
700 			if (rc)
701 				goto err_crypto_info;
702 
703 			if (update) {
704 				TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXREKEYOK);
705 			} else {
706 				TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
707 				TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
708 			}
709 			conf = TLS_SW;
710 		}
711 	} else {
712 		rc = tls_set_device_offload_rx(sk, ctx);
713 		conf = TLS_HW;
714 		if (!rc) {
715 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
716 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
717 		} else {
718 			rc = tls_set_sw_offload(sk, 0,
719 						update ? crypto_info : NULL);
720 			if (rc)
721 				goto err_crypto_info;
722 
723 			if (update) {
724 				TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYOK);
725 			} else {
726 				TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
727 				TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
728 			}
729 			conf = TLS_SW;
730 		}
731 		if (!update)
732 			tls_sw_strparser_arm(sk, ctx);
733 	}
734 
735 	if (tx)
736 		ctx->tx_conf = conf;
737 	else
738 		ctx->rx_conf = conf;
739 	update_sk_prot(sk, ctx);
740 	if (tx) {
741 		ctx->sk_write_space = sk->sk_write_space;
742 		sk->sk_write_space = tls_write_space;
743 	} else {
744 		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
745 
746 		tls_strp_check_rcv(&rx_ctx->strp);
747 	}
748 	return 0;
749 
750 err_crypto_info:
751 	if (update) {
752 		TLS_INC_STATS(sock_net(sk), tx ? LINUX_MIB_TLSTXREKEYERROR
753 					       : LINUX_MIB_TLSRXREKEYERROR);
754 	}
755 	memzero_explicit(crypto_ctx, sizeof(*crypto_ctx));
756 	return rc;
757 }
758 
759 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
760 				   unsigned int optlen)
761 {
762 	struct tls_context *ctx = tls_get_ctx(sk);
763 	unsigned int value;
764 
765 	if (sockptr_is_null(optval) || optlen != sizeof(value))
766 		return -EINVAL;
767 
768 	if (copy_from_sockptr(&value, optval, sizeof(value)))
769 		return -EFAULT;
770 
771 	if (value > 1)
772 		return -EINVAL;
773 
774 	ctx->zerocopy_sendfile = value;
775 
776 	return 0;
777 }
778 
779 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
780 				    unsigned int optlen)
781 {
782 	struct tls_context *ctx = tls_get_ctx(sk);
783 	u32 val;
784 	int rc;
785 
786 	if (ctx->prot_info.version != TLS_1_3_VERSION ||
787 	    sockptr_is_null(optval) || optlen < sizeof(val))
788 		return -EINVAL;
789 
790 	rc = copy_from_sockptr(&val, optval, sizeof(val));
791 	if (rc)
792 		return -EFAULT;
793 	if (val > 1)
794 		return -EINVAL;
795 	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
796 	if (rc < 1)
797 		return rc == 0 ? -EINVAL : rc;
798 
799 	lock_sock(sk);
800 	rc = -EINVAL;
801 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
802 		ctx->rx_no_pad = val;
803 		tls_update_rx_zc_capable(ctx);
804 		rc = 0;
805 	}
806 	release_sock(sk);
807 
808 	return rc;
809 }
810 
811 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
812 			     unsigned int optlen)
813 {
814 	int rc = 0;
815 
816 	switch (optname) {
817 	case TLS_TX:
818 	case TLS_RX:
819 		lock_sock(sk);
820 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
821 					    optname == TLS_TX);
822 		release_sock(sk);
823 		break;
824 	case TLS_TX_ZEROCOPY_RO:
825 		lock_sock(sk);
826 		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
827 		release_sock(sk);
828 		break;
829 	case TLS_RX_EXPECT_NO_PAD:
830 		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
831 		break;
832 	default:
833 		rc = -ENOPROTOOPT;
834 		break;
835 	}
836 	return rc;
837 }
838 
839 static int tls_setsockopt(struct sock *sk, int level, int optname,
840 			  sockptr_t optval, unsigned int optlen)
841 {
842 	struct tls_context *ctx = tls_get_ctx(sk);
843 
844 	if (level != SOL_TLS)
845 		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
846 						 optlen);
847 
848 	return do_tls_setsockopt(sk, optname, optval, optlen);
849 }
850 
851 struct tls_context *tls_ctx_create(struct sock *sk)
852 {
853 	struct inet_connection_sock *icsk = inet_csk(sk);
854 	struct tls_context *ctx;
855 
856 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
857 	if (!ctx)
858 		return NULL;
859 
860 	mutex_init(&ctx->tx_lock);
861 	ctx->sk_proto = READ_ONCE(sk->sk_prot);
862 	ctx->sk = sk;
863 	/* Release semantic of rcu_assign_pointer() ensures that
864 	 * ctx->sk_proto is visible before changing sk->sk_prot in
865 	 * update_sk_prot(), and prevents reading uninitialized value in
866 	 * tls_{getsockopt, setsockopt}. Note that we do not need a
867 	 * read barrier in tls_{getsockopt,setsockopt} as there is an
868 	 * address dependency between sk->sk_proto->{getsockopt,setsockopt}
869 	 * and ctx->sk_proto.
870 	 */
871 	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
872 	return ctx;
873 }
874 
875 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
876 			    const struct proto_ops *base)
877 {
878 	ops[TLS_BASE][TLS_BASE] = *base;
879 
880 	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
881 	ops[TLS_SW  ][TLS_BASE].splice_eof	= tls_sw_splice_eof;
882 
883 	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
884 	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
885 	ops[TLS_BASE][TLS_SW  ].poll		= tls_sk_poll;
886 	ops[TLS_BASE][TLS_SW  ].read_sock	= tls_sw_read_sock;
887 
888 	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
889 	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
890 	ops[TLS_SW  ][TLS_SW  ].poll		= tls_sk_poll;
891 	ops[TLS_SW  ][TLS_SW  ].read_sock	= tls_sw_read_sock;
892 
893 #ifdef CONFIG_TLS_DEVICE
894 	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
895 
896 	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
897 
898 	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
899 
900 	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
901 
902 	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
903 #endif
904 #ifdef CONFIG_TLS_TOE
905 	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
906 #endif
907 }
908 
909 static void tls_build_proto(struct sock *sk)
910 {
911 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
912 	struct proto *prot = READ_ONCE(sk->sk_prot);
913 
914 	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
915 	if (ip_ver == TLSV6 &&
916 	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
917 		mutex_lock(&tcpv6_prot_mutex);
918 		if (likely(prot != saved_tcpv6_prot)) {
919 			build_protos(tls_prots[TLSV6], prot);
920 			build_proto_ops(tls_proto_ops[TLSV6],
921 					sk->sk_socket->ops);
922 			smp_store_release(&saved_tcpv6_prot, prot);
923 		}
924 		mutex_unlock(&tcpv6_prot_mutex);
925 	}
926 
927 	if (ip_ver == TLSV4 &&
928 	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
929 		mutex_lock(&tcpv4_prot_mutex);
930 		if (likely(prot != saved_tcpv4_prot)) {
931 			build_protos(tls_prots[TLSV4], prot);
932 			build_proto_ops(tls_proto_ops[TLSV4],
933 					sk->sk_socket->ops);
934 			smp_store_release(&saved_tcpv4_prot, prot);
935 		}
936 		mutex_unlock(&tcpv4_prot_mutex);
937 	}
938 }
939 
940 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
941 			 const struct proto *base)
942 {
943 	prot[TLS_BASE][TLS_BASE] = *base;
944 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
945 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
946 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
947 
948 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
949 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
950 	prot[TLS_SW][TLS_BASE].splice_eof	= tls_sw_splice_eof;
951 
952 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
953 	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
954 	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
955 	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
956 
957 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
958 	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
959 	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
960 	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
961 
962 #ifdef CONFIG_TLS_DEVICE
963 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
964 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
965 	prot[TLS_HW][TLS_BASE].splice_eof	= tls_device_splice_eof;
966 
967 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
968 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
969 	prot[TLS_HW][TLS_SW].splice_eof		= tls_device_splice_eof;
970 
971 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
972 
973 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
974 
975 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
976 #endif
977 #ifdef CONFIG_TLS_TOE
978 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
979 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
980 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
981 #endif
982 }
983 
984 static int tls_init(struct sock *sk)
985 {
986 	struct tls_context *ctx;
987 	int rc = 0;
988 
989 	tls_build_proto(sk);
990 
991 #ifdef CONFIG_TLS_TOE
992 	if (tls_toe_bypass(sk))
993 		return 0;
994 #endif
995 
996 	/* The TLS ulp is currently supported only for TCP sockets
997 	 * in ESTABLISHED state.
998 	 * Supporting sockets in LISTEN state will require us
999 	 * to modify the accept implementation to clone rather then
1000 	 * share the ulp context.
1001 	 */
1002 	if (sk->sk_state != TCP_ESTABLISHED)
1003 		return -ENOTCONN;
1004 
1005 	/* allocate tls context */
1006 	write_lock_bh(&sk->sk_callback_lock);
1007 	ctx = tls_ctx_create(sk);
1008 	if (!ctx) {
1009 		rc = -ENOMEM;
1010 		goto out;
1011 	}
1012 
1013 	ctx->tx_conf = TLS_BASE;
1014 	ctx->rx_conf = TLS_BASE;
1015 	update_sk_prot(sk, ctx);
1016 out:
1017 	write_unlock_bh(&sk->sk_callback_lock);
1018 	return rc;
1019 }
1020 
1021 static void tls_update(struct sock *sk, struct proto *p,
1022 		       void (*write_space)(struct sock *sk))
1023 {
1024 	struct tls_context *ctx;
1025 
1026 	WARN_ON_ONCE(sk->sk_prot == p);
1027 
1028 	ctx = tls_get_ctx(sk);
1029 	if (likely(ctx)) {
1030 		ctx->sk_write_space = write_space;
1031 		ctx->sk_proto = p;
1032 	} else {
1033 		/* Pairs with lockless read in sk_clone_lock(). */
1034 		WRITE_ONCE(sk->sk_prot, p);
1035 		sk->sk_write_space = write_space;
1036 	}
1037 }
1038 
1039 static u16 tls_user_config(struct tls_context *ctx, bool tx)
1040 {
1041 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1042 
1043 	switch (config) {
1044 	case TLS_BASE:
1045 		return TLS_CONF_BASE;
1046 	case TLS_SW:
1047 		return TLS_CONF_SW;
1048 	case TLS_HW:
1049 		return TLS_CONF_HW;
1050 	case TLS_HW_RECORD:
1051 		return TLS_CONF_HW_RECORD;
1052 	}
1053 	return 0;
1054 }
1055 
1056 static int tls_get_info(struct sock *sk, struct sk_buff *skb)
1057 {
1058 	u16 version, cipher_type;
1059 	struct tls_context *ctx;
1060 	struct nlattr *start;
1061 	int err;
1062 
1063 	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1064 	if (!start)
1065 		return -EMSGSIZE;
1066 
1067 	rcu_read_lock();
1068 	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1069 	if (!ctx) {
1070 		err = 0;
1071 		goto nla_failure;
1072 	}
1073 	version = ctx->prot_info.version;
1074 	if (version) {
1075 		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1076 		if (err)
1077 			goto nla_failure;
1078 	}
1079 	cipher_type = ctx->prot_info.cipher_type;
1080 	if (cipher_type) {
1081 		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1082 		if (err)
1083 			goto nla_failure;
1084 	}
1085 	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1086 	if (err)
1087 		goto nla_failure;
1088 
1089 	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1090 	if (err)
1091 		goto nla_failure;
1092 
1093 	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1094 		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1095 		if (err)
1096 			goto nla_failure;
1097 	}
1098 	if (ctx->rx_no_pad) {
1099 		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1100 		if (err)
1101 			goto nla_failure;
1102 	}
1103 
1104 	rcu_read_unlock();
1105 	nla_nest_end(skb, start);
1106 	return 0;
1107 
1108 nla_failure:
1109 	rcu_read_unlock();
1110 	nla_nest_cancel(skb, start);
1111 	return err;
1112 }
1113 
1114 static size_t tls_get_info_size(const struct sock *sk)
1115 {
1116 	size_t size = 0;
1117 
1118 	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1119 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1120 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1121 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1122 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1123 		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1124 		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1125 		0;
1126 
1127 	return size;
1128 }
1129 
1130 static int __net_init tls_init_net(struct net *net)
1131 {
1132 	int err;
1133 
1134 	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1135 	if (!net->mib.tls_statistics)
1136 		return -ENOMEM;
1137 
1138 	err = tls_proc_init(net);
1139 	if (err)
1140 		goto err_free_stats;
1141 
1142 	return 0;
1143 err_free_stats:
1144 	free_percpu(net->mib.tls_statistics);
1145 	return err;
1146 }
1147 
1148 static void __net_exit tls_exit_net(struct net *net)
1149 {
1150 	tls_proc_fini(net);
1151 	free_percpu(net->mib.tls_statistics);
1152 }
1153 
1154 static struct pernet_operations tls_proc_ops = {
1155 	.init = tls_init_net,
1156 	.exit = tls_exit_net,
1157 };
1158 
1159 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1160 	.name			= "tls",
1161 	.owner			= THIS_MODULE,
1162 	.init			= tls_init,
1163 	.update			= tls_update,
1164 	.get_info		= tls_get_info,
1165 	.get_info_size		= tls_get_info_size,
1166 };
1167 
1168 static int __init tls_register(void)
1169 {
1170 	int err;
1171 
1172 	err = register_pernet_subsys(&tls_proc_ops);
1173 	if (err)
1174 		return err;
1175 
1176 	err = tls_strp_dev_init();
1177 	if (err)
1178 		goto err_pernet;
1179 
1180 	err = tls_device_init();
1181 	if (err)
1182 		goto err_strp;
1183 
1184 	tcp_register_ulp(&tcp_tls_ulp_ops);
1185 
1186 	return 0;
1187 err_strp:
1188 	tls_strp_dev_exit();
1189 err_pernet:
1190 	unregister_pernet_subsys(&tls_proc_ops);
1191 	return err;
1192 }
1193 
1194 static void __exit tls_unregister(void)
1195 {
1196 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1197 	tls_strp_dev_exit();
1198 	tls_device_cleanup();
1199 	unregister_pernet_subsys(&tls_proc_ops);
1200 }
1201 
1202 module_init(tls_register);
1203 module_exit(tls_unregister);
1204