1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/snmp.h> 45 #include <net/tls.h> 46 #include <net/tls_toe.h> 47 48 #include "tls.h" 49 50 MODULE_AUTHOR("Mellanox Technologies"); 51 MODULE_DESCRIPTION("Transport Layer Security Support"); 52 MODULE_LICENSE("Dual BSD/GPL"); 53 MODULE_ALIAS_TCP_ULP("tls"); 54 55 enum { 56 TLSV4, 57 TLSV6, 58 TLS_NUM_PROTS, 59 }; 60 61 #define CIPHER_SIZE_DESC(cipher) [cipher] = { \ 62 .iv = cipher ## _IV_SIZE, \ 63 .key = cipher ## _KEY_SIZE, \ 64 .salt = cipher ## _SALT_SIZE, \ 65 .tag = cipher ## _TAG_SIZE, \ 66 .rec_seq = cipher ## _REC_SEQ_SIZE, \ 67 } 68 69 const struct tls_cipher_size_desc tls_cipher_size_desc[] = { 70 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128), 71 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256), 72 CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128), 73 CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305), 74 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM), 75 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM), 76 }; 77 78 static const struct proto *saved_tcpv6_prot; 79 static DEFINE_MUTEX(tcpv6_prot_mutex); 80 static const struct proto *saved_tcpv4_prot; 81 static DEFINE_MUTEX(tcpv4_prot_mutex); 82 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 83 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 84 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 85 const struct proto *base); 86 87 void update_sk_prot(struct sock *sk, struct tls_context *ctx) 88 { 89 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 90 91 WRITE_ONCE(sk->sk_prot, 92 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); 93 WRITE_ONCE(sk->sk_socket->ops, 94 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]); 95 } 96 97 int wait_on_pending_writer(struct sock *sk, long *timeo) 98 { 99 int rc = 0; 100 DEFINE_WAIT_FUNC(wait, woken_wake_function); 101 102 add_wait_queue(sk_sleep(sk), &wait); 103 while (1) { 104 if (!*timeo) { 105 rc = -EAGAIN; 106 break; 107 } 108 109 if (signal_pending(current)) { 110 rc = sock_intr_errno(*timeo); 111 break; 112 } 113 114 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 115 break; 116 } 117 remove_wait_queue(sk_sleep(sk), &wait); 118 return rc; 119 } 120 121 int tls_push_sg(struct sock *sk, 122 struct tls_context *ctx, 123 struct scatterlist *sg, 124 u16 first_offset, 125 int flags) 126 { 127 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 128 int ret = 0; 129 struct page *p; 130 size_t size; 131 int offset = first_offset; 132 133 size = sg->length - offset; 134 offset += sg->offset; 135 136 ctx->in_tcp_sendpages = true; 137 while (1) { 138 if (sg_is_last(sg)) 139 sendpage_flags = flags; 140 141 /* is sending application-limited? */ 142 tcp_rate_check_app_limited(sk); 143 p = sg_page(sg); 144 retry: 145 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 146 147 if (ret != size) { 148 if (ret > 0) { 149 offset += ret; 150 size -= ret; 151 goto retry; 152 } 153 154 offset -= sg->offset; 155 ctx->partially_sent_offset = offset; 156 ctx->partially_sent_record = (void *)sg; 157 ctx->in_tcp_sendpages = false; 158 return ret; 159 } 160 161 put_page(p); 162 sk_mem_uncharge(sk, sg->length); 163 sg = sg_next(sg); 164 if (!sg) 165 break; 166 167 offset = sg->offset; 168 size = sg->length; 169 } 170 171 ctx->in_tcp_sendpages = false; 172 173 return 0; 174 } 175 176 static int tls_handle_open_record(struct sock *sk, int flags) 177 { 178 struct tls_context *ctx = tls_get_ctx(sk); 179 180 if (tls_is_pending_open_record(ctx)) 181 return ctx->push_pending_record(sk, flags); 182 183 return 0; 184 } 185 186 int tls_process_cmsg(struct sock *sk, struct msghdr *msg, 187 unsigned char *record_type) 188 { 189 struct cmsghdr *cmsg; 190 int rc = -EINVAL; 191 192 for_each_cmsghdr(cmsg, msg) { 193 if (!CMSG_OK(msg, cmsg)) 194 return -EINVAL; 195 if (cmsg->cmsg_level != SOL_TLS) 196 continue; 197 198 switch (cmsg->cmsg_type) { 199 case TLS_SET_RECORD_TYPE: 200 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 201 return -EINVAL; 202 203 if (msg->msg_flags & MSG_MORE) 204 return -EINVAL; 205 206 rc = tls_handle_open_record(sk, msg->msg_flags); 207 if (rc) 208 return rc; 209 210 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 211 rc = 0; 212 break; 213 default: 214 return -EINVAL; 215 } 216 } 217 218 return rc; 219 } 220 221 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 222 int flags) 223 { 224 struct scatterlist *sg; 225 u16 offset; 226 227 sg = ctx->partially_sent_record; 228 offset = ctx->partially_sent_offset; 229 230 ctx->partially_sent_record = NULL; 231 return tls_push_sg(sk, ctx, sg, offset, flags); 232 } 233 234 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 235 { 236 struct scatterlist *sg; 237 238 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { 239 put_page(sg_page(sg)); 240 sk_mem_uncharge(sk, sg->length); 241 } 242 ctx->partially_sent_record = NULL; 243 } 244 245 static void tls_write_space(struct sock *sk) 246 { 247 struct tls_context *ctx = tls_get_ctx(sk); 248 249 /* If in_tcp_sendpages call lower protocol write space handler 250 * to ensure we wake up any waiting operations there. For example 251 * if do_tcp_sendpages where to call sk_wait_event. 252 */ 253 if (ctx->in_tcp_sendpages) { 254 ctx->sk_write_space(sk); 255 return; 256 } 257 258 #ifdef CONFIG_TLS_DEVICE 259 if (ctx->tx_conf == TLS_HW) 260 tls_device_write_space(sk, ctx); 261 else 262 #endif 263 tls_sw_write_space(sk, ctx); 264 265 ctx->sk_write_space(sk); 266 } 267 268 /** 269 * tls_ctx_free() - free TLS ULP context 270 * @sk: socket to with @ctx is attached 271 * @ctx: TLS context structure 272 * 273 * Free TLS context. If @sk is %NULL caller guarantees that the socket 274 * to which @ctx was attached has no outstanding references. 275 */ 276 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 277 { 278 if (!ctx) 279 return; 280 281 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 282 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 283 mutex_destroy(&ctx->tx_lock); 284 285 if (sk) 286 kfree_rcu(ctx, rcu); 287 else 288 kfree(ctx); 289 } 290 291 static void tls_sk_proto_cleanup(struct sock *sk, 292 struct tls_context *ctx, long timeo) 293 { 294 if (unlikely(sk->sk_write_pending) && 295 !wait_on_pending_writer(sk, &timeo)) 296 tls_handle_open_record(sk, 0); 297 298 /* We need these for tls_sw_fallback handling of other packets */ 299 if (ctx->tx_conf == TLS_SW) { 300 kfree(ctx->tx.rec_seq); 301 kfree(ctx->tx.iv); 302 tls_sw_release_resources_tx(sk); 303 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 304 } else if (ctx->tx_conf == TLS_HW) { 305 tls_device_free_resources_tx(sk); 306 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 307 } 308 309 if (ctx->rx_conf == TLS_SW) { 310 tls_sw_release_resources_rx(sk); 311 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 312 } else if (ctx->rx_conf == TLS_HW) { 313 tls_device_offload_cleanup_rx(sk); 314 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 315 } 316 } 317 318 static void tls_sk_proto_close(struct sock *sk, long timeout) 319 { 320 struct inet_connection_sock *icsk = inet_csk(sk); 321 struct tls_context *ctx = tls_get_ctx(sk); 322 long timeo = sock_sndtimeo(sk, 0); 323 bool free_ctx; 324 325 if (ctx->tx_conf == TLS_SW) 326 tls_sw_cancel_work_tx(ctx); 327 328 lock_sock(sk); 329 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 330 331 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 332 tls_sk_proto_cleanup(sk, ctx, timeo); 333 334 write_lock_bh(&sk->sk_callback_lock); 335 if (free_ctx) 336 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 337 WRITE_ONCE(sk->sk_prot, ctx->sk_proto); 338 if (sk->sk_write_space == tls_write_space) 339 sk->sk_write_space = ctx->sk_write_space; 340 write_unlock_bh(&sk->sk_callback_lock); 341 release_sock(sk); 342 if (ctx->tx_conf == TLS_SW) 343 tls_sw_free_ctx_tx(ctx); 344 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 345 tls_sw_strparser_done(ctx); 346 if (ctx->rx_conf == TLS_SW) 347 tls_sw_free_ctx_rx(ctx); 348 ctx->sk_proto->close(sk, timeout); 349 350 if (free_ctx) 351 tls_ctx_free(sk, ctx); 352 } 353 354 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval, 355 int __user *optlen, int tx) 356 { 357 int rc = 0; 358 struct tls_context *ctx = tls_get_ctx(sk); 359 struct tls_crypto_info *crypto_info; 360 struct cipher_context *cctx; 361 int len; 362 363 if (get_user(len, optlen)) 364 return -EFAULT; 365 366 if (!optval || (len < sizeof(*crypto_info))) { 367 rc = -EINVAL; 368 goto out; 369 } 370 371 if (!ctx) { 372 rc = -EBUSY; 373 goto out; 374 } 375 376 /* get user crypto info */ 377 if (tx) { 378 crypto_info = &ctx->crypto_send.info; 379 cctx = &ctx->tx; 380 } else { 381 crypto_info = &ctx->crypto_recv.info; 382 cctx = &ctx->rx; 383 } 384 385 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 386 rc = -EBUSY; 387 goto out; 388 } 389 390 if (len == sizeof(*crypto_info)) { 391 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 392 rc = -EFAULT; 393 goto out; 394 } 395 396 switch (crypto_info->cipher_type) { 397 case TLS_CIPHER_AES_GCM_128: { 398 struct tls12_crypto_info_aes_gcm_128 * 399 crypto_info_aes_gcm_128 = 400 container_of(crypto_info, 401 struct tls12_crypto_info_aes_gcm_128, 402 info); 403 404 if (len != sizeof(*crypto_info_aes_gcm_128)) { 405 rc = -EINVAL; 406 goto out; 407 } 408 memcpy(crypto_info_aes_gcm_128->iv, 409 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 410 TLS_CIPHER_AES_GCM_128_IV_SIZE); 411 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq, 412 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 413 if (copy_to_user(optval, 414 crypto_info_aes_gcm_128, 415 sizeof(*crypto_info_aes_gcm_128))) 416 rc = -EFAULT; 417 break; 418 } 419 case TLS_CIPHER_AES_GCM_256: { 420 struct tls12_crypto_info_aes_gcm_256 * 421 crypto_info_aes_gcm_256 = 422 container_of(crypto_info, 423 struct tls12_crypto_info_aes_gcm_256, 424 info); 425 426 if (len != sizeof(*crypto_info_aes_gcm_256)) { 427 rc = -EINVAL; 428 goto out; 429 } 430 memcpy(crypto_info_aes_gcm_256->iv, 431 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 432 TLS_CIPHER_AES_GCM_256_IV_SIZE); 433 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq, 434 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 435 if (copy_to_user(optval, 436 crypto_info_aes_gcm_256, 437 sizeof(*crypto_info_aes_gcm_256))) 438 rc = -EFAULT; 439 break; 440 } 441 case TLS_CIPHER_AES_CCM_128: { 442 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 = 443 container_of(crypto_info, 444 struct tls12_crypto_info_aes_ccm_128, info); 445 446 if (len != sizeof(*aes_ccm_128)) { 447 rc = -EINVAL; 448 goto out; 449 } 450 memcpy(aes_ccm_128->iv, 451 cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE, 452 TLS_CIPHER_AES_CCM_128_IV_SIZE); 453 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq, 454 TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE); 455 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128))) 456 rc = -EFAULT; 457 break; 458 } 459 case TLS_CIPHER_CHACHA20_POLY1305: { 460 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 = 461 container_of(crypto_info, 462 struct tls12_crypto_info_chacha20_poly1305, 463 info); 464 465 if (len != sizeof(*chacha20_poly1305)) { 466 rc = -EINVAL; 467 goto out; 468 } 469 memcpy(chacha20_poly1305->iv, 470 cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE, 471 TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE); 472 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq, 473 TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE); 474 if (copy_to_user(optval, chacha20_poly1305, 475 sizeof(*chacha20_poly1305))) 476 rc = -EFAULT; 477 break; 478 } 479 case TLS_CIPHER_SM4_GCM: { 480 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info = 481 container_of(crypto_info, 482 struct tls12_crypto_info_sm4_gcm, info); 483 484 if (len != sizeof(*sm4_gcm_info)) { 485 rc = -EINVAL; 486 goto out; 487 } 488 memcpy(sm4_gcm_info->iv, 489 cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE, 490 TLS_CIPHER_SM4_GCM_IV_SIZE); 491 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq, 492 TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE); 493 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info))) 494 rc = -EFAULT; 495 break; 496 } 497 case TLS_CIPHER_SM4_CCM: { 498 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info = 499 container_of(crypto_info, 500 struct tls12_crypto_info_sm4_ccm, info); 501 502 if (len != sizeof(*sm4_ccm_info)) { 503 rc = -EINVAL; 504 goto out; 505 } 506 memcpy(sm4_ccm_info->iv, 507 cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE, 508 TLS_CIPHER_SM4_CCM_IV_SIZE); 509 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq, 510 TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE); 511 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info))) 512 rc = -EFAULT; 513 break; 514 } 515 case TLS_CIPHER_ARIA_GCM_128: { 516 struct tls12_crypto_info_aria_gcm_128 * 517 crypto_info_aria_gcm_128 = 518 container_of(crypto_info, 519 struct tls12_crypto_info_aria_gcm_128, 520 info); 521 522 if (len != sizeof(*crypto_info_aria_gcm_128)) { 523 rc = -EINVAL; 524 goto out; 525 } 526 memcpy(crypto_info_aria_gcm_128->iv, 527 cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE, 528 TLS_CIPHER_ARIA_GCM_128_IV_SIZE); 529 memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq, 530 TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE); 531 if (copy_to_user(optval, 532 crypto_info_aria_gcm_128, 533 sizeof(*crypto_info_aria_gcm_128))) 534 rc = -EFAULT; 535 break; 536 } 537 case TLS_CIPHER_ARIA_GCM_256: { 538 struct tls12_crypto_info_aria_gcm_256 * 539 crypto_info_aria_gcm_256 = 540 container_of(crypto_info, 541 struct tls12_crypto_info_aria_gcm_256, 542 info); 543 544 if (len != sizeof(*crypto_info_aria_gcm_256)) { 545 rc = -EINVAL; 546 goto out; 547 } 548 memcpy(crypto_info_aria_gcm_256->iv, 549 cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE, 550 TLS_CIPHER_ARIA_GCM_256_IV_SIZE); 551 memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq, 552 TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE); 553 if (copy_to_user(optval, 554 crypto_info_aria_gcm_256, 555 sizeof(*crypto_info_aria_gcm_256))) 556 rc = -EFAULT; 557 break; 558 } 559 default: 560 rc = -EINVAL; 561 } 562 563 out: 564 return rc; 565 } 566 567 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval, 568 int __user *optlen) 569 { 570 struct tls_context *ctx = tls_get_ctx(sk); 571 unsigned int value; 572 int len; 573 574 if (get_user(len, optlen)) 575 return -EFAULT; 576 577 if (len != sizeof(value)) 578 return -EINVAL; 579 580 value = ctx->zerocopy_sendfile; 581 if (copy_to_user(optval, &value, sizeof(value))) 582 return -EFAULT; 583 584 return 0; 585 } 586 587 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval, 588 int __user *optlen) 589 { 590 struct tls_context *ctx = tls_get_ctx(sk); 591 int value, len; 592 593 if (ctx->prot_info.version != TLS_1_3_VERSION) 594 return -EINVAL; 595 596 if (get_user(len, optlen)) 597 return -EFAULT; 598 if (len < sizeof(value)) 599 return -EINVAL; 600 601 value = -EINVAL; 602 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 603 value = ctx->rx_no_pad; 604 if (value < 0) 605 return value; 606 607 if (put_user(sizeof(value), optlen)) 608 return -EFAULT; 609 if (copy_to_user(optval, &value, sizeof(value))) 610 return -EFAULT; 611 612 return 0; 613 } 614 615 static int do_tls_getsockopt(struct sock *sk, int optname, 616 char __user *optval, int __user *optlen) 617 { 618 int rc = 0; 619 620 lock_sock(sk); 621 622 switch (optname) { 623 case TLS_TX: 624 case TLS_RX: 625 rc = do_tls_getsockopt_conf(sk, optval, optlen, 626 optname == TLS_TX); 627 break; 628 case TLS_TX_ZEROCOPY_RO: 629 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen); 630 break; 631 case TLS_RX_EXPECT_NO_PAD: 632 rc = do_tls_getsockopt_no_pad(sk, optval, optlen); 633 break; 634 default: 635 rc = -ENOPROTOOPT; 636 break; 637 } 638 639 release_sock(sk); 640 641 return rc; 642 } 643 644 static int tls_getsockopt(struct sock *sk, int level, int optname, 645 char __user *optval, int __user *optlen) 646 { 647 struct tls_context *ctx = tls_get_ctx(sk); 648 649 if (level != SOL_TLS) 650 return ctx->sk_proto->getsockopt(sk, level, 651 optname, optval, optlen); 652 653 return do_tls_getsockopt(sk, optname, optval, optlen); 654 } 655 656 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, 657 unsigned int optlen, int tx) 658 { 659 struct tls_crypto_info *crypto_info; 660 struct tls_crypto_info *alt_crypto_info; 661 struct tls_context *ctx = tls_get_ctx(sk); 662 size_t optsize; 663 int rc = 0; 664 int conf; 665 666 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) 667 return -EINVAL; 668 669 if (tx) { 670 crypto_info = &ctx->crypto_send.info; 671 alt_crypto_info = &ctx->crypto_recv.info; 672 } else { 673 crypto_info = &ctx->crypto_recv.info; 674 alt_crypto_info = &ctx->crypto_send.info; 675 } 676 677 /* Currently we don't support set crypto info more than one time */ 678 if (TLS_CRYPTO_INFO_READY(crypto_info)) 679 return -EBUSY; 680 681 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); 682 if (rc) { 683 rc = -EFAULT; 684 goto err_crypto_info; 685 } 686 687 /* check version */ 688 if (crypto_info->version != TLS_1_2_VERSION && 689 crypto_info->version != TLS_1_3_VERSION) { 690 rc = -EINVAL; 691 goto err_crypto_info; 692 } 693 694 /* Ensure that TLS version and ciphers are same in both directions */ 695 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 696 if (alt_crypto_info->version != crypto_info->version || 697 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 698 rc = -EINVAL; 699 goto err_crypto_info; 700 } 701 } 702 703 switch (crypto_info->cipher_type) { 704 case TLS_CIPHER_AES_GCM_128: 705 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 706 break; 707 case TLS_CIPHER_AES_GCM_256: { 708 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 709 break; 710 } 711 case TLS_CIPHER_AES_CCM_128: 712 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 713 break; 714 case TLS_CIPHER_CHACHA20_POLY1305: 715 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305); 716 break; 717 case TLS_CIPHER_SM4_GCM: 718 optsize = sizeof(struct tls12_crypto_info_sm4_gcm); 719 break; 720 case TLS_CIPHER_SM4_CCM: 721 optsize = sizeof(struct tls12_crypto_info_sm4_ccm); 722 break; 723 case TLS_CIPHER_ARIA_GCM_128: 724 if (crypto_info->version != TLS_1_2_VERSION) { 725 rc = -EINVAL; 726 goto err_crypto_info; 727 } 728 optsize = sizeof(struct tls12_crypto_info_aria_gcm_128); 729 break; 730 case TLS_CIPHER_ARIA_GCM_256: 731 if (crypto_info->version != TLS_1_2_VERSION) { 732 rc = -EINVAL; 733 goto err_crypto_info; 734 } 735 optsize = sizeof(struct tls12_crypto_info_aria_gcm_256); 736 break; 737 default: 738 rc = -EINVAL; 739 goto err_crypto_info; 740 } 741 742 if (optlen != optsize) { 743 rc = -EINVAL; 744 goto err_crypto_info; 745 } 746 747 rc = copy_from_sockptr_offset(crypto_info + 1, optval, 748 sizeof(*crypto_info), 749 optlen - sizeof(*crypto_info)); 750 if (rc) { 751 rc = -EFAULT; 752 goto err_crypto_info; 753 } 754 755 if (tx) { 756 rc = tls_set_device_offload(sk, ctx); 757 conf = TLS_HW; 758 if (!rc) { 759 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); 760 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 761 } else { 762 rc = tls_set_sw_offload(sk, ctx, 1); 763 if (rc) 764 goto err_crypto_info; 765 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); 766 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 767 conf = TLS_SW; 768 } 769 } else { 770 rc = tls_set_device_offload_rx(sk, ctx); 771 conf = TLS_HW; 772 if (!rc) { 773 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); 774 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 775 } else { 776 rc = tls_set_sw_offload(sk, ctx, 0); 777 if (rc) 778 goto err_crypto_info; 779 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); 780 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 781 conf = TLS_SW; 782 } 783 tls_sw_strparser_arm(sk, ctx); 784 } 785 786 if (tx) 787 ctx->tx_conf = conf; 788 else 789 ctx->rx_conf = conf; 790 update_sk_prot(sk, ctx); 791 if (tx) { 792 ctx->sk_write_space = sk->sk_write_space; 793 sk->sk_write_space = tls_write_space; 794 } else { 795 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx); 796 797 tls_strp_check_rcv(&rx_ctx->strp); 798 } 799 return 0; 800 801 err_crypto_info: 802 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 803 return rc; 804 } 805 806 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval, 807 unsigned int optlen) 808 { 809 struct tls_context *ctx = tls_get_ctx(sk); 810 unsigned int value; 811 812 if (sockptr_is_null(optval) || optlen != sizeof(value)) 813 return -EINVAL; 814 815 if (copy_from_sockptr(&value, optval, sizeof(value))) 816 return -EFAULT; 817 818 if (value > 1) 819 return -EINVAL; 820 821 ctx->zerocopy_sendfile = value; 822 823 return 0; 824 } 825 826 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval, 827 unsigned int optlen) 828 { 829 struct tls_context *ctx = tls_get_ctx(sk); 830 u32 val; 831 int rc; 832 833 if (ctx->prot_info.version != TLS_1_3_VERSION || 834 sockptr_is_null(optval) || optlen < sizeof(val)) 835 return -EINVAL; 836 837 rc = copy_from_sockptr(&val, optval, sizeof(val)); 838 if (rc) 839 return -EFAULT; 840 if (val > 1) 841 return -EINVAL; 842 rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val)); 843 if (rc < 1) 844 return rc == 0 ? -EINVAL : rc; 845 846 lock_sock(sk); 847 rc = -EINVAL; 848 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) { 849 ctx->rx_no_pad = val; 850 tls_update_rx_zc_capable(ctx); 851 rc = 0; 852 } 853 release_sock(sk); 854 855 return rc; 856 } 857 858 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, 859 unsigned int optlen) 860 { 861 int rc = 0; 862 863 switch (optname) { 864 case TLS_TX: 865 case TLS_RX: 866 lock_sock(sk); 867 rc = do_tls_setsockopt_conf(sk, optval, optlen, 868 optname == TLS_TX); 869 release_sock(sk); 870 break; 871 case TLS_TX_ZEROCOPY_RO: 872 lock_sock(sk); 873 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen); 874 release_sock(sk); 875 break; 876 case TLS_RX_EXPECT_NO_PAD: 877 rc = do_tls_setsockopt_no_pad(sk, optval, optlen); 878 break; 879 default: 880 rc = -ENOPROTOOPT; 881 break; 882 } 883 return rc; 884 } 885 886 static int tls_setsockopt(struct sock *sk, int level, int optname, 887 sockptr_t optval, unsigned int optlen) 888 { 889 struct tls_context *ctx = tls_get_ctx(sk); 890 891 if (level != SOL_TLS) 892 return ctx->sk_proto->setsockopt(sk, level, optname, optval, 893 optlen); 894 895 return do_tls_setsockopt(sk, optname, optval, optlen); 896 } 897 898 struct tls_context *tls_ctx_create(struct sock *sk) 899 { 900 struct inet_connection_sock *icsk = inet_csk(sk); 901 struct tls_context *ctx; 902 903 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 904 if (!ctx) 905 return NULL; 906 907 mutex_init(&ctx->tx_lock); 908 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 909 ctx->sk_proto = READ_ONCE(sk->sk_prot); 910 ctx->sk = sk; 911 return ctx; 912 } 913 914 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 915 const struct proto_ops *base) 916 { 917 ops[TLS_BASE][TLS_BASE] = *base; 918 919 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; 920 ops[TLS_SW ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked; 921 922 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE]; 923 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read; 924 925 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE]; 926 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read; 927 928 #ifdef CONFIG_TLS_DEVICE 929 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; 930 ops[TLS_HW ][TLS_BASE].sendpage_locked = NULL; 931 932 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ]; 933 ops[TLS_HW ][TLS_SW ].sendpage_locked = NULL; 934 935 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ]; 936 937 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ]; 938 939 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ]; 940 ops[TLS_HW ][TLS_HW ].sendpage_locked = NULL; 941 #endif 942 #ifdef CONFIG_TLS_TOE 943 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 944 #endif 945 } 946 947 static void tls_build_proto(struct sock *sk) 948 { 949 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 950 struct proto *prot = READ_ONCE(sk->sk_prot); 951 952 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 953 if (ip_ver == TLSV6 && 954 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { 955 mutex_lock(&tcpv6_prot_mutex); 956 if (likely(prot != saved_tcpv6_prot)) { 957 build_protos(tls_prots[TLSV6], prot); 958 build_proto_ops(tls_proto_ops[TLSV6], 959 sk->sk_socket->ops); 960 smp_store_release(&saved_tcpv6_prot, prot); 961 } 962 mutex_unlock(&tcpv6_prot_mutex); 963 } 964 965 if (ip_ver == TLSV4 && 966 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { 967 mutex_lock(&tcpv4_prot_mutex); 968 if (likely(prot != saved_tcpv4_prot)) { 969 build_protos(tls_prots[TLSV4], prot); 970 build_proto_ops(tls_proto_ops[TLSV4], 971 sk->sk_socket->ops); 972 smp_store_release(&saved_tcpv4_prot, prot); 973 } 974 mutex_unlock(&tcpv4_prot_mutex); 975 } 976 } 977 978 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 979 const struct proto *base) 980 { 981 prot[TLS_BASE][TLS_BASE] = *base; 982 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 983 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 984 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 985 986 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 987 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 988 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 989 990 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 991 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 992 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 993 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 994 995 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 996 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 997 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 998 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 999 1000 #ifdef CONFIG_TLS_DEVICE 1001 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 1002 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 1003 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 1004 1005 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 1006 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 1007 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 1008 1009 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 1010 1011 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 1012 1013 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 1014 #endif 1015 #ifdef CONFIG_TLS_TOE 1016 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 1017 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; 1018 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; 1019 #endif 1020 } 1021 1022 static int tls_init(struct sock *sk) 1023 { 1024 struct tls_context *ctx; 1025 int rc = 0; 1026 1027 tls_build_proto(sk); 1028 1029 #ifdef CONFIG_TLS_TOE 1030 if (tls_toe_bypass(sk)) 1031 return 0; 1032 #endif 1033 1034 /* The TLS ulp is currently supported only for TCP sockets 1035 * in ESTABLISHED state. 1036 * Supporting sockets in LISTEN state will require us 1037 * to modify the accept implementation to clone rather then 1038 * share the ulp context. 1039 */ 1040 if (sk->sk_state != TCP_ESTABLISHED) 1041 return -ENOTCONN; 1042 1043 /* allocate tls context */ 1044 write_lock_bh(&sk->sk_callback_lock); 1045 ctx = tls_ctx_create(sk); 1046 if (!ctx) { 1047 rc = -ENOMEM; 1048 goto out; 1049 } 1050 1051 ctx->tx_conf = TLS_BASE; 1052 ctx->rx_conf = TLS_BASE; 1053 update_sk_prot(sk, ctx); 1054 out: 1055 write_unlock_bh(&sk->sk_callback_lock); 1056 return rc; 1057 } 1058 1059 static void tls_update(struct sock *sk, struct proto *p, 1060 void (*write_space)(struct sock *sk)) 1061 { 1062 struct tls_context *ctx; 1063 1064 WARN_ON_ONCE(sk->sk_prot == p); 1065 1066 ctx = tls_get_ctx(sk); 1067 if (likely(ctx)) { 1068 ctx->sk_write_space = write_space; 1069 ctx->sk_proto = p; 1070 } else { 1071 /* Pairs with lockless read in sk_clone_lock(). */ 1072 WRITE_ONCE(sk->sk_prot, p); 1073 sk->sk_write_space = write_space; 1074 } 1075 } 1076 1077 static u16 tls_user_config(struct tls_context *ctx, bool tx) 1078 { 1079 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 1080 1081 switch (config) { 1082 case TLS_BASE: 1083 return TLS_CONF_BASE; 1084 case TLS_SW: 1085 return TLS_CONF_SW; 1086 case TLS_HW: 1087 return TLS_CONF_HW; 1088 case TLS_HW_RECORD: 1089 return TLS_CONF_HW_RECORD; 1090 } 1091 return 0; 1092 } 1093 1094 static int tls_get_info(const struct sock *sk, struct sk_buff *skb) 1095 { 1096 u16 version, cipher_type; 1097 struct tls_context *ctx; 1098 struct nlattr *start; 1099 int err; 1100 1101 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 1102 if (!start) 1103 return -EMSGSIZE; 1104 1105 rcu_read_lock(); 1106 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 1107 if (!ctx) { 1108 err = 0; 1109 goto nla_failure; 1110 } 1111 version = ctx->prot_info.version; 1112 if (version) { 1113 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 1114 if (err) 1115 goto nla_failure; 1116 } 1117 cipher_type = ctx->prot_info.cipher_type; 1118 if (cipher_type) { 1119 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 1120 if (err) 1121 goto nla_failure; 1122 } 1123 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 1124 if (err) 1125 goto nla_failure; 1126 1127 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 1128 if (err) 1129 goto nla_failure; 1130 1131 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) { 1132 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX); 1133 if (err) 1134 goto nla_failure; 1135 } 1136 if (ctx->rx_no_pad) { 1137 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD); 1138 if (err) 1139 goto nla_failure; 1140 } 1141 1142 rcu_read_unlock(); 1143 nla_nest_end(skb, start); 1144 return 0; 1145 1146 nla_failure: 1147 rcu_read_unlock(); 1148 nla_nest_cancel(skb, start); 1149 return err; 1150 } 1151 1152 static size_t tls_get_info_size(const struct sock *sk) 1153 { 1154 size_t size = 0; 1155 1156 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 1157 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 1158 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 1159 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 1160 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 1161 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */ 1162 nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */ 1163 0; 1164 1165 return size; 1166 } 1167 1168 static int __net_init tls_init_net(struct net *net) 1169 { 1170 int err; 1171 1172 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); 1173 if (!net->mib.tls_statistics) 1174 return -ENOMEM; 1175 1176 err = tls_proc_init(net); 1177 if (err) 1178 goto err_free_stats; 1179 1180 return 0; 1181 err_free_stats: 1182 free_percpu(net->mib.tls_statistics); 1183 return err; 1184 } 1185 1186 static void __net_exit tls_exit_net(struct net *net) 1187 { 1188 tls_proc_fini(net); 1189 free_percpu(net->mib.tls_statistics); 1190 } 1191 1192 static struct pernet_operations tls_proc_ops = { 1193 .init = tls_init_net, 1194 .exit = tls_exit_net, 1195 }; 1196 1197 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 1198 .name = "tls", 1199 .owner = THIS_MODULE, 1200 .init = tls_init, 1201 .update = tls_update, 1202 .get_info = tls_get_info, 1203 .get_info_size = tls_get_info_size, 1204 }; 1205 1206 static int __init tls_register(void) 1207 { 1208 int err; 1209 1210 err = register_pernet_subsys(&tls_proc_ops); 1211 if (err) 1212 return err; 1213 1214 err = tls_strp_dev_init(); 1215 if (err) 1216 goto err_pernet; 1217 1218 err = tls_device_init(); 1219 if (err) 1220 goto err_strp; 1221 1222 tcp_register_ulp(&tcp_tls_ulp_ops); 1223 1224 return 0; 1225 err_strp: 1226 tls_strp_dev_exit(); 1227 err_pernet: 1228 unregister_pernet_subsys(&tls_proc_ops); 1229 return err; 1230 } 1231 1232 static void __exit tls_unregister(void) 1233 { 1234 tcp_unregister_ulp(&tcp_tls_ulp_ops); 1235 tls_strp_dev_exit(); 1236 tls_device_cleanup(); 1237 unregister_pernet_subsys(&tls_proc_ops); 1238 } 1239 1240 module_init(tls_register); 1241 module_exit(tls_unregister); 1242