xref: /linux/net/tls/tls_main.c (revision 55c8a987dd73a7ef9e53119f3329620768d4a655)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43 
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47 
48 #include "tls.h"
49 
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54 
55 enum {
56 	TLSV4,
57 	TLSV6,
58 	TLS_NUM_PROTS,
59 };
60 
61 static const struct proto *saved_tcpv6_prot;
62 static DEFINE_MUTEX(tcpv6_prot_mutex);
63 static const struct proto *saved_tcpv4_prot;
64 static DEFINE_MUTEX(tcpv4_prot_mutex);
65 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
66 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
67 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
68 			 const struct proto *base);
69 
70 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
71 {
72 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
73 
74 	WRITE_ONCE(sk->sk_prot,
75 		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
76 	WRITE_ONCE(sk->sk_socket->ops,
77 		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
78 }
79 
80 int wait_on_pending_writer(struct sock *sk, long *timeo)
81 {
82 	int rc = 0;
83 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
84 
85 	add_wait_queue(sk_sleep(sk), &wait);
86 	while (1) {
87 		if (!*timeo) {
88 			rc = -EAGAIN;
89 			break;
90 		}
91 
92 		if (signal_pending(current)) {
93 			rc = sock_intr_errno(*timeo);
94 			break;
95 		}
96 
97 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
98 			break;
99 	}
100 	remove_wait_queue(sk_sleep(sk), &wait);
101 	return rc;
102 }
103 
104 int tls_push_sg(struct sock *sk,
105 		struct tls_context *ctx,
106 		struct scatterlist *sg,
107 		u16 first_offset,
108 		int flags)
109 {
110 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
111 	int ret = 0;
112 	struct page *p;
113 	size_t size;
114 	int offset = first_offset;
115 
116 	size = sg->length - offset;
117 	offset += sg->offset;
118 
119 	ctx->in_tcp_sendpages = true;
120 	while (1) {
121 		if (sg_is_last(sg))
122 			sendpage_flags = flags;
123 
124 		/* is sending application-limited? */
125 		tcp_rate_check_app_limited(sk);
126 		p = sg_page(sg);
127 retry:
128 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
129 
130 		if (ret != size) {
131 			if (ret > 0) {
132 				offset += ret;
133 				size -= ret;
134 				goto retry;
135 			}
136 
137 			offset -= sg->offset;
138 			ctx->partially_sent_offset = offset;
139 			ctx->partially_sent_record = (void *)sg;
140 			ctx->in_tcp_sendpages = false;
141 			return ret;
142 		}
143 
144 		put_page(p);
145 		sk_mem_uncharge(sk, sg->length);
146 		sg = sg_next(sg);
147 		if (!sg)
148 			break;
149 
150 		offset = sg->offset;
151 		size = sg->length;
152 	}
153 
154 	ctx->in_tcp_sendpages = false;
155 
156 	return 0;
157 }
158 
159 static int tls_handle_open_record(struct sock *sk, int flags)
160 {
161 	struct tls_context *ctx = tls_get_ctx(sk);
162 
163 	if (tls_is_pending_open_record(ctx))
164 		return ctx->push_pending_record(sk, flags);
165 
166 	return 0;
167 }
168 
169 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
170 		     unsigned char *record_type)
171 {
172 	struct cmsghdr *cmsg;
173 	int rc = -EINVAL;
174 
175 	for_each_cmsghdr(cmsg, msg) {
176 		if (!CMSG_OK(msg, cmsg))
177 			return -EINVAL;
178 		if (cmsg->cmsg_level != SOL_TLS)
179 			continue;
180 
181 		switch (cmsg->cmsg_type) {
182 		case TLS_SET_RECORD_TYPE:
183 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
184 				return -EINVAL;
185 
186 			if (msg->msg_flags & MSG_MORE)
187 				return -EINVAL;
188 
189 			rc = tls_handle_open_record(sk, msg->msg_flags);
190 			if (rc)
191 				return rc;
192 
193 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
194 			rc = 0;
195 			break;
196 		default:
197 			return -EINVAL;
198 		}
199 	}
200 
201 	return rc;
202 }
203 
204 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
205 			    int flags)
206 {
207 	struct scatterlist *sg;
208 	u16 offset;
209 
210 	sg = ctx->partially_sent_record;
211 	offset = ctx->partially_sent_offset;
212 
213 	ctx->partially_sent_record = NULL;
214 	return tls_push_sg(sk, ctx, sg, offset, flags);
215 }
216 
217 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
218 {
219 	struct scatterlist *sg;
220 
221 	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
222 		put_page(sg_page(sg));
223 		sk_mem_uncharge(sk, sg->length);
224 	}
225 	ctx->partially_sent_record = NULL;
226 }
227 
228 static void tls_write_space(struct sock *sk)
229 {
230 	struct tls_context *ctx = tls_get_ctx(sk);
231 
232 	/* If in_tcp_sendpages call lower protocol write space handler
233 	 * to ensure we wake up any waiting operations there. For example
234 	 * if do_tcp_sendpages where to call sk_wait_event.
235 	 */
236 	if (ctx->in_tcp_sendpages) {
237 		ctx->sk_write_space(sk);
238 		return;
239 	}
240 
241 #ifdef CONFIG_TLS_DEVICE
242 	if (ctx->tx_conf == TLS_HW)
243 		tls_device_write_space(sk, ctx);
244 	else
245 #endif
246 		tls_sw_write_space(sk, ctx);
247 
248 	ctx->sk_write_space(sk);
249 }
250 
251 /**
252  * tls_ctx_free() - free TLS ULP context
253  * @sk:  socket to with @ctx is attached
254  * @ctx: TLS context structure
255  *
256  * Free TLS context. If @sk is %NULL caller guarantees that the socket
257  * to which @ctx was attached has no outstanding references.
258  */
259 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
260 {
261 	if (!ctx)
262 		return;
263 
264 	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
265 	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
266 	mutex_destroy(&ctx->tx_lock);
267 
268 	if (sk)
269 		kfree_rcu(ctx, rcu);
270 	else
271 		kfree(ctx);
272 }
273 
274 static void tls_sk_proto_cleanup(struct sock *sk,
275 				 struct tls_context *ctx, long timeo)
276 {
277 	if (unlikely(sk->sk_write_pending) &&
278 	    !wait_on_pending_writer(sk, &timeo))
279 		tls_handle_open_record(sk, 0);
280 
281 	/* We need these for tls_sw_fallback handling of other packets */
282 	if (ctx->tx_conf == TLS_SW) {
283 		kfree(ctx->tx.rec_seq);
284 		kfree(ctx->tx.iv);
285 		tls_sw_release_resources_tx(sk);
286 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
287 	} else if (ctx->tx_conf == TLS_HW) {
288 		tls_device_free_resources_tx(sk);
289 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
290 	}
291 
292 	if (ctx->rx_conf == TLS_SW) {
293 		tls_sw_release_resources_rx(sk);
294 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
295 	} else if (ctx->rx_conf == TLS_HW) {
296 		tls_device_offload_cleanup_rx(sk);
297 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
298 	}
299 }
300 
301 static void tls_sk_proto_close(struct sock *sk, long timeout)
302 {
303 	struct inet_connection_sock *icsk = inet_csk(sk);
304 	struct tls_context *ctx = tls_get_ctx(sk);
305 	long timeo = sock_sndtimeo(sk, 0);
306 	bool free_ctx;
307 
308 	if (ctx->tx_conf == TLS_SW)
309 		tls_sw_cancel_work_tx(ctx);
310 
311 	lock_sock(sk);
312 	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
313 
314 	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
315 		tls_sk_proto_cleanup(sk, ctx, timeo);
316 
317 	write_lock_bh(&sk->sk_callback_lock);
318 	if (free_ctx)
319 		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
320 	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
321 	if (sk->sk_write_space == tls_write_space)
322 		sk->sk_write_space = ctx->sk_write_space;
323 	write_unlock_bh(&sk->sk_callback_lock);
324 	release_sock(sk);
325 	if (ctx->tx_conf == TLS_SW)
326 		tls_sw_free_ctx_tx(ctx);
327 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
328 		tls_sw_strparser_done(ctx);
329 	if (ctx->rx_conf == TLS_SW)
330 		tls_sw_free_ctx_rx(ctx);
331 	ctx->sk_proto->close(sk, timeout);
332 
333 	if (free_ctx)
334 		tls_ctx_free(sk, ctx);
335 }
336 
337 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
338 				  int __user *optlen, int tx)
339 {
340 	int rc = 0;
341 	struct tls_context *ctx = tls_get_ctx(sk);
342 	struct tls_crypto_info *crypto_info;
343 	struct cipher_context *cctx;
344 	int len;
345 
346 	if (get_user(len, optlen))
347 		return -EFAULT;
348 
349 	if (!optval || (len < sizeof(*crypto_info))) {
350 		rc = -EINVAL;
351 		goto out;
352 	}
353 
354 	if (!ctx) {
355 		rc = -EBUSY;
356 		goto out;
357 	}
358 
359 	/* get user crypto info */
360 	if (tx) {
361 		crypto_info = &ctx->crypto_send.info;
362 		cctx = &ctx->tx;
363 	} else {
364 		crypto_info = &ctx->crypto_recv.info;
365 		cctx = &ctx->rx;
366 	}
367 
368 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
369 		rc = -EBUSY;
370 		goto out;
371 	}
372 
373 	if (len == sizeof(*crypto_info)) {
374 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
375 			rc = -EFAULT;
376 		goto out;
377 	}
378 
379 	switch (crypto_info->cipher_type) {
380 	case TLS_CIPHER_AES_GCM_128: {
381 		struct tls12_crypto_info_aes_gcm_128 *
382 		  crypto_info_aes_gcm_128 =
383 		  container_of(crypto_info,
384 			       struct tls12_crypto_info_aes_gcm_128,
385 			       info);
386 
387 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
388 			rc = -EINVAL;
389 			goto out;
390 		}
391 		lock_sock(sk);
392 		memcpy(crypto_info_aes_gcm_128->iv,
393 		       cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
394 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
395 		memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
396 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
397 		release_sock(sk);
398 		if (copy_to_user(optval,
399 				 crypto_info_aes_gcm_128,
400 				 sizeof(*crypto_info_aes_gcm_128)))
401 			rc = -EFAULT;
402 		break;
403 	}
404 	case TLS_CIPHER_AES_GCM_256: {
405 		struct tls12_crypto_info_aes_gcm_256 *
406 		  crypto_info_aes_gcm_256 =
407 		  container_of(crypto_info,
408 			       struct tls12_crypto_info_aes_gcm_256,
409 			       info);
410 
411 		if (len != sizeof(*crypto_info_aes_gcm_256)) {
412 			rc = -EINVAL;
413 			goto out;
414 		}
415 		lock_sock(sk);
416 		memcpy(crypto_info_aes_gcm_256->iv,
417 		       cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
418 		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
419 		memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
420 		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
421 		release_sock(sk);
422 		if (copy_to_user(optval,
423 				 crypto_info_aes_gcm_256,
424 				 sizeof(*crypto_info_aes_gcm_256)))
425 			rc = -EFAULT;
426 		break;
427 	}
428 	case TLS_CIPHER_AES_CCM_128: {
429 		struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
430 			container_of(crypto_info,
431 				struct tls12_crypto_info_aes_ccm_128, info);
432 
433 		if (len != sizeof(*aes_ccm_128)) {
434 			rc = -EINVAL;
435 			goto out;
436 		}
437 		lock_sock(sk);
438 		memcpy(aes_ccm_128->iv,
439 		       cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
440 		       TLS_CIPHER_AES_CCM_128_IV_SIZE);
441 		memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
442 		       TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
443 		release_sock(sk);
444 		if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
445 			rc = -EFAULT;
446 		break;
447 	}
448 	case TLS_CIPHER_CHACHA20_POLY1305: {
449 		struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
450 			container_of(crypto_info,
451 				struct tls12_crypto_info_chacha20_poly1305,
452 				info);
453 
454 		if (len != sizeof(*chacha20_poly1305)) {
455 			rc = -EINVAL;
456 			goto out;
457 		}
458 		lock_sock(sk);
459 		memcpy(chacha20_poly1305->iv,
460 		       cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
461 		       TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
462 		memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
463 		       TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
464 		release_sock(sk);
465 		if (copy_to_user(optval, chacha20_poly1305,
466 				sizeof(*chacha20_poly1305)))
467 			rc = -EFAULT;
468 		break;
469 	}
470 	case TLS_CIPHER_SM4_GCM: {
471 		struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
472 			container_of(crypto_info,
473 				struct tls12_crypto_info_sm4_gcm, info);
474 
475 		if (len != sizeof(*sm4_gcm_info)) {
476 			rc = -EINVAL;
477 			goto out;
478 		}
479 		lock_sock(sk);
480 		memcpy(sm4_gcm_info->iv,
481 		       cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
482 		       TLS_CIPHER_SM4_GCM_IV_SIZE);
483 		memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
484 		       TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
485 		release_sock(sk);
486 		if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
487 			rc = -EFAULT;
488 		break;
489 	}
490 	case TLS_CIPHER_SM4_CCM: {
491 		struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
492 			container_of(crypto_info,
493 				struct tls12_crypto_info_sm4_ccm, info);
494 
495 		if (len != sizeof(*sm4_ccm_info)) {
496 			rc = -EINVAL;
497 			goto out;
498 		}
499 		lock_sock(sk);
500 		memcpy(sm4_ccm_info->iv,
501 		       cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
502 		       TLS_CIPHER_SM4_CCM_IV_SIZE);
503 		memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
504 		       TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
505 		release_sock(sk);
506 		if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
507 			rc = -EFAULT;
508 		break;
509 	}
510 	default:
511 		rc = -EINVAL;
512 	}
513 
514 out:
515 	return rc;
516 }
517 
518 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
519 				   int __user *optlen)
520 {
521 	struct tls_context *ctx = tls_get_ctx(sk);
522 	unsigned int value;
523 	int len;
524 
525 	if (get_user(len, optlen))
526 		return -EFAULT;
527 
528 	if (len != sizeof(value))
529 		return -EINVAL;
530 
531 	value = ctx->zerocopy_sendfile;
532 	if (copy_to_user(optval, &value, sizeof(value)))
533 		return -EFAULT;
534 
535 	return 0;
536 }
537 
538 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
539 				    int __user *optlen)
540 {
541 	struct tls_context *ctx = tls_get_ctx(sk);
542 	int value, len;
543 
544 	if (ctx->prot_info.version != TLS_1_3_VERSION)
545 		return -EINVAL;
546 
547 	if (get_user(len, optlen))
548 		return -EFAULT;
549 	if (len < sizeof(value))
550 		return -EINVAL;
551 
552 	lock_sock(sk);
553 	value = -EINVAL;
554 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
555 		value = ctx->rx_no_pad;
556 	release_sock(sk);
557 	if (value < 0)
558 		return value;
559 
560 	if (put_user(sizeof(value), optlen))
561 		return -EFAULT;
562 	if (copy_to_user(optval, &value, sizeof(value)))
563 		return -EFAULT;
564 
565 	return 0;
566 }
567 
568 static int do_tls_getsockopt(struct sock *sk, int optname,
569 			     char __user *optval, int __user *optlen)
570 {
571 	int rc = 0;
572 
573 	switch (optname) {
574 	case TLS_TX:
575 	case TLS_RX:
576 		rc = do_tls_getsockopt_conf(sk, optval, optlen,
577 					    optname == TLS_TX);
578 		break;
579 	case TLS_TX_ZEROCOPY_RO:
580 		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
581 		break;
582 	case TLS_RX_EXPECT_NO_PAD:
583 		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
584 		break;
585 	default:
586 		rc = -ENOPROTOOPT;
587 		break;
588 	}
589 	return rc;
590 }
591 
592 static int tls_getsockopt(struct sock *sk, int level, int optname,
593 			  char __user *optval, int __user *optlen)
594 {
595 	struct tls_context *ctx = tls_get_ctx(sk);
596 
597 	if (level != SOL_TLS)
598 		return ctx->sk_proto->getsockopt(sk, level,
599 						 optname, optval, optlen);
600 
601 	return do_tls_getsockopt(sk, optname, optval, optlen);
602 }
603 
604 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
605 				  unsigned int optlen, int tx)
606 {
607 	struct tls_crypto_info *crypto_info;
608 	struct tls_crypto_info *alt_crypto_info;
609 	struct tls_context *ctx = tls_get_ctx(sk);
610 	size_t optsize;
611 	int rc = 0;
612 	int conf;
613 
614 	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
615 		return -EINVAL;
616 
617 	if (tx) {
618 		crypto_info = &ctx->crypto_send.info;
619 		alt_crypto_info = &ctx->crypto_recv.info;
620 	} else {
621 		crypto_info = &ctx->crypto_recv.info;
622 		alt_crypto_info = &ctx->crypto_send.info;
623 	}
624 
625 	/* Currently we don't support set crypto info more than one time */
626 	if (TLS_CRYPTO_INFO_READY(crypto_info))
627 		return -EBUSY;
628 
629 	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
630 	if (rc) {
631 		rc = -EFAULT;
632 		goto err_crypto_info;
633 	}
634 
635 	/* check version */
636 	if (crypto_info->version != TLS_1_2_VERSION &&
637 	    crypto_info->version != TLS_1_3_VERSION) {
638 		rc = -EINVAL;
639 		goto err_crypto_info;
640 	}
641 
642 	/* Ensure that TLS version and ciphers are same in both directions */
643 	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
644 		if (alt_crypto_info->version != crypto_info->version ||
645 		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
646 			rc = -EINVAL;
647 			goto err_crypto_info;
648 		}
649 	}
650 
651 	switch (crypto_info->cipher_type) {
652 	case TLS_CIPHER_AES_GCM_128:
653 		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
654 		break;
655 	case TLS_CIPHER_AES_GCM_256: {
656 		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
657 		break;
658 	}
659 	case TLS_CIPHER_AES_CCM_128:
660 		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
661 		break;
662 	case TLS_CIPHER_CHACHA20_POLY1305:
663 		optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
664 		break;
665 	case TLS_CIPHER_SM4_GCM:
666 		optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
667 		break;
668 	case TLS_CIPHER_SM4_CCM:
669 		optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
670 		break;
671 	default:
672 		rc = -EINVAL;
673 		goto err_crypto_info;
674 	}
675 
676 	if (optlen != optsize) {
677 		rc = -EINVAL;
678 		goto err_crypto_info;
679 	}
680 
681 	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
682 				      sizeof(*crypto_info),
683 				      optlen - sizeof(*crypto_info));
684 	if (rc) {
685 		rc = -EFAULT;
686 		goto err_crypto_info;
687 	}
688 
689 	if (tx) {
690 		rc = tls_set_device_offload(sk, ctx);
691 		conf = TLS_HW;
692 		if (!rc) {
693 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
694 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
695 		} else {
696 			rc = tls_set_sw_offload(sk, ctx, 1);
697 			if (rc)
698 				goto err_crypto_info;
699 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
700 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
701 			conf = TLS_SW;
702 		}
703 	} else {
704 		rc = tls_set_device_offload_rx(sk, ctx);
705 		conf = TLS_HW;
706 		if (!rc) {
707 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
708 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
709 		} else {
710 			rc = tls_set_sw_offload(sk, ctx, 0);
711 			if (rc)
712 				goto err_crypto_info;
713 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
714 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
715 			conf = TLS_SW;
716 		}
717 		tls_sw_strparser_arm(sk, ctx);
718 	}
719 
720 	if (tx)
721 		ctx->tx_conf = conf;
722 	else
723 		ctx->rx_conf = conf;
724 	update_sk_prot(sk, ctx);
725 	if (tx) {
726 		ctx->sk_write_space = sk->sk_write_space;
727 		sk->sk_write_space = tls_write_space;
728 	} else {
729 		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
730 
731 		tls_strp_check_rcv(&rx_ctx->strp);
732 	}
733 	return 0;
734 
735 err_crypto_info:
736 	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
737 	return rc;
738 }
739 
740 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
741 				   unsigned int optlen)
742 {
743 	struct tls_context *ctx = tls_get_ctx(sk);
744 	unsigned int value;
745 
746 	if (sockptr_is_null(optval) || optlen != sizeof(value))
747 		return -EINVAL;
748 
749 	if (copy_from_sockptr(&value, optval, sizeof(value)))
750 		return -EFAULT;
751 
752 	if (value > 1)
753 		return -EINVAL;
754 
755 	ctx->zerocopy_sendfile = value;
756 
757 	return 0;
758 }
759 
760 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
761 				    unsigned int optlen)
762 {
763 	struct tls_context *ctx = tls_get_ctx(sk);
764 	u32 val;
765 	int rc;
766 
767 	if (ctx->prot_info.version != TLS_1_3_VERSION ||
768 	    sockptr_is_null(optval) || optlen < sizeof(val))
769 		return -EINVAL;
770 
771 	rc = copy_from_sockptr(&val, optval, sizeof(val));
772 	if (rc)
773 		return -EFAULT;
774 	if (val > 1)
775 		return -EINVAL;
776 	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
777 	if (rc < 1)
778 		return rc == 0 ? -EINVAL : rc;
779 
780 	lock_sock(sk);
781 	rc = -EINVAL;
782 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
783 		ctx->rx_no_pad = val;
784 		tls_update_rx_zc_capable(ctx);
785 		rc = 0;
786 	}
787 	release_sock(sk);
788 
789 	return rc;
790 }
791 
792 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
793 			     unsigned int optlen)
794 {
795 	int rc = 0;
796 
797 	switch (optname) {
798 	case TLS_TX:
799 	case TLS_RX:
800 		lock_sock(sk);
801 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
802 					    optname == TLS_TX);
803 		release_sock(sk);
804 		break;
805 	case TLS_TX_ZEROCOPY_RO:
806 		lock_sock(sk);
807 		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
808 		release_sock(sk);
809 		break;
810 	case TLS_RX_EXPECT_NO_PAD:
811 		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
812 		break;
813 	default:
814 		rc = -ENOPROTOOPT;
815 		break;
816 	}
817 	return rc;
818 }
819 
820 static int tls_setsockopt(struct sock *sk, int level, int optname,
821 			  sockptr_t optval, unsigned int optlen)
822 {
823 	struct tls_context *ctx = tls_get_ctx(sk);
824 
825 	if (level != SOL_TLS)
826 		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
827 						 optlen);
828 
829 	return do_tls_setsockopt(sk, optname, optval, optlen);
830 }
831 
832 struct tls_context *tls_ctx_create(struct sock *sk)
833 {
834 	struct inet_connection_sock *icsk = inet_csk(sk);
835 	struct tls_context *ctx;
836 
837 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
838 	if (!ctx)
839 		return NULL;
840 
841 	mutex_init(&ctx->tx_lock);
842 	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
843 	ctx->sk_proto = READ_ONCE(sk->sk_prot);
844 	ctx->sk = sk;
845 	return ctx;
846 }
847 
848 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
849 			    const struct proto_ops *base)
850 {
851 	ops[TLS_BASE][TLS_BASE] = *base;
852 
853 	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
854 	ops[TLS_SW  ][TLS_BASE].sendpage_locked	= tls_sw_sendpage_locked;
855 
856 	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
857 	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
858 
859 	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
860 	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
861 
862 #ifdef CONFIG_TLS_DEVICE
863 	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
864 	ops[TLS_HW  ][TLS_BASE].sendpage_locked	= NULL;
865 
866 	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
867 	ops[TLS_HW  ][TLS_SW  ].sendpage_locked	= NULL;
868 
869 	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
870 
871 	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
872 
873 	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
874 	ops[TLS_HW  ][TLS_HW  ].sendpage_locked	= NULL;
875 #endif
876 #ifdef CONFIG_TLS_TOE
877 	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
878 #endif
879 }
880 
881 static void tls_build_proto(struct sock *sk)
882 {
883 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
884 	struct proto *prot = READ_ONCE(sk->sk_prot);
885 
886 	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
887 	if (ip_ver == TLSV6 &&
888 	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
889 		mutex_lock(&tcpv6_prot_mutex);
890 		if (likely(prot != saved_tcpv6_prot)) {
891 			build_protos(tls_prots[TLSV6], prot);
892 			build_proto_ops(tls_proto_ops[TLSV6],
893 					sk->sk_socket->ops);
894 			smp_store_release(&saved_tcpv6_prot, prot);
895 		}
896 		mutex_unlock(&tcpv6_prot_mutex);
897 	}
898 
899 	if (ip_ver == TLSV4 &&
900 	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
901 		mutex_lock(&tcpv4_prot_mutex);
902 		if (likely(prot != saved_tcpv4_prot)) {
903 			build_protos(tls_prots[TLSV4], prot);
904 			build_proto_ops(tls_proto_ops[TLSV4],
905 					sk->sk_socket->ops);
906 			smp_store_release(&saved_tcpv4_prot, prot);
907 		}
908 		mutex_unlock(&tcpv4_prot_mutex);
909 	}
910 }
911 
912 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
913 			 const struct proto *base)
914 {
915 	prot[TLS_BASE][TLS_BASE] = *base;
916 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
917 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
918 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
919 
920 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
921 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
922 	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
923 
924 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
925 	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
926 	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
927 	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
928 
929 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
930 	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
931 	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
932 	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
933 
934 #ifdef CONFIG_TLS_DEVICE
935 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
936 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
937 	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
938 
939 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
940 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
941 	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
942 
943 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
944 
945 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
946 
947 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
948 #endif
949 #ifdef CONFIG_TLS_TOE
950 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
951 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
952 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
953 #endif
954 }
955 
956 static int tls_init(struct sock *sk)
957 {
958 	struct tls_context *ctx;
959 	int rc = 0;
960 
961 	tls_build_proto(sk);
962 
963 #ifdef CONFIG_TLS_TOE
964 	if (tls_toe_bypass(sk))
965 		return 0;
966 #endif
967 
968 	/* The TLS ulp is currently supported only for TCP sockets
969 	 * in ESTABLISHED state.
970 	 * Supporting sockets in LISTEN state will require us
971 	 * to modify the accept implementation to clone rather then
972 	 * share the ulp context.
973 	 */
974 	if (sk->sk_state != TCP_ESTABLISHED)
975 		return -ENOTCONN;
976 
977 	/* allocate tls context */
978 	write_lock_bh(&sk->sk_callback_lock);
979 	ctx = tls_ctx_create(sk);
980 	if (!ctx) {
981 		rc = -ENOMEM;
982 		goto out;
983 	}
984 
985 	ctx->tx_conf = TLS_BASE;
986 	ctx->rx_conf = TLS_BASE;
987 	update_sk_prot(sk, ctx);
988 out:
989 	write_unlock_bh(&sk->sk_callback_lock);
990 	return rc;
991 }
992 
993 static void tls_update(struct sock *sk, struct proto *p,
994 		       void (*write_space)(struct sock *sk))
995 {
996 	struct tls_context *ctx;
997 
998 	WARN_ON_ONCE(sk->sk_prot == p);
999 
1000 	ctx = tls_get_ctx(sk);
1001 	if (likely(ctx)) {
1002 		ctx->sk_write_space = write_space;
1003 		ctx->sk_proto = p;
1004 	} else {
1005 		/* Pairs with lockless read in sk_clone_lock(). */
1006 		WRITE_ONCE(sk->sk_prot, p);
1007 		sk->sk_write_space = write_space;
1008 	}
1009 }
1010 
1011 static u16 tls_user_config(struct tls_context *ctx, bool tx)
1012 {
1013 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1014 
1015 	switch (config) {
1016 	case TLS_BASE:
1017 		return TLS_CONF_BASE;
1018 	case TLS_SW:
1019 		return TLS_CONF_SW;
1020 	case TLS_HW:
1021 		return TLS_CONF_HW;
1022 	case TLS_HW_RECORD:
1023 		return TLS_CONF_HW_RECORD;
1024 	}
1025 	return 0;
1026 }
1027 
1028 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1029 {
1030 	u16 version, cipher_type;
1031 	struct tls_context *ctx;
1032 	struct nlattr *start;
1033 	int err;
1034 
1035 	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1036 	if (!start)
1037 		return -EMSGSIZE;
1038 
1039 	rcu_read_lock();
1040 	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1041 	if (!ctx) {
1042 		err = 0;
1043 		goto nla_failure;
1044 	}
1045 	version = ctx->prot_info.version;
1046 	if (version) {
1047 		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1048 		if (err)
1049 			goto nla_failure;
1050 	}
1051 	cipher_type = ctx->prot_info.cipher_type;
1052 	if (cipher_type) {
1053 		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1054 		if (err)
1055 			goto nla_failure;
1056 	}
1057 	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1058 	if (err)
1059 		goto nla_failure;
1060 
1061 	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1062 	if (err)
1063 		goto nla_failure;
1064 
1065 	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1066 		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1067 		if (err)
1068 			goto nla_failure;
1069 	}
1070 	if (ctx->rx_no_pad) {
1071 		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1072 		if (err)
1073 			goto nla_failure;
1074 	}
1075 
1076 	rcu_read_unlock();
1077 	nla_nest_end(skb, start);
1078 	return 0;
1079 
1080 nla_failure:
1081 	rcu_read_unlock();
1082 	nla_nest_cancel(skb, start);
1083 	return err;
1084 }
1085 
1086 static size_t tls_get_info_size(const struct sock *sk)
1087 {
1088 	size_t size = 0;
1089 
1090 	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1091 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1092 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1093 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1094 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1095 		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1096 		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1097 		0;
1098 
1099 	return size;
1100 }
1101 
1102 static int __net_init tls_init_net(struct net *net)
1103 {
1104 	int err;
1105 
1106 	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1107 	if (!net->mib.tls_statistics)
1108 		return -ENOMEM;
1109 
1110 	err = tls_proc_init(net);
1111 	if (err)
1112 		goto err_free_stats;
1113 
1114 	return 0;
1115 err_free_stats:
1116 	free_percpu(net->mib.tls_statistics);
1117 	return err;
1118 }
1119 
1120 static void __net_exit tls_exit_net(struct net *net)
1121 {
1122 	tls_proc_fini(net);
1123 	free_percpu(net->mib.tls_statistics);
1124 }
1125 
1126 static struct pernet_operations tls_proc_ops = {
1127 	.init = tls_init_net,
1128 	.exit = tls_exit_net,
1129 };
1130 
1131 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1132 	.name			= "tls",
1133 	.owner			= THIS_MODULE,
1134 	.init			= tls_init,
1135 	.update			= tls_update,
1136 	.get_info		= tls_get_info,
1137 	.get_info_size		= tls_get_info_size,
1138 };
1139 
1140 static int __init tls_register(void)
1141 {
1142 	int err;
1143 
1144 	err = register_pernet_subsys(&tls_proc_ops);
1145 	if (err)
1146 		return err;
1147 
1148 	err = tls_strp_dev_init();
1149 	if (err)
1150 		goto err_pernet;
1151 
1152 	err = tls_device_init();
1153 	if (err)
1154 		goto err_strp;
1155 
1156 	tcp_register_ulp(&tcp_tls_ulp_ops);
1157 
1158 	return 0;
1159 err_strp:
1160 	tls_strp_dev_exit();
1161 err_pernet:
1162 	unregister_pernet_subsys(&tls_proc_ops);
1163 	return err;
1164 }
1165 
1166 static void __exit tls_unregister(void)
1167 {
1168 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1169 	tls_strp_dev_exit();
1170 	tls_device_cleanup();
1171 	unregister_pernet_subsys(&tls_proc_ops);
1172 }
1173 
1174 module_init(tls_register);
1175 module_exit(tls_unregister);
1176