1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/snmp.h> 45 #include <net/tls.h> 46 #include <net/tls_toe.h> 47 48 MODULE_AUTHOR("Mellanox Technologies"); 49 MODULE_DESCRIPTION("Transport Layer Security Support"); 50 MODULE_LICENSE("Dual BSD/GPL"); 51 MODULE_ALIAS_TCP_ULP("tls"); 52 53 enum { 54 TLSV4, 55 TLSV6, 56 TLS_NUM_PROTS, 57 }; 58 59 static const struct proto *saved_tcpv6_prot; 60 static DEFINE_MUTEX(tcpv6_prot_mutex); 61 static const struct proto *saved_tcpv4_prot; 62 static DEFINE_MUTEX(tcpv4_prot_mutex); 63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 64 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 66 const struct proto *base); 67 68 void update_sk_prot(struct sock *sk, struct tls_context *ctx) 69 { 70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 71 72 WRITE_ONCE(sk->sk_prot, 73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); 74 WRITE_ONCE(sk->sk_socket->ops, 75 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]); 76 } 77 78 int wait_on_pending_writer(struct sock *sk, long *timeo) 79 { 80 int rc = 0; 81 DEFINE_WAIT_FUNC(wait, woken_wake_function); 82 83 add_wait_queue(sk_sleep(sk), &wait); 84 while (1) { 85 if (!*timeo) { 86 rc = -EAGAIN; 87 break; 88 } 89 90 if (signal_pending(current)) { 91 rc = sock_intr_errno(*timeo); 92 break; 93 } 94 95 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 96 break; 97 } 98 remove_wait_queue(sk_sleep(sk), &wait); 99 return rc; 100 } 101 102 int tls_push_sg(struct sock *sk, 103 struct tls_context *ctx, 104 struct scatterlist *sg, 105 u16 first_offset, 106 int flags) 107 { 108 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 109 int ret = 0; 110 struct page *p; 111 size_t size; 112 int offset = first_offset; 113 114 size = sg->length - offset; 115 offset += sg->offset; 116 117 ctx->in_tcp_sendpages = true; 118 while (1) { 119 if (sg_is_last(sg)) 120 sendpage_flags = flags; 121 122 /* is sending application-limited? */ 123 tcp_rate_check_app_limited(sk); 124 p = sg_page(sg); 125 retry: 126 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 127 128 if (ret != size) { 129 if (ret > 0) { 130 offset += ret; 131 size -= ret; 132 goto retry; 133 } 134 135 offset -= sg->offset; 136 ctx->partially_sent_offset = offset; 137 ctx->partially_sent_record = (void *)sg; 138 ctx->in_tcp_sendpages = false; 139 return ret; 140 } 141 142 put_page(p); 143 sk_mem_uncharge(sk, sg->length); 144 sg = sg_next(sg); 145 if (!sg) 146 break; 147 148 offset = sg->offset; 149 size = sg->length; 150 } 151 152 ctx->in_tcp_sendpages = false; 153 154 return 0; 155 } 156 157 static int tls_handle_open_record(struct sock *sk, int flags) 158 { 159 struct tls_context *ctx = tls_get_ctx(sk); 160 161 if (tls_is_pending_open_record(ctx)) 162 return ctx->push_pending_record(sk, flags); 163 164 return 0; 165 } 166 167 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 168 unsigned char *record_type) 169 { 170 struct cmsghdr *cmsg; 171 int rc = -EINVAL; 172 173 for_each_cmsghdr(cmsg, msg) { 174 if (!CMSG_OK(msg, cmsg)) 175 return -EINVAL; 176 if (cmsg->cmsg_level != SOL_TLS) 177 continue; 178 179 switch (cmsg->cmsg_type) { 180 case TLS_SET_RECORD_TYPE: 181 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 182 return -EINVAL; 183 184 if (msg->msg_flags & MSG_MORE) 185 return -EINVAL; 186 187 rc = tls_handle_open_record(sk, msg->msg_flags); 188 if (rc) 189 return rc; 190 191 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 192 rc = 0; 193 break; 194 default: 195 return -EINVAL; 196 } 197 } 198 199 return rc; 200 } 201 202 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 203 int flags) 204 { 205 struct scatterlist *sg; 206 u16 offset; 207 208 sg = ctx->partially_sent_record; 209 offset = ctx->partially_sent_offset; 210 211 ctx->partially_sent_record = NULL; 212 return tls_push_sg(sk, ctx, sg, offset, flags); 213 } 214 215 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 216 { 217 struct scatterlist *sg; 218 219 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { 220 put_page(sg_page(sg)); 221 sk_mem_uncharge(sk, sg->length); 222 } 223 ctx->partially_sent_record = NULL; 224 } 225 226 static void tls_write_space(struct sock *sk) 227 { 228 struct tls_context *ctx = tls_get_ctx(sk); 229 230 /* If in_tcp_sendpages call lower protocol write space handler 231 * to ensure we wake up any waiting operations there. For example 232 * if do_tcp_sendpages where to call sk_wait_event. 233 */ 234 if (ctx->in_tcp_sendpages) { 235 ctx->sk_write_space(sk); 236 return; 237 } 238 239 #ifdef CONFIG_TLS_DEVICE 240 if (ctx->tx_conf == TLS_HW) 241 tls_device_write_space(sk, ctx); 242 else 243 #endif 244 tls_sw_write_space(sk, ctx); 245 246 ctx->sk_write_space(sk); 247 } 248 249 /** 250 * tls_ctx_free() - free TLS ULP context 251 * @sk: socket to with @ctx is attached 252 * @ctx: TLS context structure 253 * 254 * Free TLS context. If @sk is %NULL caller guarantees that the socket 255 * to which @ctx was attached has no outstanding references. 256 */ 257 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 258 { 259 if (!ctx) 260 return; 261 262 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 263 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 264 mutex_destroy(&ctx->tx_lock); 265 266 if (sk) 267 kfree_rcu(ctx, rcu); 268 else 269 kfree(ctx); 270 } 271 272 static void tls_sk_proto_cleanup(struct sock *sk, 273 struct tls_context *ctx, long timeo) 274 { 275 if (unlikely(sk->sk_write_pending) && 276 !wait_on_pending_writer(sk, &timeo)) 277 tls_handle_open_record(sk, 0); 278 279 /* We need these for tls_sw_fallback handling of other packets */ 280 if (ctx->tx_conf == TLS_SW) { 281 kfree(ctx->tx.rec_seq); 282 kfree(ctx->tx.iv); 283 tls_sw_release_resources_tx(sk); 284 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 285 } else if (ctx->tx_conf == TLS_HW) { 286 tls_device_free_resources_tx(sk); 287 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 288 } 289 290 if (ctx->rx_conf == TLS_SW) { 291 tls_sw_release_resources_rx(sk); 292 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 293 } else if (ctx->rx_conf == TLS_HW) { 294 tls_device_offload_cleanup_rx(sk); 295 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 296 } 297 } 298 299 static void tls_sk_proto_close(struct sock *sk, long timeout) 300 { 301 struct inet_connection_sock *icsk = inet_csk(sk); 302 struct tls_context *ctx = tls_get_ctx(sk); 303 long timeo = sock_sndtimeo(sk, 0); 304 bool free_ctx; 305 306 if (ctx->tx_conf == TLS_SW) 307 tls_sw_cancel_work_tx(ctx); 308 309 lock_sock(sk); 310 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 311 312 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 313 tls_sk_proto_cleanup(sk, ctx, timeo); 314 315 write_lock_bh(&sk->sk_callback_lock); 316 if (free_ctx) 317 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 318 WRITE_ONCE(sk->sk_prot, ctx->sk_proto); 319 if (sk->sk_write_space == tls_write_space) 320 sk->sk_write_space = ctx->sk_write_space; 321 write_unlock_bh(&sk->sk_callback_lock); 322 release_sock(sk); 323 if (ctx->tx_conf == TLS_SW) 324 tls_sw_free_ctx_tx(ctx); 325 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 326 tls_sw_strparser_done(ctx); 327 if (ctx->rx_conf == TLS_SW) 328 tls_sw_free_ctx_rx(ctx); 329 ctx->sk_proto->close(sk, timeout); 330 331 if (free_ctx) 332 tls_ctx_free(sk, ctx); 333 } 334 335 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval, 336 int __user *optlen, int tx) 337 { 338 int rc = 0; 339 struct tls_context *ctx = tls_get_ctx(sk); 340 struct tls_crypto_info *crypto_info; 341 struct cipher_context *cctx; 342 int len; 343 344 if (get_user(len, optlen)) 345 return -EFAULT; 346 347 if (!optval || (len < sizeof(*crypto_info))) { 348 rc = -EINVAL; 349 goto out; 350 } 351 352 if (!ctx) { 353 rc = -EBUSY; 354 goto out; 355 } 356 357 /* get user crypto info */ 358 if (tx) { 359 crypto_info = &ctx->crypto_send.info; 360 cctx = &ctx->tx; 361 } else { 362 crypto_info = &ctx->crypto_recv.info; 363 cctx = &ctx->rx; 364 } 365 366 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 367 rc = -EBUSY; 368 goto out; 369 } 370 371 if (len == sizeof(*crypto_info)) { 372 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 373 rc = -EFAULT; 374 goto out; 375 } 376 377 switch (crypto_info->cipher_type) { 378 case TLS_CIPHER_AES_GCM_128: { 379 struct tls12_crypto_info_aes_gcm_128 * 380 crypto_info_aes_gcm_128 = 381 container_of(crypto_info, 382 struct tls12_crypto_info_aes_gcm_128, 383 info); 384 385 if (len != sizeof(*crypto_info_aes_gcm_128)) { 386 rc = -EINVAL; 387 goto out; 388 } 389 lock_sock(sk); 390 memcpy(crypto_info_aes_gcm_128->iv, 391 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 392 TLS_CIPHER_AES_GCM_128_IV_SIZE); 393 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq, 394 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 395 release_sock(sk); 396 if (copy_to_user(optval, 397 crypto_info_aes_gcm_128, 398 sizeof(*crypto_info_aes_gcm_128))) 399 rc = -EFAULT; 400 break; 401 } 402 case TLS_CIPHER_AES_GCM_256: { 403 struct tls12_crypto_info_aes_gcm_256 * 404 crypto_info_aes_gcm_256 = 405 container_of(crypto_info, 406 struct tls12_crypto_info_aes_gcm_256, 407 info); 408 409 if (len != sizeof(*crypto_info_aes_gcm_256)) { 410 rc = -EINVAL; 411 goto out; 412 } 413 lock_sock(sk); 414 memcpy(crypto_info_aes_gcm_256->iv, 415 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 416 TLS_CIPHER_AES_GCM_256_IV_SIZE); 417 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq, 418 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 419 release_sock(sk); 420 if (copy_to_user(optval, 421 crypto_info_aes_gcm_256, 422 sizeof(*crypto_info_aes_gcm_256))) 423 rc = -EFAULT; 424 break; 425 } 426 case TLS_CIPHER_AES_CCM_128: { 427 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 = 428 container_of(crypto_info, 429 struct tls12_crypto_info_aes_ccm_128, info); 430 431 if (len != sizeof(*aes_ccm_128)) { 432 rc = -EINVAL; 433 goto out; 434 } 435 lock_sock(sk); 436 memcpy(aes_ccm_128->iv, 437 cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE, 438 TLS_CIPHER_AES_CCM_128_IV_SIZE); 439 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq, 440 TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE); 441 release_sock(sk); 442 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128))) 443 rc = -EFAULT; 444 break; 445 } 446 case TLS_CIPHER_CHACHA20_POLY1305: { 447 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 = 448 container_of(crypto_info, 449 struct tls12_crypto_info_chacha20_poly1305, 450 info); 451 452 if (len != sizeof(*chacha20_poly1305)) { 453 rc = -EINVAL; 454 goto out; 455 } 456 lock_sock(sk); 457 memcpy(chacha20_poly1305->iv, 458 cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE, 459 TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE); 460 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq, 461 TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE); 462 release_sock(sk); 463 if (copy_to_user(optval, chacha20_poly1305, 464 sizeof(*chacha20_poly1305))) 465 rc = -EFAULT; 466 break; 467 } 468 case TLS_CIPHER_SM4_GCM: { 469 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info = 470 container_of(crypto_info, 471 struct tls12_crypto_info_sm4_gcm, info); 472 473 if (len != sizeof(*sm4_gcm_info)) { 474 rc = -EINVAL; 475 goto out; 476 } 477 lock_sock(sk); 478 memcpy(sm4_gcm_info->iv, 479 cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE, 480 TLS_CIPHER_SM4_GCM_IV_SIZE); 481 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq, 482 TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE); 483 release_sock(sk); 484 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info))) 485 rc = -EFAULT; 486 break; 487 } 488 case TLS_CIPHER_SM4_CCM: { 489 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info = 490 container_of(crypto_info, 491 struct tls12_crypto_info_sm4_ccm, info); 492 493 if (len != sizeof(*sm4_ccm_info)) { 494 rc = -EINVAL; 495 goto out; 496 } 497 lock_sock(sk); 498 memcpy(sm4_ccm_info->iv, 499 cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE, 500 TLS_CIPHER_SM4_CCM_IV_SIZE); 501 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq, 502 TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE); 503 release_sock(sk); 504 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info))) 505 rc = -EFAULT; 506 break; 507 } 508 default: 509 rc = -EINVAL; 510 } 511 512 out: 513 return rc; 514 } 515 516 static int do_tls_getsockopt(struct sock *sk, int optname, 517 char __user *optval, int __user *optlen) 518 { 519 int rc = 0; 520 521 switch (optname) { 522 case TLS_TX: 523 case TLS_RX: 524 rc = do_tls_getsockopt_conf(sk, optval, optlen, 525 optname == TLS_TX); 526 break; 527 default: 528 rc = -ENOPROTOOPT; 529 break; 530 } 531 return rc; 532 } 533 534 static int tls_getsockopt(struct sock *sk, int level, int optname, 535 char __user *optval, int __user *optlen) 536 { 537 struct tls_context *ctx = tls_get_ctx(sk); 538 539 if (level != SOL_TLS) 540 return ctx->sk_proto->getsockopt(sk, level, 541 optname, optval, optlen); 542 543 return do_tls_getsockopt(sk, optname, optval, optlen); 544 } 545 546 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, 547 unsigned int optlen, int tx) 548 { 549 struct tls_crypto_info *crypto_info; 550 struct tls_crypto_info *alt_crypto_info; 551 struct tls_context *ctx = tls_get_ctx(sk); 552 size_t optsize; 553 int rc = 0; 554 int conf; 555 556 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) { 557 rc = -EINVAL; 558 goto out; 559 } 560 561 if (tx) { 562 crypto_info = &ctx->crypto_send.info; 563 alt_crypto_info = &ctx->crypto_recv.info; 564 } else { 565 crypto_info = &ctx->crypto_recv.info; 566 alt_crypto_info = &ctx->crypto_send.info; 567 } 568 569 /* Currently we don't support set crypto info more than one time */ 570 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 571 rc = -EBUSY; 572 goto out; 573 } 574 575 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); 576 if (rc) { 577 rc = -EFAULT; 578 goto err_crypto_info; 579 } 580 581 /* check version */ 582 if (crypto_info->version != TLS_1_2_VERSION && 583 crypto_info->version != TLS_1_3_VERSION) { 584 rc = -EINVAL; 585 goto err_crypto_info; 586 } 587 588 /* Ensure that TLS version and ciphers are same in both directions */ 589 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 590 if (alt_crypto_info->version != crypto_info->version || 591 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 592 rc = -EINVAL; 593 goto err_crypto_info; 594 } 595 } 596 597 switch (crypto_info->cipher_type) { 598 case TLS_CIPHER_AES_GCM_128: 599 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 600 break; 601 case TLS_CIPHER_AES_GCM_256: { 602 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 603 break; 604 } 605 case TLS_CIPHER_AES_CCM_128: 606 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 607 break; 608 case TLS_CIPHER_CHACHA20_POLY1305: 609 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305); 610 break; 611 case TLS_CIPHER_SM4_GCM: 612 optsize = sizeof(struct tls12_crypto_info_sm4_gcm); 613 break; 614 case TLS_CIPHER_SM4_CCM: 615 optsize = sizeof(struct tls12_crypto_info_sm4_ccm); 616 break; 617 default: 618 rc = -EINVAL; 619 goto err_crypto_info; 620 } 621 622 if (optlen != optsize) { 623 rc = -EINVAL; 624 goto err_crypto_info; 625 } 626 627 rc = copy_from_sockptr_offset(crypto_info + 1, optval, 628 sizeof(*crypto_info), 629 optlen - sizeof(*crypto_info)); 630 if (rc) { 631 rc = -EFAULT; 632 goto err_crypto_info; 633 } 634 635 if (tx) { 636 rc = tls_set_device_offload(sk, ctx); 637 conf = TLS_HW; 638 if (!rc) { 639 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); 640 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 641 } else { 642 rc = tls_set_sw_offload(sk, ctx, 1); 643 if (rc) 644 goto err_crypto_info; 645 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); 646 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 647 conf = TLS_SW; 648 } 649 } else { 650 rc = tls_set_device_offload_rx(sk, ctx); 651 conf = TLS_HW; 652 if (!rc) { 653 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); 654 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 655 } else { 656 rc = tls_set_sw_offload(sk, ctx, 0); 657 if (rc) 658 goto err_crypto_info; 659 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); 660 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 661 conf = TLS_SW; 662 } 663 tls_sw_strparser_arm(sk, ctx); 664 } 665 666 if (tx) 667 ctx->tx_conf = conf; 668 else 669 ctx->rx_conf = conf; 670 update_sk_prot(sk, ctx); 671 if (tx) { 672 ctx->sk_write_space = sk->sk_write_space; 673 sk->sk_write_space = tls_write_space; 674 } 675 goto out; 676 677 err_crypto_info: 678 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 679 out: 680 return rc; 681 } 682 683 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, 684 unsigned int optlen) 685 { 686 int rc = 0; 687 688 switch (optname) { 689 case TLS_TX: 690 case TLS_RX: 691 lock_sock(sk); 692 rc = do_tls_setsockopt_conf(sk, optval, optlen, 693 optname == TLS_TX); 694 release_sock(sk); 695 break; 696 default: 697 rc = -ENOPROTOOPT; 698 break; 699 } 700 return rc; 701 } 702 703 static int tls_setsockopt(struct sock *sk, int level, int optname, 704 sockptr_t optval, unsigned int optlen) 705 { 706 struct tls_context *ctx = tls_get_ctx(sk); 707 708 if (level != SOL_TLS) 709 return ctx->sk_proto->setsockopt(sk, level, optname, optval, 710 optlen); 711 712 return do_tls_setsockopt(sk, optname, optval, optlen); 713 } 714 715 struct tls_context *tls_ctx_create(struct sock *sk) 716 { 717 struct inet_connection_sock *icsk = inet_csk(sk); 718 struct tls_context *ctx; 719 720 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 721 if (!ctx) 722 return NULL; 723 724 mutex_init(&ctx->tx_lock); 725 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 726 ctx->sk_proto = READ_ONCE(sk->sk_prot); 727 ctx->sk = sk; 728 return ctx; 729 } 730 731 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 732 const struct proto_ops *base) 733 { 734 ops[TLS_BASE][TLS_BASE] = *base; 735 736 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; 737 ops[TLS_SW ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked; 738 739 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE]; 740 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read; 741 742 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE]; 743 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read; 744 745 #ifdef CONFIG_TLS_DEVICE 746 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; 747 ops[TLS_HW ][TLS_BASE].sendpage_locked = NULL; 748 749 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ]; 750 ops[TLS_HW ][TLS_SW ].sendpage_locked = NULL; 751 752 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ]; 753 754 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ]; 755 756 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ]; 757 ops[TLS_HW ][TLS_HW ].sendpage_locked = NULL; 758 #endif 759 #ifdef CONFIG_TLS_TOE 760 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 761 #endif 762 } 763 764 static void tls_build_proto(struct sock *sk) 765 { 766 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 767 struct proto *prot = READ_ONCE(sk->sk_prot); 768 769 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 770 if (ip_ver == TLSV6 && 771 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { 772 mutex_lock(&tcpv6_prot_mutex); 773 if (likely(prot != saved_tcpv6_prot)) { 774 build_protos(tls_prots[TLSV6], prot); 775 build_proto_ops(tls_proto_ops[TLSV6], 776 sk->sk_socket->ops); 777 smp_store_release(&saved_tcpv6_prot, prot); 778 } 779 mutex_unlock(&tcpv6_prot_mutex); 780 } 781 782 if (ip_ver == TLSV4 && 783 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { 784 mutex_lock(&tcpv4_prot_mutex); 785 if (likely(prot != saved_tcpv4_prot)) { 786 build_protos(tls_prots[TLSV4], prot); 787 build_proto_ops(tls_proto_ops[TLSV4], 788 sk->sk_socket->ops); 789 smp_store_release(&saved_tcpv4_prot, prot); 790 } 791 mutex_unlock(&tcpv4_prot_mutex); 792 } 793 } 794 795 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 796 const struct proto *base) 797 { 798 prot[TLS_BASE][TLS_BASE] = *base; 799 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 800 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 801 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 802 803 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 804 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 805 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 806 807 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 808 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 809 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 810 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 811 812 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 813 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 814 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 815 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 816 817 #ifdef CONFIG_TLS_DEVICE 818 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 819 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 820 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 821 822 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 823 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 824 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 825 826 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 827 828 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 829 830 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 831 #endif 832 #ifdef CONFIG_TLS_TOE 833 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 834 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; 835 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; 836 #endif 837 } 838 839 static int tls_init(struct sock *sk) 840 { 841 struct tls_context *ctx; 842 int rc = 0; 843 844 tls_build_proto(sk); 845 846 #ifdef CONFIG_TLS_TOE 847 if (tls_toe_bypass(sk)) 848 return 0; 849 #endif 850 851 /* The TLS ulp is currently supported only for TCP sockets 852 * in ESTABLISHED state. 853 * Supporting sockets in LISTEN state will require us 854 * to modify the accept implementation to clone rather then 855 * share the ulp context. 856 */ 857 if (sk->sk_state != TCP_ESTABLISHED) 858 return -ENOTCONN; 859 860 /* allocate tls context */ 861 write_lock_bh(&sk->sk_callback_lock); 862 ctx = tls_ctx_create(sk); 863 if (!ctx) { 864 rc = -ENOMEM; 865 goto out; 866 } 867 868 ctx->tx_conf = TLS_BASE; 869 ctx->rx_conf = TLS_BASE; 870 update_sk_prot(sk, ctx); 871 out: 872 write_unlock_bh(&sk->sk_callback_lock); 873 return rc; 874 } 875 876 static void tls_update(struct sock *sk, struct proto *p, 877 void (*write_space)(struct sock *sk)) 878 { 879 struct tls_context *ctx; 880 881 ctx = tls_get_ctx(sk); 882 if (likely(ctx)) { 883 ctx->sk_write_space = write_space; 884 ctx->sk_proto = p; 885 } else { 886 /* Pairs with lockless read in sk_clone_lock(). */ 887 WRITE_ONCE(sk->sk_prot, p); 888 sk->sk_write_space = write_space; 889 } 890 } 891 892 static int tls_get_info(const struct sock *sk, struct sk_buff *skb) 893 { 894 u16 version, cipher_type; 895 struct tls_context *ctx; 896 struct nlattr *start; 897 int err; 898 899 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 900 if (!start) 901 return -EMSGSIZE; 902 903 rcu_read_lock(); 904 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 905 if (!ctx) { 906 err = 0; 907 goto nla_failure; 908 } 909 version = ctx->prot_info.version; 910 if (version) { 911 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 912 if (err) 913 goto nla_failure; 914 } 915 cipher_type = ctx->prot_info.cipher_type; 916 if (cipher_type) { 917 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 918 if (err) 919 goto nla_failure; 920 } 921 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 922 if (err) 923 goto nla_failure; 924 925 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 926 if (err) 927 goto nla_failure; 928 929 rcu_read_unlock(); 930 nla_nest_end(skb, start); 931 return 0; 932 933 nla_failure: 934 rcu_read_unlock(); 935 nla_nest_cancel(skb, start); 936 return err; 937 } 938 939 static size_t tls_get_info_size(const struct sock *sk) 940 { 941 size_t size = 0; 942 943 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 944 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 945 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 946 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 947 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 948 0; 949 950 return size; 951 } 952 953 static int __net_init tls_init_net(struct net *net) 954 { 955 int err; 956 957 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); 958 if (!net->mib.tls_statistics) 959 return -ENOMEM; 960 961 err = tls_proc_init(net); 962 if (err) 963 goto err_free_stats; 964 965 return 0; 966 err_free_stats: 967 free_percpu(net->mib.tls_statistics); 968 return err; 969 } 970 971 static void __net_exit tls_exit_net(struct net *net) 972 { 973 tls_proc_fini(net); 974 free_percpu(net->mib.tls_statistics); 975 } 976 977 static struct pernet_operations tls_proc_ops = { 978 .init = tls_init_net, 979 .exit = tls_exit_net, 980 }; 981 982 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 983 .name = "tls", 984 .owner = THIS_MODULE, 985 .init = tls_init, 986 .update = tls_update, 987 .get_info = tls_get_info, 988 .get_info_size = tls_get_info_size, 989 }; 990 991 static int __init tls_register(void) 992 { 993 int err; 994 995 err = register_pernet_subsys(&tls_proc_ops); 996 if (err) 997 return err; 998 999 tls_device_init(); 1000 tcp_register_ulp(&tcp_tls_ulp_ops); 1001 1002 return 0; 1003 } 1004 1005 static void __exit tls_unregister(void) 1006 { 1007 tcp_unregister_ulp(&tcp_tls_ulp_ops); 1008 tls_device_cleanup(); 1009 unregister_pernet_subsys(&tls_proc_ops); 1010 } 1011 1012 module_init(tls_register); 1013 module_exit(tls_unregister); 1014