xref: /linux/net/tls/tls_main.c (revision 6f19b2c136d98a84d79030b53e23d405edfdc783)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43 
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47 
48 #include "tls.h"
49 
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54 
55 enum {
56 	TLSV4,
57 	TLSV6,
58 	TLS_NUM_PROTS,
59 };
60 
61 #define CHECK_CIPHER_DESC(cipher,ci)				\
62 	static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE);		\
63 	static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE);		\
64 	static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE);	\
65 	static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE);		\
66 	static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE);	\
67 	static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE);	\
68 	static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE);	\
69 	static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
70 
71 #define __CIPHER_DESC(ci) \
72 	.iv_offset = offsetof(struct ci, iv), \
73 	.key_offset = offsetof(struct ci, key), \
74 	.salt_offset = offsetof(struct ci, salt), \
75 	.rec_seq_offset = offsetof(struct ci, rec_seq), \
76 	.crypto_info = sizeof(struct ci)
77 
78 #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = {	\
79 	.nonce = cipher ## _IV_SIZE, \
80 	.iv = cipher ## _IV_SIZE, \
81 	.key = cipher ## _KEY_SIZE, \
82 	.salt = cipher ## _SALT_SIZE, \
83 	.tag = cipher ## _TAG_SIZE, \
84 	.rec_seq = cipher ## _REC_SEQ_SIZE, \
85 	.cipher_name = algname,	\
86 	.offloadable = _offloadable, \
87 	__CIPHER_DESC(ci), \
88 }
89 
90 #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
91 	.nonce = 0, \
92 	.iv = cipher ## _IV_SIZE, \
93 	.key = cipher ## _KEY_SIZE, \
94 	.salt = cipher ## _SALT_SIZE, \
95 	.tag = cipher ## _TAG_SIZE, \
96 	.rec_seq = cipher ## _REC_SEQ_SIZE, \
97 	.cipher_name = algname,	\
98 	.offloadable = _offloadable, \
99 	__CIPHER_DESC(ci), \
100 }
101 
102 const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
103 	CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
104 	CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
105 	CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
106 	CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
107 	CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
108 	CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
109 	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
110 	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
111 };
112 
113 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
114 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
115 CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
116 CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
117 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
118 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
119 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
120 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
121 
122 static const struct proto *saved_tcpv6_prot;
123 static DEFINE_MUTEX(tcpv6_prot_mutex);
124 static const struct proto *saved_tcpv4_prot;
125 static DEFINE_MUTEX(tcpv4_prot_mutex);
126 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
128 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
129 			 const struct proto *base);
130 
131 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
132 {
133 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
134 
135 	WRITE_ONCE(sk->sk_prot,
136 		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
137 	WRITE_ONCE(sk->sk_socket->ops,
138 		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
139 }
140 
141 int wait_on_pending_writer(struct sock *sk, long *timeo)
142 {
143 	int rc = 0;
144 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
145 
146 	add_wait_queue(sk_sleep(sk), &wait);
147 	while (1) {
148 		if (!*timeo) {
149 			rc = -EAGAIN;
150 			break;
151 		}
152 
153 		if (signal_pending(current)) {
154 			rc = sock_intr_errno(*timeo);
155 			break;
156 		}
157 
158 		if (sk_wait_event(sk, timeo,
159 				  !READ_ONCE(sk->sk_write_pending), &wait))
160 			break;
161 	}
162 	remove_wait_queue(sk_sleep(sk), &wait);
163 	return rc;
164 }
165 
166 int tls_push_sg(struct sock *sk,
167 		struct tls_context *ctx,
168 		struct scatterlist *sg,
169 		u16 first_offset,
170 		int flags)
171 {
172 	struct bio_vec bvec;
173 	struct msghdr msg = {
174 		.msg_flags = MSG_SPLICE_PAGES | flags,
175 	};
176 	int ret = 0;
177 	struct page *p;
178 	size_t size;
179 	int offset = first_offset;
180 
181 	size = sg->length - offset;
182 	offset += sg->offset;
183 
184 	ctx->splicing_pages = true;
185 	while (1) {
186 		/* is sending application-limited? */
187 		tcp_rate_check_app_limited(sk);
188 		p = sg_page(sg);
189 retry:
190 		bvec_set_page(&bvec, p, size, offset);
191 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
192 
193 		ret = tcp_sendmsg_locked(sk, &msg, size);
194 
195 		if (ret != size) {
196 			if (ret > 0) {
197 				offset += ret;
198 				size -= ret;
199 				goto retry;
200 			}
201 
202 			offset -= sg->offset;
203 			ctx->partially_sent_offset = offset;
204 			ctx->partially_sent_record = (void *)sg;
205 			ctx->splicing_pages = false;
206 			return ret;
207 		}
208 
209 		put_page(p);
210 		sk_mem_uncharge(sk, sg->length);
211 		sg = sg_next(sg);
212 		if (!sg)
213 			break;
214 
215 		offset = sg->offset;
216 		size = sg->length;
217 	}
218 
219 	ctx->splicing_pages = false;
220 
221 	return 0;
222 }
223 
224 static int tls_handle_open_record(struct sock *sk, int flags)
225 {
226 	struct tls_context *ctx = tls_get_ctx(sk);
227 
228 	if (tls_is_pending_open_record(ctx))
229 		return ctx->push_pending_record(sk, flags);
230 
231 	return 0;
232 }
233 
234 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
235 		     unsigned char *record_type)
236 {
237 	struct cmsghdr *cmsg;
238 	int rc = -EINVAL;
239 
240 	for_each_cmsghdr(cmsg, msg) {
241 		if (!CMSG_OK(msg, cmsg))
242 			return -EINVAL;
243 		if (cmsg->cmsg_level != SOL_TLS)
244 			continue;
245 
246 		switch (cmsg->cmsg_type) {
247 		case TLS_SET_RECORD_TYPE:
248 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
249 				return -EINVAL;
250 
251 			if (msg->msg_flags & MSG_MORE)
252 				return -EINVAL;
253 
254 			rc = tls_handle_open_record(sk, msg->msg_flags);
255 			if (rc)
256 				return rc;
257 
258 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
259 			rc = 0;
260 			break;
261 		default:
262 			return -EINVAL;
263 		}
264 	}
265 
266 	return rc;
267 }
268 
269 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
270 			    int flags)
271 {
272 	struct scatterlist *sg;
273 	u16 offset;
274 
275 	sg = ctx->partially_sent_record;
276 	offset = ctx->partially_sent_offset;
277 
278 	ctx->partially_sent_record = NULL;
279 	return tls_push_sg(sk, ctx, sg, offset, flags);
280 }
281 
282 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
283 {
284 	struct scatterlist *sg;
285 
286 	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
287 		put_page(sg_page(sg));
288 		sk_mem_uncharge(sk, sg->length);
289 	}
290 	ctx->partially_sent_record = NULL;
291 }
292 
293 static void tls_write_space(struct sock *sk)
294 {
295 	struct tls_context *ctx = tls_get_ctx(sk);
296 
297 	/* If splicing_pages call lower protocol write space handler
298 	 * to ensure we wake up any waiting operations there. For example
299 	 * if splicing pages where to call sk_wait_event.
300 	 */
301 	if (ctx->splicing_pages) {
302 		ctx->sk_write_space(sk);
303 		return;
304 	}
305 
306 #ifdef CONFIG_TLS_DEVICE
307 	if (ctx->tx_conf == TLS_HW)
308 		tls_device_write_space(sk, ctx);
309 	else
310 #endif
311 		tls_sw_write_space(sk, ctx);
312 
313 	ctx->sk_write_space(sk);
314 }
315 
316 /**
317  * tls_ctx_free() - free TLS ULP context
318  * @sk:  socket to with @ctx is attached
319  * @ctx: TLS context structure
320  *
321  * Free TLS context. If @sk is %NULL caller guarantees that the socket
322  * to which @ctx was attached has no outstanding references.
323  */
324 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
325 {
326 	if (!ctx)
327 		return;
328 
329 	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
330 	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
331 	mutex_destroy(&ctx->tx_lock);
332 
333 	if (sk)
334 		kfree_rcu(ctx, rcu);
335 	else
336 		kfree(ctx);
337 }
338 
339 static void tls_sk_proto_cleanup(struct sock *sk,
340 				 struct tls_context *ctx, long timeo)
341 {
342 	if (unlikely(sk->sk_write_pending) &&
343 	    !wait_on_pending_writer(sk, &timeo))
344 		tls_handle_open_record(sk, 0);
345 
346 	/* We need these for tls_sw_fallback handling of other packets */
347 	if (ctx->tx_conf == TLS_SW) {
348 		tls_sw_release_resources_tx(sk);
349 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
350 	} else if (ctx->tx_conf == TLS_HW) {
351 		tls_device_free_resources_tx(sk);
352 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
353 	}
354 
355 	if (ctx->rx_conf == TLS_SW) {
356 		tls_sw_release_resources_rx(sk);
357 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
358 	} else if (ctx->rx_conf == TLS_HW) {
359 		tls_device_offload_cleanup_rx(sk);
360 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
361 	}
362 }
363 
364 static void tls_sk_proto_close(struct sock *sk, long timeout)
365 {
366 	struct inet_connection_sock *icsk = inet_csk(sk);
367 	struct tls_context *ctx = tls_get_ctx(sk);
368 	long timeo = sock_sndtimeo(sk, 0);
369 	bool free_ctx;
370 
371 	if (ctx->tx_conf == TLS_SW)
372 		tls_sw_cancel_work_tx(ctx);
373 
374 	lock_sock(sk);
375 	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
376 
377 	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
378 		tls_sk_proto_cleanup(sk, ctx, timeo);
379 
380 	write_lock_bh(&sk->sk_callback_lock);
381 	if (free_ctx)
382 		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
383 	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
384 	if (sk->sk_write_space == tls_write_space)
385 		sk->sk_write_space = ctx->sk_write_space;
386 	write_unlock_bh(&sk->sk_callback_lock);
387 	release_sock(sk);
388 	if (ctx->tx_conf == TLS_SW)
389 		tls_sw_free_ctx_tx(ctx);
390 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
391 		tls_sw_strparser_done(ctx);
392 	if (ctx->rx_conf == TLS_SW)
393 		tls_sw_free_ctx_rx(ctx);
394 	ctx->sk_proto->close(sk, timeout);
395 
396 	if (free_ctx)
397 		tls_ctx_free(sk, ctx);
398 }
399 
400 static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
401 			    struct poll_table_struct *wait)
402 {
403 	struct tls_sw_context_rx *ctx;
404 	struct tls_context *tls_ctx;
405 	struct sock *sk = sock->sk;
406 	struct sk_psock *psock;
407 	__poll_t mask = 0;
408 	u8 shutdown;
409 	int state;
410 
411 	mask = tcp_poll(file, sock, wait);
412 
413 	state = inet_sk_state_load(sk);
414 	shutdown = READ_ONCE(sk->sk_shutdown);
415 	if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
416 		return mask;
417 
418 	tls_ctx = tls_get_ctx(sk);
419 	ctx = tls_sw_ctx_rx(tls_ctx);
420 	psock = sk_psock_get(sk);
421 
422 	if (skb_queue_empty_lockless(&ctx->rx_list) &&
423 	    !tls_strp_msg_ready(ctx) &&
424 	    sk_psock_queue_empty(psock))
425 		mask &= ~(EPOLLIN | EPOLLRDNORM);
426 
427 	if (psock)
428 		sk_psock_put(sk, psock);
429 
430 	return mask;
431 }
432 
433 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
434 				  int __user *optlen, int tx)
435 {
436 	int rc = 0;
437 	const struct tls_cipher_desc *cipher_desc;
438 	struct tls_context *ctx = tls_get_ctx(sk);
439 	struct tls_crypto_info *crypto_info;
440 	struct cipher_context *cctx;
441 	int len;
442 
443 	if (get_user(len, optlen))
444 		return -EFAULT;
445 
446 	if (!optval || (len < sizeof(*crypto_info))) {
447 		rc = -EINVAL;
448 		goto out;
449 	}
450 
451 	if (!ctx) {
452 		rc = -EBUSY;
453 		goto out;
454 	}
455 
456 	/* get user crypto info */
457 	if (tx) {
458 		crypto_info = &ctx->crypto_send.info;
459 		cctx = &ctx->tx;
460 	} else {
461 		crypto_info = &ctx->crypto_recv.info;
462 		cctx = &ctx->rx;
463 	}
464 
465 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
466 		rc = -EBUSY;
467 		goto out;
468 	}
469 
470 	if (len == sizeof(*crypto_info)) {
471 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
472 			rc = -EFAULT;
473 		goto out;
474 	}
475 
476 	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
477 	if (!cipher_desc || len != cipher_desc->crypto_info) {
478 		rc = -EINVAL;
479 		goto out;
480 	}
481 
482 	memcpy(crypto_info_iv(crypto_info, cipher_desc),
483 	       cctx->iv + cipher_desc->salt, cipher_desc->iv);
484 	memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
485 	       cctx->rec_seq, cipher_desc->rec_seq);
486 
487 	if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
488 		rc = -EFAULT;
489 
490 out:
491 	return rc;
492 }
493 
494 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
495 				   int __user *optlen)
496 {
497 	struct tls_context *ctx = tls_get_ctx(sk);
498 	unsigned int value;
499 	int len;
500 
501 	if (get_user(len, optlen))
502 		return -EFAULT;
503 
504 	if (len != sizeof(value))
505 		return -EINVAL;
506 
507 	value = ctx->zerocopy_sendfile;
508 	if (copy_to_user(optval, &value, sizeof(value)))
509 		return -EFAULT;
510 
511 	return 0;
512 }
513 
514 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
515 				    int __user *optlen)
516 {
517 	struct tls_context *ctx = tls_get_ctx(sk);
518 	int value, len;
519 
520 	if (ctx->prot_info.version != TLS_1_3_VERSION)
521 		return -EINVAL;
522 
523 	if (get_user(len, optlen))
524 		return -EFAULT;
525 	if (len < sizeof(value))
526 		return -EINVAL;
527 
528 	value = -EINVAL;
529 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
530 		value = ctx->rx_no_pad;
531 	if (value < 0)
532 		return value;
533 
534 	if (put_user(sizeof(value), optlen))
535 		return -EFAULT;
536 	if (copy_to_user(optval, &value, sizeof(value)))
537 		return -EFAULT;
538 
539 	return 0;
540 }
541 
542 static int do_tls_getsockopt(struct sock *sk, int optname,
543 			     char __user *optval, int __user *optlen)
544 {
545 	int rc = 0;
546 
547 	lock_sock(sk);
548 
549 	switch (optname) {
550 	case TLS_TX:
551 	case TLS_RX:
552 		rc = do_tls_getsockopt_conf(sk, optval, optlen,
553 					    optname == TLS_TX);
554 		break;
555 	case TLS_TX_ZEROCOPY_RO:
556 		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
557 		break;
558 	case TLS_RX_EXPECT_NO_PAD:
559 		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
560 		break;
561 	default:
562 		rc = -ENOPROTOOPT;
563 		break;
564 	}
565 
566 	release_sock(sk);
567 
568 	return rc;
569 }
570 
571 static int tls_getsockopt(struct sock *sk, int level, int optname,
572 			  char __user *optval, int __user *optlen)
573 {
574 	struct tls_context *ctx = tls_get_ctx(sk);
575 
576 	if (level != SOL_TLS)
577 		return ctx->sk_proto->getsockopt(sk, level,
578 						 optname, optval, optlen);
579 
580 	return do_tls_getsockopt(sk, optname, optval, optlen);
581 }
582 
583 static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
584 				const struct tls_crypto_info *alt_crypto_info)
585 {
586 	if (crypto_info->version != TLS_1_2_VERSION &&
587 	    crypto_info->version != TLS_1_3_VERSION)
588 		return -EINVAL;
589 
590 	switch (crypto_info->cipher_type) {
591 	case TLS_CIPHER_ARIA_GCM_128:
592 	case TLS_CIPHER_ARIA_GCM_256:
593 		if (crypto_info->version != TLS_1_2_VERSION)
594 			return -EINVAL;
595 		break;
596 	}
597 
598 	/* Ensure that TLS version and ciphers are same in both directions */
599 	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
600 		if (alt_crypto_info->version != crypto_info->version ||
601 		    alt_crypto_info->cipher_type != crypto_info->cipher_type)
602 			return -EINVAL;
603 	}
604 
605 	return 0;
606 }
607 
608 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
609 				  unsigned int optlen, int tx)
610 {
611 	struct tls_crypto_info *crypto_info;
612 	struct tls_crypto_info *alt_crypto_info;
613 	struct tls_context *ctx = tls_get_ctx(sk);
614 	const struct tls_cipher_desc *cipher_desc;
615 	int rc = 0;
616 	int conf;
617 
618 	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
619 		return -EINVAL;
620 
621 	if (tx) {
622 		crypto_info = &ctx->crypto_send.info;
623 		alt_crypto_info = &ctx->crypto_recv.info;
624 	} else {
625 		crypto_info = &ctx->crypto_recv.info;
626 		alt_crypto_info = &ctx->crypto_send.info;
627 	}
628 
629 	/* Currently we don't support set crypto info more than one time */
630 	if (TLS_CRYPTO_INFO_READY(crypto_info))
631 		return -EBUSY;
632 
633 	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
634 	if (rc) {
635 		rc = -EFAULT;
636 		goto err_crypto_info;
637 	}
638 
639 	rc = validate_crypto_info(crypto_info, alt_crypto_info);
640 	if (rc)
641 		goto err_crypto_info;
642 
643 	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
644 	if (!cipher_desc) {
645 		rc = -EINVAL;
646 		goto err_crypto_info;
647 	}
648 
649 	if (optlen != cipher_desc->crypto_info) {
650 		rc = -EINVAL;
651 		goto err_crypto_info;
652 	}
653 
654 	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
655 				      sizeof(*crypto_info),
656 				      optlen - sizeof(*crypto_info));
657 	if (rc) {
658 		rc = -EFAULT;
659 		goto err_crypto_info;
660 	}
661 
662 	if (tx) {
663 		rc = tls_set_device_offload(sk);
664 		conf = TLS_HW;
665 		if (!rc) {
666 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
667 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
668 		} else {
669 			rc = tls_set_sw_offload(sk, 1);
670 			if (rc)
671 				goto err_crypto_info;
672 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
673 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
674 			conf = TLS_SW;
675 		}
676 	} else {
677 		rc = tls_set_device_offload_rx(sk, ctx);
678 		conf = TLS_HW;
679 		if (!rc) {
680 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
681 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
682 		} else {
683 			rc = tls_set_sw_offload(sk, 0);
684 			if (rc)
685 				goto err_crypto_info;
686 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
687 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
688 			conf = TLS_SW;
689 		}
690 		tls_sw_strparser_arm(sk, ctx);
691 	}
692 
693 	if (tx)
694 		ctx->tx_conf = conf;
695 	else
696 		ctx->rx_conf = conf;
697 	update_sk_prot(sk, ctx);
698 	if (tx) {
699 		ctx->sk_write_space = sk->sk_write_space;
700 		sk->sk_write_space = tls_write_space;
701 	} else {
702 		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
703 
704 		tls_strp_check_rcv(&rx_ctx->strp);
705 	}
706 	return 0;
707 
708 err_crypto_info:
709 	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
710 	return rc;
711 }
712 
713 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
714 				   unsigned int optlen)
715 {
716 	struct tls_context *ctx = tls_get_ctx(sk);
717 	unsigned int value;
718 
719 	if (sockptr_is_null(optval) || optlen != sizeof(value))
720 		return -EINVAL;
721 
722 	if (copy_from_sockptr(&value, optval, sizeof(value)))
723 		return -EFAULT;
724 
725 	if (value > 1)
726 		return -EINVAL;
727 
728 	ctx->zerocopy_sendfile = value;
729 
730 	return 0;
731 }
732 
733 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
734 				    unsigned int optlen)
735 {
736 	struct tls_context *ctx = tls_get_ctx(sk);
737 	u32 val;
738 	int rc;
739 
740 	if (ctx->prot_info.version != TLS_1_3_VERSION ||
741 	    sockptr_is_null(optval) || optlen < sizeof(val))
742 		return -EINVAL;
743 
744 	rc = copy_from_sockptr(&val, optval, sizeof(val));
745 	if (rc)
746 		return -EFAULT;
747 	if (val > 1)
748 		return -EINVAL;
749 	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
750 	if (rc < 1)
751 		return rc == 0 ? -EINVAL : rc;
752 
753 	lock_sock(sk);
754 	rc = -EINVAL;
755 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
756 		ctx->rx_no_pad = val;
757 		tls_update_rx_zc_capable(ctx);
758 		rc = 0;
759 	}
760 	release_sock(sk);
761 
762 	return rc;
763 }
764 
765 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
766 			     unsigned int optlen)
767 {
768 	int rc = 0;
769 
770 	switch (optname) {
771 	case TLS_TX:
772 	case TLS_RX:
773 		lock_sock(sk);
774 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
775 					    optname == TLS_TX);
776 		release_sock(sk);
777 		break;
778 	case TLS_TX_ZEROCOPY_RO:
779 		lock_sock(sk);
780 		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
781 		release_sock(sk);
782 		break;
783 	case TLS_RX_EXPECT_NO_PAD:
784 		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
785 		break;
786 	default:
787 		rc = -ENOPROTOOPT;
788 		break;
789 	}
790 	return rc;
791 }
792 
793 static int tls_setsockopt(struct sock *sk, int level, int optname,
794 			  sockptr_t optval, unsigned int optlen)
795 {
796 	struct tls_context *ctx = tls_get_ctx(sk);
797 
798 	if (level != SOL_TLS)
799 		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
800 						 optlen);
801 
802 	return do_tls_setsockopt(sk, optname, optval, optlen);
803 }
804 
805 struct tls_context *tls_ctx_create(struct sock *sk)
806 {
807 	struct inet_connection_sock *icsk = inet_csk(sk);
808 	struct tls_context *ctx;
809 
810 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
811 	if (!ctx)
812 		return NULL;
813 
814 	mutex_init(&ctx->tx_lock);
815 	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
816 	ctx->sk_proto = READ_ONCE(sk->sk_prot);
817 	ctx->sk = sk;
818 	return ctx;
819 }
820 
821 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
822 			    const struct proto_ops *base)
823 {
824 	ops[TLS_BASE][TLS_BASE] = *base;
825 
826 	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
827 	ops[TLS_SW  ][TLS_BASE].splice_eof	= tls_sw_splice_eof;
828 
829 	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
830 	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
831 	ops[TLS_BASE][TLS_SW  ].poll		= tls_sk_poll;
832 	ops[TLS_BASE][TLS_SW  ].read_sock	= tls_sw_read_sock;
833 
834 	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
835 	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
836 	ops[TLS_SW  ][TLS_SW  ].poll		= tls_sk_poll;
837 	ops[TLS_SW  ][TLS_SW  ].read_sock	= tls_sw_read_sock;
838 
839 #ifdef CONFIG_TLS_DEVICE
840 	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
841 
842 	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
843 
844 	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
845 
846 	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
847 
848 	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
849 #endif
850 #ifdef CONFIG_TLS_TOE
851 	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
852 #endif
853 }
854 
855 static void tls_build_proto(struct sock *sk)
856 {
857 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
858 	struct proto *prot = READ_ONCE(sk->sk_prot);
859 
860 	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
861 	if (ip_ver == TLSV6 &&
862 	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
863 		mutex_lock(&tcpv6_prot_mutex);
864 		if (likely(prot != saved_tcpv6_prot)) {
865 			build_protos(tls_prots[TLSV6], prot);
866 			build_proto_ops(tls_proto_ops[TLSV6],
867 					sk->sk_socket->ops);
868 			smp_store_release(&saved_tcpv6_prot, prot);
869 		}
870 		mutex_unlock(&tcpv6_prot_mutex);
871 	}
872 
873 	if (ip_ver == TLSV4 &&
874 	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
875 		mutex_lock(&tcpv4_prot_mutex);
876 		if (likely(prot != saved_tcpv4_prot)) {
877 			build_protos(tls_prots[TLSV4], prot);
878 			build_proto_ops(tls_proto_ops[TLSV4],
879 					sk->sk_socket->ops);
880 			smp_store_release(&saved_tcpv4_prot, prot);
881 		}
882 		mutex_unlock(&tcpv4_prot_mutex);
883 	}
884 }
885 
886 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
887 			 const struct proto *base)
888 {
889 	prot[TLS_BASE][TLS_BASE] = *base;
890 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
891 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
892 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
893 
894 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
895 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
896 	prot[TLS_SW][TLS_BASE].splice_eof	= tls_sw_splice_eof;
897 
898 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
899 	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
900 	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
901 	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
902 
903 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
904 	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
905 	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
906 	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
907 
908 #ifdef CONFIG_TLS_DEVICE
909 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
910 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
911 	prot[TLS_HW][TLS_BASE].splice_eof	= tls_device_splice_eof;
912 
913 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
914 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
915 	prot[TLS_HW][TLS_SW].splice_eof		= tls_device_splice_eof;
916 
917 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
918 
919 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
920 
921 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
922 #endif
923 #ifdef CONFIG_TLS_TOE
924 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
925 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
926 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
927 #endif
928 }
929 
930 static int tls_init(struct sock *sk)
931 {
932 	struct tls_context *ctx;
933 	int rc = 0;
934 
935 	tls_build_proto(sk);
936 
937 #ifdef CONFIG_TLS_TOE
938 	if (tls_toe_bypass(sk))
939 		return 0;
940 #endif
941 
942 	/* The TLS ulp is currently supported only for TCP sockets
943 	 * in ESTABLISHED state.
944 	 * Supporting sockets in LISTEN state will require us
945 	 * to modify the accept implementation to clone rather then
946 	 * share the ulp context.
947 	 */
948 	if (sk->sk_state != TCP_ESTABLISHED)
949 		return -ENOTCONN;
950 
951 	/* allocate tls context */
952 	write_lock_bh(&sk->sk_callback_lock);
953 	ctx = tls_ctx_create(sk);
954 	if (!ctx) {
955 		rc = -ENOMEM;
956 		goto out;
957 	}
958 
959 	ctx->tx_conf = TLS_BASE;
960 	ctx->rx_conf = TLS_BASE;
961 	update_sk_prot(sk, ctx);
962 out:
963 	write_unlock_bh(&sk->sk_callback_lock);
964 	return rc;
965 }
966 
967 static void tls_update(struct sock *sk, struct proto *p,
968 		       void (*write_space)(struct sock *sk))
969 {
970 	struct tls_context *ctx;
971 
972 	WARN_ON_ONCE(sk->sk_prot == p);
973 
974 	ctx = tls_get_ctx(sk);
975 	if (likely(ctx)) {
976 		ctx->sk_write_space = write_space;
977 		ctx->sk_proto = p;
978 	} else {
979 		/* Pairs with lockless read in sk_clone_lock(). */
980 		WRITE_ONCE(sk->sk_prot, p);
981 		sk->sk_write_space = write_space;
982 	}
983 }
984 
985 static u16 tls_user_config(struct tls_context *ctx, bool tx)
986 {
987 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
988 
989 	switch (config) {
990 	case TLS_BASE:
991 		return TLS_CONF_BASE;
992 	case TLS_SW:
993 		return TLS_CONF_SW;
994 	case TLS_HW:
995 		return TLS_CONF_HW;
996 	case TLS_HW_RECORD:
997 		return TLS_CONF_HW_RECORD;
998 	}
999 	return 0;
1000 }
1001 
1002 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1003 {
1004 	u16 version, cipher_type;
1005 	struct tls_context *ctx;
1006 	struct nlattr *start;
1007 	int err;
1008 
1009 	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1010 	if (!start)
1011 		return -EMSGSIZE;
1012 
1013 	rcu_read_lock();
1014 	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1015 	if (!ctx) {
1016 		err = 0;
1017 		goto nla_failure;
1018 	}
1019 	version = ctx->prot_info.version;
1020 	if (version) {
1021 		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1022 		if (err)
1023 			goto nla_failure;
1024 	}
1025 	cipher_type = ctx->prot_info.cipher_type;
1026 	if (cipher_type) {
1027 		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1028 		if (err)
1029 			goto nla_failure;
1030 	}
1031 	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1032 	if (err)
1033 		goto nla_failure;
1034 
1035 	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1036 	if (err)
1037 		goto nla_failure;
1038 
1039 	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1040 		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1041 		if (err)
1042 			goto nla_failure;
1043 	}
1044 	if (ctx->rx_no_pad) {
1045 		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1046 		if (err)
1047 			goto nla_failure;
1048 	}
1049 
1050 	rcu_read_unlock();
1051 	nla_nest_end(skb, start);
1052 	return 0;
1053 
1054 nla_failure:
1055 	rcu_read_unlock();
1056 	nla_nest_cancel(skb, start);
1057 	return err;
1058 }
1059 
1060 static size_t tls_get_info_size(const struct sock *sk)
1061 {
1062 	size_t size = 0;
1063 
1064 	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1065 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1066 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1067 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1068 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1069 		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1070 		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1071 		0;
1072 
1073 	return size;
1074 }
1075 
1076 static int __net_init tls_init_net(struct net *net)
1077 {
1078 	int err;
1079 
1080 	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1081 	if (!net->mib.tls_statistics)
1082 		return -ENOMEM;
1083 
1084 	err = tls_proc_init(net);
1085 	if (err)
1086 		goto err_free_stats;
1087 
1088 	return 0;
1089 err_free_stats:
1090 	free_percpu(net->mib.tls_statistics);
1091 	return err;
1092 }
1093 
1094 static void __net_exit tls_exit_net(struct net *net)
1095 {
1096 	tls_proc_fini(net);
1097 	free_percpu(net->mib.tls_statistics);
1098 }
1099 
1100 static struct pernet_operations tls_proc_ops = {
1101 	.init = tls_init_net,
1102 	.exit = tls_exit_net,
1103 };
1104 
1105 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1106 	.name			= "tls",
1107 	.owner			= THIS_MODULE,
1108 	.init			= tls_init,
1109 	.update			= tls_update,
1110 	.get_info		= tls_get_info,
1111 	.get_info_size		= tls_get_info_size,
1112 };
1113 
1114 static int __init tls_register(void)
1115 {
1116 	int err;
1117 
1118 	err = register_pernet_subsys(&tls_proc_ops);
1119 	if (err)
1120 		return err;
1121 
1122 	err = tls_strp_dev_init();
1123 	if (err)
1124 		goto err_pernet;
1125 
1126 	err = tls_device_init();
1127 	if (err)
1128 		goto err_strp;
1129 
1130 	tcp_register_ulp(&tcp_tls_ulp_ops);
1131 
1132 	return 0;
1133 err_strp:
1134 	tls_strp_dev_exit();
1135 err_pernet:
1136 	unregister_pernet_subsys(&tls_proc_ops);
1137 	return err;
1138 }
1139 
1140 static void __exit tls_unregister(void)
1141 {
1142 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1143 	tls_strp_dev_exit();
1144 	tls_device_cleanup();
1145 	unregister_pernet_subsys(&tls_proc_ops);
1146 }
1147 
1148 module_init(tls_register);
1149 module_exit(tls_unregister);
1150