1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 43 #include <net/tls.h> 44 45 MODULE_AUTHOR("Mellanox Technologies"); 46 MODULE_DESCRIPTION("Transport Layer Security Support"); 47 MODULE_LICENSE("Dual BSD/GPL"); 48 MODULE_ALIAS_TCP_ULP("tls"); 49 50 enum { 51 TLSV4, 52 TLSV6, 53 TLS_NUM_PROTS, 54 }; 55 56 static struct proto *saved_tcpv6_prot; 57 static DEFINE_MUTEX(tcpv6_prot_mutex); 58 static struct proto *saved_tcpv4_prot; 59 static DEFINE_MUTEX(tcpv4_prot_mutex); 60 static LIST_HEAD(device_list); 61 static DEFINE_SPINLOCK(device_spinlock); 62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 63 static struct proto_ops tls_sw_proto_ops; 64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 65 struct proto *base); 66 67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx) 68 { 69 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 70 71 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]; 72 } 73 74 int wait_on_pending_writer(struct sock *sk, long *timeo) 75 { 76 int rc = 0; 77 DEFINE_WAIT_FUNC(wait, woken_wake_function); 78 79 add_wait_queue(sk_sleep(sk), &wait); 80 while (1) { 81 if (!*timeo) { 82 rc = -EAGAIN; 83 break; 84 } 85 86 if (signal_pending(current)) { 87 rc = sock_intr_errno(*timeo); 88 break; 89 } 90 91 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 92 break; 93 } 94 remove_wait_queue(sk_sleep(sk), &wait); 95 return rc; 96 } 97 98 int tls_push_sg(struct sock *sk, 99 struct tls_context *ctx, 100 struct scatterlist *sg, 101 u16 first_offset, 102 int flags) 103 { 104 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 105 int ret = 0; 106 struct page *p; 107 size_t size; 108 int offset = first_offset; 109 110 size = sg->length - offset; 111 offset += sg->offset; 112 113 ctx->in_tcp_sendpages = true; 114 while (1) { 115 if (sg_is_last(sg)) 116 sendpage_flags = flags; 117 118 /* is sending application-limited? */ 119 tcp_rate_check_app_limited(sk); 120 p = sg_page(sg); 121 retry: 122 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 123 124 if (ret != size) { 125 if (ret > 0) { 126 offset += ret; 127 size -= ret; 128 goto retry; 129 } 130 131 offset -= sg->offset; 132 ctx->partially_sent_offset = offset; 133 ctx->partially_sent_record = (void *)sg; 134 ctx->in_tcp_sendpages = false; 135 return ret; 136 } 137 138 put_page(p); 139 sk_mem_uncharge(sk, sg->length); 140 sg = sg_next(sg); 141 if (!sg) 142 break; 143 144 offset = sg->offset; 145 size = sg->length; 146 } 147 148 ctx->in_tcp_sendpages = false; 149 150 return 0; 151 } 152 153 static int tls_handle_open_record(struct sock *sk, int flags) 154 { 155 struct tls_context *ctx = tls_get_ctx(sk); 156 157 if (tls_is_pending_open_record(ctx)) 158 return ctx->push_pending_record(sk, flags); 159 160 return 0; 161 } 162 163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 164 unsigned char *record_type) 165 { 166 struct cmsghdr *cmsg; 167 int rc = -EINVAL; 168 169 for_each_cmsghdr(cmsg, msg) { 170 if (!CMSG_OK(msg, cmsg)) 171 return -EINVAL; 172 if (cmsg->cmsg_level != SOL_TLS) 173 continue; 174 175 switch (cmsg->cmsg_type) { 176 case TLS_SET_RECORD_TYPE: 177 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 178 return -EINVAL; 179 180 if (msg->msg_flags & MSG_MORE) 181 return -EINVAL; 182 183 rc = tls_handle_open_record(sk, msg->msg_flags); 184 if (rc) 185 return rc; 186 187 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 188 rc = 0; 189 break; 190 default: 191 return -EINVAL; 192 } 193 } 194 195 return rc; 196 } 197 198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 199 int flags) 200 { 201 struct scatterlist *sg; 202 u16 offset; 203 204 sg = ctx->partially_sent_record; 205 offset = ctx->partially_sent_offset; 206 207 ctx->partially_sent_record = NULL; 208 return tls_push_sg(sk, ctx, sg, offset, flags); 209 } 210 211 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 212 { 213 struct scatterlist *sg; 214 215 sg = ctx->partially_sent_record; 216 if (!sg) 217 return false; 218 219 while (1) { 220 put_page(sg_page(sg)); 221 sk_mem_uncharge(sk, sg->length); 222 223 if (sg_is_last(sg)) 224 break; 225 sg++; 226 } 227 ctx->partially_sent_record = NULL; 228 return true; 229 } 230 231 static void tls_write_space(struct sock *sk) 232 { 233 struct tls_context *ctx = tls_get_ctx(sk); 234 235 /* If in_tcp_sendpages call lower protocol write space handler 236 * to ensure we wake up any waiting operations there. For example 237 * if do_tcp_sendpages where to call sk_wait_event. 238 */ 239 if (ctx->in_tcp_sendpages) { 240 ctx->sk_write_space(sk); 241 return; 242 } 243 244 #ifdef CONFIG_TLS_DEVICE 245 if (ctx->tx_conf == TLS_HW) 246 tls_device_write_space(sk, ctx); 247 else 248 #endif 249 tls_sw_write_space(sk, ctx); 250 251 ctx->sk_write_space(sk); 252 } 253 254 void tls_ctx_free(struct tls_context *ctx) 255 { 256 if (!ctx) 257 return; 258 259 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 260 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 261 kfree(ctx); 262 } 263 264 static void tls_sk_proto_close(struct sock *sk, long timeout) 265 { 266 struct tls_context *ctx = tls_get_ctx(sk); 267 long timeo = sock_sndtimeo(sk, 0); 268 void (*sk_proto_close)(struct sock *sk, long timeout); 269 bool free_ctx = false; 270 271 lock_sock(sk); 272 sk_proto_close = ctx->sk_proto_close; 273 274 if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) 275 goto skip_tx_cleanup; 276 277 if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) { 278 free_ctx = true; 279 goto skip_tx_cleanup; 280 } 281 282 if (unlikely(sk->sk_write_pending) && 283 !wait_on_pending_writer(sk, &timeo)) 284 tls_handle_open_record(sk, 0); 285 286 /* We need these for tls_sw_fallback handling of other packets */ 287 if (ctx->tx_conf == TLS_SW) { 288 kfree(ctx->tx.rec_seq); 289 kfree(ctx->tx.iv); 290 tls_sw_free_resources_tx(sk); 291 #ifdef CONFIG_TLS_DEVICE 292 } else if (ctx->tx_conf == TLS_HW) { 293 tls_device_free_resources_tx(sk); 294 #endif 295 } 296 297 if (ctx->rx_conf == TLS_SW) 298 tls_sw_free_resources_rx(sk); 299 300 #ifdef CONFIG_TLS_DEVICE 301 if (ctx->rx_conf == TLS_HW) 302 tls_device_offload_cleanup_rx(sk); 303 304 if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) { 305 #else 306 { 307 #endif 308 tls_ctx_free(ctx); 309 ctx = NULL; 310 } 311 312 skip_tx_cleanup: 313 release_sock(sk); 314 sk_proto_close(sk, timeout); 315 /* free ctx for TLS_HW_RECORD, used by tcp_set_state 316 * for sk->sk_prot->unhash [tls_hw_unhash] 317 */ 318 if (free_ctx) 319 tls_ctx_free(ctx); 320 } 321 322 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, 323 int __user *optlen) 324 { 325 int rc = 0; 326 struct tls_context *ctx = tls_get_ctx(sk); 327 struct tls_crypto_info *crypto_info; 328 int len; 329 330 if (get_user(len, optlen)) 331 return -EFAULT; 332 333 if (!optval || (len < sizeof(*crypto_info))) { 334 rc = -EINVAL; 335 goto out; 336 } 337 338 if (!ctx) { 339 rc = -EBUSY; 340 goto out; 341 } 342 343 /* get user crypto info */ 344 crypto_info = &ctx->crypto_send.info; 345 346 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 347 rc = -EBUSY; 348 goto out; 349 } 350 351 if (len == sizeof(*crypto_info)) { 352 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 353 rc = -EFAULT; 354 goto out; 355 } 356 357 switch (crypto_info->cipher_type) { 358 case TLS_CIPHER_AES_GCM_128: { 359 struct tls12_crypto_info_aes_gcm_128 * 360 crypto_info_aes_gcm_128 = 361 container_of(crypto_info, 362 struct tls12_crypto_info_aes_gcm_128, 363 info); 364 365 if (len != sizeof(*crypto_info_aes_gcm_128)) { 366 rc = -EINVAL; 367 goto out; 368 } 369 lock_sock(sk); 370 memcpy(crypto_info_aes_gcm_128->iv, 371 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 372 TLS_CIPHER_AES_GCM_128_IV_SIZE); 373 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, 374 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 375 release_sock(sk); 376 if (copy_to_user(optval, 377 crypto_info_aes_gcm_128, 378 sizeof(*crypto_info_aes_gcm_128))) 379 rc = -EFAULT; 380 break; 381 } 382 case TLS_CIPHER_AES_GCM_256: { 383 struct tls12_crypto_info_aes_gcm_256 * 384 crypto_info_aes_gcm_256 = 385 container_of(crypto_info, 386 struct tls12_crypto_info_aes_gcm_256, 387 info); 388 389 if (len != sizeof(*crypto_info_aes_gcm_256)) { 390 rc = -EINVAL; 391 goto out; 392 } 393 lock_sock(sk); 394 memcpy(crypto_info_aes_gcm_256->iv, 395 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 396 TLS_CIPHER_AES_GCM_256_IV_SIZE); 397 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq, 398 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 399 release_sock(sk); 400 if (copy_to_user(optval, 401 crypto_info_aes_gcm_256, 402 sizeof(*crypto_info_aes_gcm_256))) 403 rc = -EFAULT; 404 break; 405 } 406 default: 407 rc = -EINVAL; 408 } 409 410 out: 411 return rc; 412 } 413 414 static int do_tls_getsockopt(struct sock *sk, int optname, 415 char __user *optval, int __user *optlen) 416 { 417 int rc = 0; 418 419 switch (optname) { 420 case TLS_TX: 421 rc = do_tls_getsockopt_tx(sk, optval, optlen); 422 break; 423 default: 424 rc = -ENOPROTOOPT; 425 break; 426 } 427 return rc; 428 } 429 430 static int tls_getsockopt(struct sock *sk, int level, int optname, 431 char __user *optval, int __user *optlen) 432 { 433 struct tls_context *ctx = tls_get_ctx(sk); 434 435 if (level != SOL_TLS) 436 return ctx->getsockopt(sk, level, optname, optval, optlen); 437 438 return do_tls_getsockopt(sk, optname, optval, optlen); 439 } 440 441 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, 442 unsigned int optlen, int tx) 443 { 444 struct tls_crypto_info *crypto_info; 445 struct tls_crypto_info *alt_crypto_info; 446 struct tls_context *ctx = tls_get_ctx(sk); 447 size_t optsize; 448 int rc = 0; 449 int conf; 450 451 if (!optval || (optlen < sizeof(*crypto_info))) { 452 rc = -EINVAL; 453 goto out; 454 } 455 456 if (tx) { 457 crypto_info = &ctx->crypto_send.info; 458 alt_crypto_info = &ctx->crypto_recv.info; 459 } else { 460 crypto_info = &ctx->crypto_recv.info; 461 alt_crypto_info = &ctx->crypto_send.info; 462 } 463 464 /* Currently we don't support set crypto info more than one time */ 465 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 466 rc = -EBUSY; 467 goto out; 468 } 469 470 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); 471 if (rc) { 472 rc = -EFAULT; 473 goto err_crypto_info; 474 } 475 476 /* check version */ 477 if (crypto_info->version != TLS_1_2_VERSION && 478 crypto_info->version != TLS_1_3_VERSION) { 479 rc = -ENOTSUPP; 480 goto err_crypto_info; 481 } 482 483 /* Ensure that TLS version and ciphers are same in both directions */ 484 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 485 if (alt_crypto_info->version != crypto_info->version || 486 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 487 rc = -EINVAL; 488 goto err_crypto_info; 489 } 490 } 491 492 switch (crypto_info->cipher_type) { 493 case TLS_CIPHER_AES_GCM_128: 494 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 495 break; 496 case TLS_CIPHER_AES_GCM_256: { 497 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 498 break; 499 } 500 case TLS_CIPHER_AES_CCM_128: 501 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 502 break; 503 default: 504 rc = -EINVAL; 505 goto err_crypto_info; 506 } 507 508 if (optlen != optsize) { 509 rc = -EINVAL; 510 goto err_crypto_info; 511 } 512 513 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), 514 optlen - sizeof(*crypto_info)); 515 if (rc) { 516 rc = -EFAULT; 517 goto err_crypto_info; 518 } 519 520 if (tx) { 521 #ifdef CONFIG_TLS_DEVICE 522 rc = tls_set_device_offload(sk, ctx); 523 conf = TLS_HW; 524 if (rc) { 525 #else 526 { 527 #endif 528 rc = tls_set_sw_offload(sk, ctx, 1); 529 conf = TLS_SW; 530 } 531 } else { 532 #ifdef CONFIG_TLS_DEVICE 533 rc = tls_set_device_offload_rx(sk, ctx); 534 conf = TLS_HW; 535 if (rc) { 536 #else 537 { 538 #endif 539 rc = tls_set_sw_offload(sk, ctx, 0); 540 conf = TLS_SW; 541 } 542 } 543 544 if (rc) 545 goto err_crypto_info; 546 547 if (tx) 548 ctx->tx_conf = conf; 549 else 550 ctx->rx_conf = conf; 551 update_sk_prot(sk, ctx); 552 if (tx) { 553 ctx->sk_write_space = sk->sk_write_space; 554 sk->sk_write_space = tls_write_space; 555 } else { 556 sk->sk_socket->ops = &tls_sw_proto_ops; 557 } 558 goto out; 559 560 err_crypto_info: 561 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 562 out: 563 return rc; 564 } 565 566 static int do_tls_setsockopt(struct sock *sk, int optname, 567 char __user *optval, unsigned int optlen) 568 { 569 int rc = 0; 570 571 switch (optname) { 572 case TLS_TX: 573 case TLS_RX: 574 lock_sock(sk); 575 rc = do_tls_setsockopt_conf(sk, optval, optlen, 576 optname == TLS_TX); 577 release_sock(sk); 578 break; 579 default: 580 rc = -ENOPROTOOPT; 581 break; 582 } 583 return rc; 584 } 585 586 static int tls_setsockopt(struct sock *sk, int level, int optname, 587 char __user *optval, unsigned int optlen) 588 { 589 struct tls_context *ctx = tls_get_ctx(sk); 590 591 if (level != SOL_TLS) 592 return ctx->setsockopt(sk, level, optname, optval, optlen); 593 594 return do_tls_setsockopt(sk, optname, optval, optlen); 595 } 596 597 static struct tls_context *create_ctx(struct sock *sk) 598 { 599 struct inet_connection_sock *icsk = inet_csk(sk); 600 struct tls_context *ctx; 601 602 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 603 if (!ctx) 604 return NULL; 605 606 icsk->icsk_ulp_data = ctx; 607 ctx->setsockopt = sk->sk_prot->setsockopt; 608 ctx->getsockopt = sk->sk_prot->getsockopt; 609 ctx->sk_proto_close = sk->sk_prot->close; 610 return ctx; 611 } 612 613 static void tls_build_proto(struct sock *sk) 614 { 615 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 616 617 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 618 if (ip_ver == TLSV6 && 619 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { 620 mutex_lock(&tcpv6_prot_mutex); 621 if (likely(sk->sk_prot != saved_tcpv6_prot)) { 622 build_protos(tls_prots[TLSV6], sk->sk_prot); 623 smp_store_release(&saved_tcpv6_prot, sk->sk_prot); 624 } 625 mutex_unlock(&tcpv6_prot_mutex); 626 } 627 628 if (ip_ver == TLSV4 && 629 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) { 630 mutex_lock(&tcpv4_prot_mutex); 631 if (likely(sk->sk_prot != saved_tcpv4_prot)) { 632 build_protos(tls_prots[TLSV4], sk->sk_prot); 633 smp_store_release(&saved_tcpv4_prot, sk->sk_prot); 634 } 635 mutex_unlock(&tcpv4_prot_mutex); 636 } 637 } 638 639 static void tls_hw_sk_destruct(struct sock *sk) 640 { 641 struct tls_context *ctx = tls_get_ctx(sk); 642 struct inet_connection_sock *icsk = inet_csk(sk); 643 644 ctx->sk_destruct(sk); 645 /* Free ctx */ 646 tls_ctx_free(ctx); 647 icsk->icsk_ulp_data = NULL; 648 } 649 650 static int tls_hw_prot(struct sock *sk) 651 { 652 struct tls_context *ctx; 653 struct tls_device *dev; 654 int rc = 0; 655 656 spin_lock_bh(&device_spinlock); 657 list_for_each_entry(dev, &device_list, dev_list) { 658 if (dev->feature && dev->feature(dev)) { 659 ctx = create_ctx(sk); 660 if (!ctx) 661 goto out; 662 663 spin_unlock_bh(&device_spinlock); 664 tls_build_proto(sk); 665 ctx->hash = sk->sk_prot->hash; 666 ctx->unhash = sk->sk_prot->unhash; 667 ctx->sk_proto_close = sk->sk_prot->close; 668 ctx->sk_destruct = sk->sk_destruct; 669 sk->sk_destruct = tls_hw_sk_destruct; 670 ctx->rx_conf = TLS_HW_RECORD; 671 ctx->tx_conf = TLS_HW_RECORD; 672 update_sk_prot(sk, ctx); 673 spin_lock_bh(&device_spinlock); 674 rc = 1; 675 break; 676 } 677 } 678 out: 679 spin_unlock_bh(&device_spinlock); 680 return rc; 681 } 682 683 static void tls_hw_unhash(struct sock *sk) 684 { 685 struct tls_context *ctx = tls_get_ctx(sk); 686 struct tls_device *dev; 687 688 spin_lock_bh(&device_spinlock); 689 list_for_each_entry(dev, &device_list, dev_list) { 690 if (dev->unhash) { 691 kref_get(&dev->kref); 692 spin_unlock_bh(&device_spinlock); 693 dev->unhash(dev, sk); 694 kref_put(&dev->kref, dev->release); 695 spin_lock_bh(&device_spinlock); 696 } 697 } 698 spin_unlock_bh(&device_spinlock); 699 ctx->unhash(sk); 700 } 701 702 static int tls_hw_hash(struct sock *sk) 703 { 704 struct tls_context *ctx = tls_get_ctx(sk); 705 struct tls_device *dev; 706 int err; 707 708 err = ctx->hash(sk); 709 spin_lock_bh(&device_spinlock); 710 list_for_each_entry(dev, &device_list, dev_list) { 711 if (dev->hash) { 712 kref_get(&dev->kref); 713 spin_unlock_bh(&device_spinlock); 714 err |= dev->hash(dev, sk); 715 kref_put(&dev->kref, dev->release); 716 spin_lock_bh(&device_spinlock); 717 } 718 } 719 spin_unlock_bh(&device_spinlock); 720 721 if (err) 722 tls_hw_unhash(sk); 723 return err; 724 } 725 726 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 727 struct proto *base) 728 { 729 prot[TLS_BASE][TLS_BASE] = *base; 730 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 731 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 732 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 733 734 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 735 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 736 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 737 738 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 739 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 740 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read; 741 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 742 743 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 744 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 745 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read; 746 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 747 748 #ifdef CONFIG_TLS_DEVICE 749 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 750 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 751 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 752 753 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 754 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 755 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 756 757 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 758 759 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 760 761 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 762 #endif 763 764 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 765 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash; 766 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash; 767 prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close; 768 } 769 770 static int tls_init(struct sock *sk) 771 { 772 struct tls_context *ctx; 773 int rc = 0; 774 775 if (tls_hw_prot(sk)) 776 goto out; 777 778 /* The TLS ulp is currently supported only for TCP sockets 779 * in ESTABLISHED state. 780 * Supporting sockets in LISTEN state will require us 781 * to modify the accept implementation to clone rather then 782 * share the ulp context. 783 */ 784 if (sk->sk_state != TCP_ESTABLISHED) 785 return -ENOTSUPP; 786 787 /* allocate tls context */ 788 ctx = create_ctx(sk); 789 if (!ctx) { 790 rc = -ENOMEM; 791 goto out; 792 } 793 794 tls_build_proto(sk); 795 ctx->tx_conf = TLS_BASE; 796 ctx->rx_conf = TLS_BASE; 797 update_sk_prot(sk, ctx); 798 out: 799 return rc; 800 } 801 802 void tls_register_device(struct tls_device *device) 803 { 804 spin_lock_bh(&device_spinlock); 805 list_add_tail(&device->dev_list, &device_list); 806 spin_unlock_bh(&device_spinlock); 807 } 808 EXPORT_SYMBOL(tls_register_device); 809 810 void tls_unregister_device(struct tls_device *device) 811 { 812 spin_lock_bh(&device_spinlock); 813 list_del(&device->dev_list); 814 spin_unlock_bh(&device_spinlock); 815 } 816 EXPORT_SYMBOL(tls_unregister_device); 817 818 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 819 .name = "tls", 820 .owner = THIS_MODULE, 821 .init = tls_init, 822 }; 823 824 static int __init tls_register(void) 825 { 826 tls_sw_proto_ops = inet_stream_ops; 827 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 828 829 #ifdef CONFIG_TLS_DEVICE 830 tls_device_init(); 831 #endif 832 tcp_register_ulp(&tcp_tls_ulp_ops); 833 834 return 0; 835 } 836 837 static void __exit tls_unregister(void) 838 { 839 tcp_unregister_ulp(&tcp_tls_ulp_ops); 840 #ifdef CONFIG_TLS_DEVICE 841 tls_device_cleanup(); 842 #endif 843 } 844 845 module_init(tls_register); 846 module_exit(tls_unregister); 847