xref: /linux/net/tls/tls_main.c (revision 561add0da6d3d07c9bccb0832fb6ed5619167d26)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43 
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47 
48 #include "tls.h"
49 
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54 
55 enum {
56 	TLSV4,
57 	TLSV6,
58 	TLS_NUM_PROTS,
59 };
60 
61 #define CHECK_CIPHER_DESC(cipher,ci)				\
62 	static_assert(cipher ## _IV_SIZE <= MAX_IV_SIZE);		\
63 	static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE);	\
64 	static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE);		\
65 	static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE);	\
66 	static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE);	\
67 	static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE);	\
68 	static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
69 
70 #define __CIPHER_DESC(ci) \
71 	.iv_offset = offsetof(struct ci, iv), \
72 	.key_offset = offsetof(struct ci, key), \
73 	.salt_offset = offsetof(struct ci, salt), \
74 	.rec_seq_offset = offsetof(struct ci, rec_seq), \
75 	.crypto_info = sizeof(struct ci)
76 
77 #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = {	\
78 	.nonce = cipher ## _IV_SIZE, \
79 	.iv = cipher ## _IV_SIZE, \
80 	.key = cipher ## _KEY_SIZE, \
81 	.salt = cipher ## _SALT_SIZE, \
82 	.tag = cipher ## _TAG_SIZE, \
83 	.rec_seq = cipher ## _REC_SEQ_SIZE, \
84 	.cipher_name = algname,	\
85 	.offloadable = _offloadable, \
86 	__CIPHER_DESC(ci), \
87 }
88 
89 #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
90 	.nonce = 0, \
91 	.iv = cipher ## _IV_SIZE, \
92 	.key = cipher ## _KEY_SIZE, \
93 	.salt = cipher ## _SALT_SIZE, \
94 	.tag = cipher ## _TAG_SIZE, \
95 	.rec_seq = cipher ## _REC_SEQ_SIZE, \
96 	.cipher_name = algname,	\
97 	.offloadable = _offloadable, \
98 	__CIPHER_DESC(ci), \
99 }
100 
101 const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
102 	CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
103 	CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
104 	CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
105 	CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
106 	CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
107 	CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
108 	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
109 	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
110 };
111 
112 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
113 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
114 CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
115 CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
116 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
117 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
118 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
119 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
120 
121 static const struct proto *saved_tcpv6_prot;
122 static DEFINE_MUTEX(tcpv6_prot_mutex);
123 static const struct proto *saved_tcpv4_prot;
124 static DEFINE_MUTEX(tcpv4_prot_mutex);
125 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
126 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
128 			 const struct proto *base);
129 
130 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
131 {
132 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
133 
134 	WRITE_ONCE(sk->sk_prot,
135 		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
136 	WRITE_ONCE(sk->sk_socket->ops,
137 		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
138 }
139 
140 int wait_on_pending_writer(struct sock *sk, long *timeo)
141 {
142 	int rc = 0;
143 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
144 
145 	add_wait_queue(sk_sleep(sk), &wait);
146 	while (1) {
147 		if (!*timeo) {
148 			rc = -EAGAIN;
149 			break;
150 		}
151 
152 		if (signal_pending(current)) {
153 			rc = sock_intr_errno(*timeo);
154 			break;
155 		}
156 
157 		if (sk_wait_event(sk, timeo,
158 				  !READ_ONCE(sk->sk_write_pending), &wait))
159 			break;
160 	}
161 	remove_wait_queue(sk_sleep(sk), &wait);
162 	return rc;
163 }
164 
165 int tls_push_sg(struct sock *sk,
166 		struct tls_context *ctx,
167 		struct scatterlist *sg,
168 		u16 first_offset,
169 		int flags)
170 {
171 	struct bio_vec bvec;
172 	struct msghdr msg = {
173 		.msg_flags = MSG_SPLICE_PAGES | flags,
174 	};
175 	int ret = 0;
176 	struct page *p;
177 	size_t size;
178 	int offset = first_offset;
179 
180 	size = sg->length - offset;
181 	offset += sg->offset;
182 
183 	ctx->splicing_pages = true;
184 	while (1) {
185 		/* is sending application-limited? */
186 		tcp_rate_check_app_limited(sk);
187 		p = sg_page(sg);
188 retry:
189 		bvec_set_page(&bvec, p, size, offset);
190 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
191 
192 		ret = tcp_sendmsg_locked(sk, &msg, size);
193 
194 		if (ret != size) {
195 			if (ret > 0) {
196 				offset += ret;
197 				size -= ret;
198 				goto retry;
199 			}
200 
201 			offset -= sg->offset;
202 			ctx->partially_sent_offset = offset;
203 			ctx->partially_sent_record = (void *)sg;
204 			ctx->splicing_pages = false;
205 			return ret;
206 		}
207 
208 		put_page(p);
209 		sk_mem_uncharge(sk, sg->length);
210 		sg = sg_next(sg);
211 		if (!sg)
212 			break;
213 
214 		offset = sg->offset;
215 		size = sg->length;
216 	}
217 
218 	ctx->splicing_pages = false;
219 
220 	return 0;
221 }
222 
223 static int tls_handle_open_record(struct sock *sk, int flags)
224 {
225 	struct tls_context *ctx = tls_get_ctx(sk);
226 
227 	if (tls_is_pending_open_record(ctx))
228 		return ctx->push_pending_record(sk, flags);
229 
230 	return 0;
231 }
232 
233 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
234 		     unsigned char *record_type)
235 {
236 	struct cmsghdr *cmsg;
237 	int rc = -EINVAL;
238 
239 	for_each_cmsghdr(cmsg, msg) {
240 		if (!CMSG_OK(msg, cmsg))
241 			return -EINVAL;
242 		if (cmsg->cmsg_level != SOL_TLS)
243 			continue;
244 
245 		switch (cmsg->cmsg_type) {
246 		case TLS_SET_RECORD_TYPE:
247 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
248 				return -EINVAL;
249 
250 			if (msg->msg_flags & MSG_MORE)
251 				return -EINVAL;
252 
253 			rc = tls_handle_open_record(sk, msg->msg_flags);
254 			if (rc)
255 				return rc;
256 
257 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
258 			rc = 0;
259 			break;
260 		default:
261 			return -EINVAL;
262 		}
263 	}
264 
265 	return rc;
266 }
267 
268 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
269 			    int flags)
270 {
271 	struct scatterlist *sg;
272 	u16 offset;
273 
274 	sg = ctx->partially_sent_record;
275 	offset = ctx->partially_sent_offset;
276 
277 	ctx->partially_sent_record = NULL;
278 	return tls_push_sg(sk, ctx, sg, offset, flags);
279 }
280 
281 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
282 {
283 	struct scatterlist *sg;
284 
285 	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
286 		put_page(sg_page(sg));
287 		sk_mem_uncharge(sk, sg->length);
288 	}
289 	ctx->partially_sent_record = NULL;
290 }
291 
292 static void tls_write_space(struct sock *sk)
293 {
294 	struct tls_context *ctx = tls_get_ctx(sk);
295 
296 	/* If splicing_pages call lower protocol write space handler
297 	 * to ensure we wake up any waiting operations there. For example
298 	 * if splicing pages where to call sk_wait_event.
299 	 */
300 	if (ctx->splicing_pages) {
301 		ctx->sk_write_space(sk);
302 		return;
303 	}
304 
305 #ifdef CONFIG_TLS_DEVICE
306 	if (ctx->tx_conf == TLS_HW)
307 		tls_device_write_space(sk, ctx);
308 	else
309 #endif
310 		tls_sw_write_space(sk, ctx);
311 
312 	ctx->sk_write_space(sk);
313 }
314 
315 /**
316  * tls_ctx_free() - free TLS ULP context
317  * @sk:  socket to with @ctx is attached
318  * @ctx: TLS context structure
319  *
320  * Free TLS context. If @sk is %NULL caller guarantees that the socket
321  * to which @ctx was attached has no outstanding references.
322  */
323 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
324 {
325 	if (!ctx)
326 		return;
327 
328 	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
329 	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
330 	mutex_destroy(&ctx->tx_lock);
331 
332 	if (sk)
333 		kfree_rcu(ctx, rcu);
334 	else
335 		kfree(ctx);
336 }
337 
338 static void tls_sk_proto_cleanup(struct sock *sk,
339 				 struct tls_context *ctx, long timeo)
340 {
341 	if (unlikely(sk->sk_write_pending) &&
342 	    !wait_on_pending_writer(sk, &timeo))
343 		tls_handle_open_record(sk, 0);
344 
345 	/* We need these for tls_sw_fallback handling of other packets */
346 	if (ctx->tx_conf == TLS_SW) {
347 		kfree(ctx->tx.rec_seq);
348 		kfree(ctx->tx.iv);
349 		tls_sw_release_resources_tx(sk);
350 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
351 	} else if (ctx->tx_conf == TLS_HW) {
352 		tls_device_free_resources_tx(sk);
353 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
354 	}
355 
356 	if (ctx->rx_conf == TLS_SW) {
357 		tls_sw_release_resources_rx(sk);
358 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
359 	} else if (ctx->rx_conf == TLS_HW) {
360 		tls_device_offload_cleanup_rx(sk);
361 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
362 	}
363 }
364 
365 static void tls_sk_proto_close(struct sock *sk, long timeout)
366 {
367 	struct inet_connection_sock *icsk = inet_csk(sk);
368 	struct tls_context *ctx = tls_get_ctx(sk);
369 	long timeo = sock_sndtimeo(sk, 0);
370 	bool free_ctx;
371 
372 	if (ctx->tx_conf == TLS_SW)
373 		tls_sw_cancel_work_tx(ctx);
374 
375 	lock_sock(sk);
376 	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
377 
378 	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
379 		tls_sk_proto_cleanup(sk, ctx, timeo);
380 
381 	write_lock_bh(&sk->sk_callback_lock);
382 	if (free_ctx)
383 		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
384 	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
385 	if (sk->sk_write_space == tls_write_space)
386 		sk->sk_write_space = ctx->sk_write_space;
387 	write_unlock_bh(&sk->sk_callback_lock);
388 	release_sock(sk);
389 	if (ctx->tx_conf == TLS_SW)
390 		tls_sw_free_ctx_tx(ctx);
391 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
392 		tls_sw_strparser_done(ctx);
393 	if (ctx->rx_conf == TLS_SW)
394 		tls_sw_free_ctx_rx(ctx);
395 	ctx->sk_proto->close(sk, timeout);
396 
397 	if (free_ctx)
398 		tls_ctx_free(sk, ctx);
399 }
400 
401 static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
402 			    struct poll_table_struct *wait)
403 {
404 	struct tls_sw_context_rx *ctx;
405 	struct tls_context *tls_ctx;
406 	struct sock *sk = sock->sk;
407 	struct sk_psock *psock;
408 	__poll_t mask = 0;
409 	u8 shutdown;
410 	int state;
411 
412 	mask = tcp_poll(file, sock, wait);
413 
414 	state = inet_sk_state_load(sk);
415 	shutdown = READ_ONCE(sk->sk_shutdown);
416 	if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
417 		return mask;
418 
419 	tls_ctx = tls_get_ctx(sk);
420 	ctx = tls_sw_ctx_rx(tls_ctx);
421 	psock = sk_psock_get(sk);
422 
423 	if (skb_queue_empty_lockless(&ctx->rx_list) &&
424 	    !tls_strp_msg_ready(ctx) &&
425 	    sk_psock_queue_empty(psock))
426 		mask &= ~(EPOLLIN | EPOLLRDNORM);
427 
428 	if (psock)
429 		sk_psock_put(sk, psock);
430 
431 	return mask;
432 }
433 
434 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
435 				  int __user *optlen, int tx)
436 {
437 	int rc = 0;
438 	const struct tls_cipher_desc *cipher_desc;
439 	struct tls_context *ctx = tls_get_ctx(sk);
440 	struct tls_crypto_info *crypto_info;
441 	struct cipher_context *cctx;
442 	int len;
443 
444 	if (get_user(len, optlen))
445 		return -EFAULT;
446 
447 	if (!optval || (len < sizeof(*crypto_info))) {
448 		rc = -EINVAL;
449 		goto out;
450 	}
451 
452 	if (!ctx) {
453 		rc = -EBUSY;
454 		goto out;
455 	}
456 
457 	/* get user crypto info */
458 	if (tx) {
459 		crypto_info = &ctx->crypto_send.info;
460 		cctx = &ctx->tx;
461 	} else {
462 		crypto_info = &ctx->crypto_recv.info;
463 		cctx = &ctx->rx;
464 	}
465 
466 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
467 		rc = -EBUSY;
468 		goto out;
469 	}
470 
471 	if (len == sizeof(*crypto_info)) {
472 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
473 			rc = -EFAULT;
474 		goto out;
475 	}
476 
477 	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
478 	if (!cipher_desc || len != cipher_desc->crypto_info) {
479 		rc = -EINVAL;
480 		goto out;
481 	}
482 
483 	memcpy(crypto_info_iv(crypto_info, cipher_desc),
484 	       cctx->iv + cipher_desc->salt, cipher_desc->iv);
485 	memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
486 	       cctx->rec_seq, cipher_desc->rec_seq);
487 
488 	if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
489 		rc = -EFAULT;
490 
491 out:
492 	return rc;
493 }
494 
495 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
496 				   int __user *optlen)
497 {
498 	struct tls_context *ctx = tls_get_ctx(sk);
499 	unsigned int value;
500 	int len;
501 
502 	if (get_user(len, optlen))
503 		return -EFAULT;
504 
505 	if (len != sizeof(value))
506 		return -EINVAL;
507 
508 	value = ctx->zerocopy_sendfile;
509 	if (copy_to_user(optval, &value, sizeof(value)))
510 		return -EFAULT;
511 
512 	return 0;
513 }
514 
515 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
516 				    int __user *optlen)
517 {
518 	struct tls_context *ctx = tls_get_ctx(sk);
519 	int value, len;
520 
521 	if (ctx->prot_info.version != TLS_1_3_VERSION)
522 		return -EINVAL;
523 
524 	if (get_user(len, optlen))
525 		return -EFAULT;
526 	if (len < sizeof(value))
527 		return -EINVAL;
528 
529 	value = -EINVAL;
530 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
531 		value = ctx->rx_no_pad;
532 	if (value < 0)
533 		return value;
534 
535 	if (put_user(sizeof(value), optlen))
536 		return -EFAULT;
537 	if (copy_to_user(optval, &value, sizeof(value)))
538 		return -EFAULT;
539 
540 	return 0;
541 }
542 
543 static int do_tls_getsockopt(struct sock *sk, int optname,
544 			     char __user *optval, int __user *optlen)
545 {
546 	int rc = 0;
547 
548 	lock_sock(sk);
549 
550 	switch (optname) {
551 	case TLS_TX:
552 	case TLS_RX:
553 		rc = do_tls_getsockopt_conf(sk, optval, optlen,
554 					    optname == TLS_TX);
555 		break;
556 	case TLS_TX_ZEROCOPY_RO:
557 		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
558 		break;
559 	case TLS_RX_EXPECT_NO_PAD:
560 		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
561 		break;
562 	default:
563 		rc = -ENOPROTOOPT;
564 		break;
565 	}
566 
567 	release_sock(sk);
568 
569 	return rc;
570 }
571 
572 static int tls_getsockopt(struct sock *sk, int level, int optname,
573 			  char __user *optval, int __user *optlen)
574 {
575 	struct tls_context *ctx = tls_get_ctx(sk);
576 
577 	if (level != SOL_TLS)
578 		return ctx->sk_proto->getsockopt(sk, level,
579 						 optname, optval, optlen);
580 
581 	return do_tls_getsockopt(sk, optname, optval, optlen);
582 }
583 
584 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
585 				  unsigned int optlen, int tx)
586 {
587 	struct tls_crypto_info *crypto_info;
588 	struct tls_crypto_info *alt_crypto_info;
589 	struct tls_context *ctx = tls_get_ctx(sk);
590 	const struct tls_cipher_desc *cipher_desc;
591 	int rc = 0;
592 	int conf;
593 
594 	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
595 		return -EINVAL;
596 
597 	if (tx) {
598 		crypto_info = &ctx->crypto_send.info;
599 		alt_crypto_info = &ctx->crypto_recv.info;
600 	} else {
601 		crypto_info = &ctx->crypto_recv.info;
602 		alt_crypto_info = &ctx->crypto_send.info;
603 	}
604 
605 	/* Currently we don't support set crypto info more than one time */
606 	if (TLS_CRYPTO_INFO_READY(crypto_info))
607 		return -EBUSY;
608 
609 	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
610 	if (rc) {
611 		rc = -EFAULT;
612 		goto err_crypto_info;
613 	}
614 
615 	/* check version */
616 	if (crypto_info->version != TLS_1_2_VERSION &&
617 	    crypto_info->version != TLS_1_3_VERSION) {
618 		rc = -EINVAL;
619 		goto err_crypto_info;
620 	}
621 
622 	/* Ensure that TLS version and ciphers are same in both directions */
623 	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
624 		if (alt_crypto_info->version != crypto_info->version ||
625 		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
626 			rc = -EINVAL;
627 			goto err_crypto_info;
628 		}
629 	}
630 
631 	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
632 	if (!cipher_desc) {
633 		rc = -EINVAL;
634 		goto err_crypto_info;
635 	}
636 
637 	switch (crypto_info->cipher_type) {
638 	case TLS_CIPHER_ARIA_GCM_128:
639 	case TLS_CIPHER_ARIA_GCM_256:
640 		if (crypto_info->version != TLS_1_2_VERSION) {
641 			rc = -EINVAL;
642 			goto err_crypto_info;
643 		}
644 		break;
645 	}
646 
647 	if (optlen != cipher_desc->crypto_info) {
648 		rc = -EINVAL;
649 		goto err_crypto_info;
650 	}
651 
652 	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
653 				      sizeof(*crypto_info),
654 				      optlen - sizeof(*crypto_info));
655 	if (rc) {
656 		rc = -EFAULT;
657 		goto err_crypto_info;
658 	}
659 
660 	if (tx) {
661 		rc = tls_set_device_offload(sk, ctx);
662 		conf = TLS_HW;
663 		if (!rc) {
664 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
665 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
666 		} else {
667 			rc = tls_set_sw_offload(sk, ctx, 1);
668 			if (rc)
669 				goto err_crypto_info;
670 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
671 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
672 			conf = TLS_SW;
673 		}
674 	} else {
675 		rc = tls_set_device_offload_rx(sk, ctx);
676 		conf = TLS_HW;
677 		if (!rc) {
678 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
679 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
680 		} else {
681 			rc = tls_set_sw_offload(sk, ctx, 0);
682 			if (rc)
683 				goto err_crypto_info;
684 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
685 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
686 			conf = TLS_SW;
687 		}
688 		tls_sw_strparser_arm(sk, ctx);
689 	}
690 
691 	if (tx)
692 		ctx->tx_conf = conf;
693 	else
694 		ctx->rx_conf = conf;
695 	update_sk_prot(sk, ctx);
696 	if (tx) {
697 		ctx->sk_write_space = sk->sk_write_space;
698 		sk->sk_write_space = tls_write_space;
699 	} else {
700 		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
701 
702 		tls_strp_check_rcv(&rx_ctx->strp);
703 	}
704 	return 0;
705 
706 err_crypto_info:
707 	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
708 	return rc;
709 }
710 
711 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
712 				   unsigned int optlen)
713 {
714 	struct tls_context *ctx = tls_get_ctx(sk);
715 	unsigned int value;
716 
717 	if (sockptr_is_null(optval) || optlen != sizeof(value))
718 		return -EINVAL;
719 
720 	if (copy_from_sockptr(&value, optval, sizeof(value)))
721 		return -EFAULT;
722 
723 	if (value > 1)
724 		return -EINVAL;
725 
726 	ctx->zerocopy_sendfile = value;
727 
728 	return 0;
729 }
730 
731 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
732 				    unsigned int optlen)
733 {
734 	struct tls_context *ctx = tls_get_ctx(sk);
735 	u32 val;
736 	int rc;
737 
738 	if (ctx->prot_info.version != TLS_1_3_VERSION ||
739 	    sockptr_is_null(optval) || optlen < sizeof(val))
740 		return -EINVAL;
741 
742 	rc = copy_from_sockptr(&val, optval, sizeof(val));
743 	if (rc)
744 		return -EFAULT;
745 	if (val > 1)
746 		return -EINVAL;
747 	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
748 	if (rc < 1)
749 		return rc == 0 ? -EINVAL : rc;
750 
751 	lock_sock(sk);
752 	rc = -EINVAL;
753 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
754 		ctx->rx_no_pad = val;
755 		tls_update_rx_zc_capable(ctx);
756 		rc = 0;
757 	}
758 	release_sock(sk);
759 
760 	return rc;
761 }
762 
763 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
764 			     unsigned int optlen)
765 {
766 	int rc = 0;
767 
768 	switch (optname) {
769 	case TLS_TX:
770 	case TLS_RX:
771 		lock_sock(sk);
772 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
773 					    optname == TLS_TX);
774 		release_sock(sk);
775 		break;
776 	case TLS_TX_ZEROCOPY_RO:
777 		lock_sock(sk);
778 		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
779 		release_sock(sk);
780 		break;
781 	case TLS_RX_EXPECT_NO_PAD:
782 		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
783 		break;
784 	default:
785 		rc = -ENOPROTOOPT;
786 		break;
787 	}
788 	return rc;
789 }
790 
791 static int tls_setsockopt(struct sock *sk, int level, int optname,
792 			  sockptr_t optval, unsigned int optlen)
793 {
794 	struct tls_context *ctx = tls_get_ctx(sk);
795 
796 	if (level != SOL_TLS)
797 		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
798 						 optlen);
799 
800 	return do_tls_setsockopt(sk, optname, optval, optlen);
801 }
802 
803 struct tls_context *tls_ctx_create(struct sock *sk)
804 {
805 	struct inet_connection_sock *icsk = inet_csk(sk);
806 	struct tls_context *ctx;
807 
808 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
809 	if (!ctx)
810 		return NULL;
811 
812 	mutex_init(&ctx->tx_lock);
813 	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
814 	ctx->sk_proto = READ_ONCE(sk->sk_prot);
815 	ctx->sk = sk;
816 	return ctx;
817 }
818 
819 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
820 			    const struct proto_ops *base)
821 {
822 	ops[TLS_BASE][TLS_BASE] = *base;
823 
824 	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
825 	ops[TLS_SW  ][TLS_BASE].splice_eof	= tls_sw_splice_eof;
826 
827 	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
828 	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
829 	ops[TLS_BASE][TLS_SW  ].poll		= tls_sk_poll;
830 	ops[TLS_BASE][TLS_SW  ].read_sock	= tls_sw_read_sock;
831 
832 	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
833 	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
834 	ops[TLS_SW  ][TLS_SW  ].poll		= tls_sk_poll;
835 	ops[TLS_SW  ][TLS_SW  ].read_sock	= tls_sw_read_sock;
836 
837 #ifdef CONFIG_TLS_DEVICE
838 	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
839 
840 	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
841 
842 	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
843 
844 	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
845 
846 	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
847 #endif
848 #ifdef CONFIG_TLS_TOE
849 	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
850 #endif
851 }
852 
853 static void tls_build_proto(struct sock *sk)
854 {
855 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
856 	struct proto *prot = READ_ONCE(sk->sk_prot);
857 
858 	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
859 	if (ip_ver == TLSV6 &&
860 	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
861 		mutex_lock(&tcpv6_prot_mutex);
862 		if (likely(prot != saved_tcpv6_prot)) {
863 			build_protos(tls_prots[TLSV6], prot);
864 			build_proto_ops(tls_proto_ops[TLSV6],
865 					sk->sk_socket->ops);
866 			smp_store_release(&saved_tcpv6_prot, prot);
867 		}
868 		mutex_unlock(&tcpv6_prot_mutex);
869 	}
870 
871 	if (ip_ver == TLSV4 &&
872 	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
873 		mutex_lock(&tcpv4_prot_mutex);
874 		if (likely(prot != saved_tcpv4_prot)) {
875 			build_protos(tls_prots[TLSV4], prot);
876 			build_proto_ops(tls_proto_ops[TLSV4],
877 					sk->sk_socket->ops);
878 			smp_store_release(&saved_tcpv4_prot, prot);
879 		}
880 		mutex_unlock(&tcpv4_prot_mutex);
881 	}
882 }
883 
884 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
885 			 const struct proto *base)
886 {
887 	prot[TLS_BASE][TLS_BASE] = *base;
888 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
889 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
890 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
891 
892 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
893 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
894 	prot[TLS_SW][TLS_BASE].splice_eof	= tls_sw_splice_eof;
895 
896 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
897 	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
898 	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
899 	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
900 
901 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
902 	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
903 	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
904 	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
905 
906 #ifdef CONFIG_TLS_DEVICE
907 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
908 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
909 	prot[TLS_HW][TLS_BASE].splice_eof	= tls_device_splice_eof;
910 
911 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
912 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
913 	prot[TLS_HW][TLS_SW].splice_eof		= tls_device_splice_eof;
914 
915 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
916 
917 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
918 
919 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
920 #endif
921 #ifdef CONFIG_TLS_TOE
922 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
923 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
924 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
925 #endif
926 }
927 
928 static int tls_init(struct sock *sk)
929 {
930 	struct tls_context *ctx;
931 	int rc = 0;
932 
933 	tls_build_proto(sk);
934 
935 #ifdef CONFIG_TLS_TOE
936 	if (tls_toe_bypass(sk))
937 		return 0;
938 #endif
939 
940 	/* The TLS ulp is currently supported only for TCP sockets
941 	 * in ESTABLISHED state.
942 	 * Supporting sockets in LISTEN state will require us
943 	 * to modify the accept implementation to clone rather then
944 	 * share the ulp context.
945 	 */
946 	if (sk->sk_state != TCP_ESTABLISHED)
947 		return -ENOTCONN;
948 
949 	/* allocate tls context */
950 	write_lock_bh(&sk->sk_callback_lock);
951 	ctx = tls_ctx_create(sk);
952 	if (!ctx) {
953 		rc = -ENOMEM;
954 		goto out;
955 	}
956 
957 	ctx->tx_conf = TLS_BASE;
958 	ctx->rx_conf = TLS_BASE;
959 	update_sk_prot(sk, ctx);
960 out:
961 	write_unlock_bh(&sk->sk_callback_lock);
962 	return rc;
963 }
964 
965 static void tls_update(struct sock *sk, struct proto *p,
966 		       void (*write_space)(struct sock *sk))
967 {
968 	struct tls_context *ctx;
969 
970 	WARN_ON_ONCE(sk->sk_prot == p);
971 
972 	ctx = tls_get_ctx(sk);
973 	if (likely(ctx)) {
974 		ctx->sk_write_space = write_space;
975 		ctx->sk_proto = p;
976 	} else {
977 		/* Pairs with lockless read in sk_clone_lock(). */
978 		WRITE_ONCE(sk->sk_prot, p);
979 		sk->sk_write_space = write_space;
980 	}
981 }
982 
983 static u16 tls_user_config(struct tls_context *ctx, bool tx)
984 {
985 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
986 
987 	switch (config) {
988 	case TLS_BASE:
989 		return TLS_CONF_BASE;
990 	case TLS_SW:
991 		return TLS_CONF_SW;
992 	case TLS_HW:
993 		return TLS_CONF_HW;
994 	case TLS_HW_RECORD:
995 		return TLS_CONF_HW_RECORD;
996 	}
997 	return 0;
998 }
999 
1000 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1001 {
1002 	u16 version, cipher_type;
1003 	struct tls_context *ctx;
1004 	struct nlattr *start;
1005 	int err;
1006 
1007 	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1008 	if (!start)
1009 		return -EMSGSIZE;
1010 
1011 	rcu_read_lock();
1012 	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1013 	if (!ctx) {
1014 		err = 0;
1015 		goto nla_failure;
1016 	}
1017 	version = ctx->prot_info.version;
1018 	if (version) {
1019 		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1020 		if (err)
1021 			goto nla_failure;
1022 	}
1023 	cipher_type = ctx->prot_info.cipher_type;
1024 	if (cipher_type) {
1025 		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1026 		if (err)
1027 			goto nla_failure;
1028 	}
1029 	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1030 	if (err)
1031 		goto nla_failure;
1032 
1033 	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1034 	if (err)
1035 		goto nla_failure;
1036 
1037 	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1038 		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1039 		if (err)
1040 			goto nla_failure;
1041 	}
1042 	if (ctx->rx_no_pad) {
1043 		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1044 		if (err)
1045 			goto nla_failure;
1046 	}
1047 
1048 	rcu_read_unlock();
1049 	nla_nest_end(skb, start);
1050 	return 0;
1051 
1052 nla_failure:
1053 	rcu_read_unlock();
1054 	nla_nest_cancel(skb, start);
1055 	return err;
1056 }
1057 
1058 static size_t tls_get_info_size(const struct sock *sk)
1059 {
1060 	size_t size = 0;
1061 
1062 	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1063 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1064 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1065 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1066 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1067 		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1068 		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1069 		0;
1070 
1071 	return size;
1072 }
1073 
1074 static int __net_init tls_init_net(struct net *net)
1075 {
1076 	int err;
1077 
1078 	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1079 	if (!net->mib.tls_statistics)
1080 		return -ENOMEM;
1081 
1082 	err = tls_proc_init(net);
1083 	if (err)
1084 		goto err_free_stats;
1085 
1086 	return 0;
1087 err_free_stats:
1088 	free_percpu(net->mib.tls_statistics);
1089 	return err;
1090 }
1091 
1092 static void __net_exit tls_exit_net(struct net *net)
1093 {
1094 	tls_proc_fini(net);
1095 	free_percpu(net->mib.tls_statistics);
1096 }
1097 
1098 static struct pernet_operations tls_proc_ops = {
1099 	.init = tls_init_net,
1100 	.exit = tls_exit_net,
1101 };
1102 
1103 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1104 	.name			= "tls",
1105 	.owner			= THIS_MODULE,
1106 	.init			= tls_init,
1107 	.update			= tls_update,
1108 	.get_info		= tls_get_info,
1109 	.get_info_size		= tls_get_info_size,
1110 };
1111 
1112 static int __init tls_register(void)
1113 {
1114 	int err;
1115 
1116 	err = register_pernet_subsys(&tls_proc_ops);
1117 	if (err)
1118 		return err;
1119 
1120 	err = tls_strp_dev_init();
1121 	if (err)
1122 		goto err_pernet;
1123 
1124 	err = tls_device_init();
1125 	if (err)
1126 		goto err_strp;
1127 
1128 	tcp_register_ulp(&tcp_tls_ulp_ops);
1129 
1130 	return 0;
1131 err_strp:
1132 	tls_strp_dev_exit();
1133 err_pernet:
1134 	unregister_pernet_subsys(&tls_proc_ops);
1135 	return err;
1136 }
1137 
1138 static void __exit tls_unregister(void)
1139 {
1140 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1141 	tls_strp_dev_exit();
1142 	tls_device_cleanup();
1143 	unregister_pernet_subsys(&tls_proc_ops);
1144 }
1145 
1146 module_init(tls_register);
1147 module_exit(tls_unregister);
1148