xref: /linux/net/tls/tls_main.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43 
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47 
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
52 
53 enum {
54 	TLSV4,
55 	TLSV6,
56 	TLS_NUM_PROTS,
57 };
58 
59 static const struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static const struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 			 const struct proto *base);
67 
68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71 
72 	WRITE_ONCE(sk->sk_prot,
73 		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74 	WRITE_ONCE(sk->sk_socket->ops,
75 		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
76 }
77 
78 int wait_on_pending_writer(struct sock *sk, long *timeo)
79 {
80 	int rc = 0;
81 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
82 
83 	add_wait_queue(sk_sleep(sk), &wait);
84 	while (1) {
85 		if (!*timeo) {
86 			rc = -EAGAIN;
87 			break;
88 		}
89 
90 		if (signal_pending(current)) {
91 			rc = sock_intr_errno(*timeo);
92 			break;
93 		}
94 
95 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96 			break;
97 	}
98 	remove_wait_queue(sk_sleep(sk), &wait);
99 	return rc;
100 }
101 
102 int tls_push_sg(struct sock *sk,
103 		struct tls_context *ctx,
104 		struct scatterlist *sg,
105 		u16 first_offset,
106 		int flags)
107 {
108 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109 	int ret = 0;
110 	struct page *p;
111 	size_t size;
112 	int offset = first_offset;
113 
114 	size = sg->length - offset;
115 	offset += sg->offset;
116 
117 	ctx->in_tcp_sendpages = true;
118 	while (1) {
119 		if (sg_is_last(sg))
120 			sendpage_flags = flags;
121 
122 		/* is sending application-limited? */
123 		tcp_rate_check_app_limited(sk);
124 		p = sg_page(sg);
125 retry:
126 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
127 
128 		if (ret != size) {
129 			if (ret > 0) {
130 				offset += ret;
131 				size -= ret;
132 				goto retry;
133 			}
134 
135 			offset -= sg->offset;
136 			ctx->partially_sent_offset = offset;
137 			ctx->partially_sent_record = (void *)sg;
138 			ctx->in_tcp_sendpages = false;
139 			return ret;
140 		}
141 
142 		put_page(p);
143 		sk_mem_uncharge(sk, sg->length);
144 		sg = sg_next(sg);
145 		if (!sg)
146 			break;
147 
148 		offset = sg->offset;
149 		size = sg->length;
150 	}
151 
152 	ctx->in_tcp_sendpages = false;
153 
154 	return 0;
155 }
156 
157 static int tls_handle_open_record(struct sock *sk, int flags)
158 {
159 	struct tls_context *ctx = tls_get_ctx(sk);
160 
161 	if (tls_is_pending_open_record(ctx))
162 		return ctx->push_pending_record(sk, flags);
163 
164 	return 0;
165 }
166 
167 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
168 		      unsigned char *record_type)
169 {
170 	struct cmsghdr *cmsg;
171 	int rc = -EINVAL;
172 
173 	for_each_cmsghdr(cmsg, msg) {
174 		if (!CMSG_OK(msg, cmsg))
175 			return -EINVAL;
176 		if (cmsg->cmsg_level != SOL_TLS)
177 			continue;
178 
179 		switch (cmsg->cmsg_type) {
180 		case TLS_SET_RECORD_TYPE:
181 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
182 				return -EINVAL;
183 
184 			if (msg->msg_flags & MSG_MORE)
185 				return -EINVAL;
186 
187 			rc = tls_handle_open_record(sk, msg->msg_flags);
188 			if (rc)
189 				return rc;
190 
191 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
192 			rc = 0;
193 			break;
194 		default:
195 			return -EINVAL;
196 		}
197 	}
198 
199 	return rc;
200 }
201 
202 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
203 			    int flags)
204 {
205 	struct scatterlist *sg;
206 	u16 offset;
207 
208 	sg = ctx->partially_sent_record;
209 	offset = ctx->partially_sent_offset;
210 
211 	ctx->partially_sent_record = NULL;
212 	return tls_push_sg(sk, ctx, sg, offset, flags);
213 }
214 
215 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
216 {
217 	struct scatterlist *sg;
218 
219 	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
220 		put_page(sg_page(sg));
221 		sk_mem_uncharge(sk, sg->length);
222 	}
223 	ctx->partially_sent_record = NULL;
224 }
225 
226 static void tls_write_space(struct sock *sk)
227 {
228 	struct tls_context *ctx = tls_get_ctx(sk);
229 
230 	/* If in_tcp_sendpages call lower protocol write space handler
231 	 * to ensure we wake up any waiting operations there. For example
232 	 * if do_tcp_sendpages where to call sk_wait_event.
233 	 */
234 	if (ctx->in_tcp_sendpages) {
235 		ctx->sk_write_space(sk);
236 		return;
237 	}
238 
239 #ifdef CONFIG_TLS_DEVICE
240 	if (ctx->tx_conf == TLS_HW)
241 		tls_device_write_space(sk, ctx);
242 	else
243 #endif
244 		tls_sw_write_space(sk, ctx);
245 
246 	ctx->sk_write_space(sk);
247 }
248 
249 /**
250  * tls_ctx_free() - free TLS ULP context
251  * @sk:  socket to with @ctx is attached
252  * @ctx: TLS context structure
253  *
254  * Free TLS context. If @sk is %NULL caller guarantees that the socket
255  * to which @ctx was attached has no outstanding references.
256  */
257 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
258 {
259 	if (!ctx)
260 		return;
261 
262 	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
263 	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
264 	mutex_destroy(&ctx->tx_lock);
265 
266 	if (sk)
267 		kfree_rcu(ctx, rcu);
268 	else
269 		kfree(ctx);
270 }
271 
272 static void tls_sk_proto_cleanup(struct sock *sk,
273 				 struct tls_context *ctx, long timeo)
274 {
275 	if (unlikely(sk->sk_write_pending) &&
276 	    !wait_on_pending_writer(sk, &timeo))
277 		tls_handle_open_record(sk, 0);
278 
279 	/* We need these for tls_sw_fallback handling of other packets */
280 	if (ctx->tx_conf == TLS_SW) {
281 		kfree(ctx->tx.rec_seq);
282 		kfree(ctx->tx.iv);
283 		tls_sw_release_resources_tx(sk);
284 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
285 	} else if (ctx->tx_conf == TLS_HW) {
286 		tls_device_free_resources_tx(sk);
287 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
288 	}
289 
290 	if (ctx->rx_conf == TLS_SW) {
291 		tls_sw_release_resources_rx(sk);
292 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
293 	} else if (ctx->rx_conf == TLS_HW) {
294 		tls_device_offload_cleanup_rx(sk);
295 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
296 	}
297 }
298 
299 static void tls_sk_proto_close(struct sock *sk, long timeout)
300 {
301 	struct inet_connection_sock *icsk = inet_csk(sk);
302 	struct tls_context *ctx = tls_get_ctx(sk);
303 	long timeo = sock_sndtimeo(sk, 0);
304 	bool free_ctx;
305 
306 	if (ctx->tx_conf == TLS_SW)
307 		tls_sw_cancel_work_tx(ctx);
308 
309 	lock_sock(sk);
310 	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
311 
312 	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
313 		tls_sk_proto_cleanup(sk, ctx, timeo);
314 
315 	write_lock_bh(&sk->sk_callback_lock);
316 	if (free_ctx)
317 		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
318 	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
319 	if (sk->sk_write_space == tls_write_space)
320 		sk->sk_write_space = ctx->sk_write_space;
321 	write_unlock_bh(&sk->sk_callback_lock);
322 	release_sock(sk);
323 	if (ctx->tx_conf == TLS_SW)
324 		tls_sw_free_ctx_tx(ctx);
325 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
326 		tls_sw_strparser_done(ctx);
327 	if (ctx->rx_conf == TLS_SW)
328 		tls_sw_free_ctx_rx(ctx);
329 	ctx->sk_proto->close(sk, timeout);
330 
331 	if (free_ctx)
332 		tls_ctx_free(sk, ctx);
333 }
334 
335 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
336 				  int __user *optlen, int tx)
337 {
338 	int rc = 0;
339 	struct tls_context *ctx = tls_get_ctx(sk);
340 	struct tls_crypto_info *crypto_info;
341 	struct cipher_context *cctx;
342 	int len;
343 
344 	if (get_user(len, optlen))
345 		return -EFAULT;
346 
347 	if (!optval || (len < sizeof(*crypto_info))) {
348 		rc = -EINVAL;
349 		goto out;
350 	}
351 
352 	if (!ctx) {
353 		rc = -EBUSY;
354 		goto out;
355 	}
356 
357 	/* get user crypto info */
358 	if (tx) {
359 		crypto_info = &ctx->crypto_send.info;
360 		cctx = &ctx->tx;
361 	} else {
362 		crypto_info = &ctx->crypto_recv.info;
363 		cctx = &ctx->rx;
364 	}
365 
366 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
367 		rc = -EBUSY;
368 		goto out;
369 	}
370 
371 	if (len == sizeof(*crypto_info)) {
372 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
373 			rc = -EFAULT;
374 		goto out;
375 	}
376 
377 	switch (crypto_info->cipher_type) {
378 	case TLS_CIPHER_AES_GCM_128: {
379 		struct tls12_crypto_info_aes_gcm_128 *
380 		  crypto_info_aes_gcm_128 =
381 		  container_of(crypto_info,
382 			       struct tls12_crypto_info_aes_gcm_128,
383 			       info);
384 
385 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
386 			rc = -EINVAL;
387 			goto out;
388 		}
389 		lock_sock(sk);
390 		memcpy(crypto_info_aes_gcm_128->iv,
391 		       cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
392 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
393 		memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
394 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
395 		release_sock(sk);
396 		if (copy_to_user(optval,
397 				 crypto_info_aes_gcm_128,
398 				 sizeof(*crypto_info_aes_gcm_128)))
399 			rc = -EFAULT;
400 		break;
401 	}
402 	case TLS_CIPHER_AES_GCM_256: {
403 		struct tls12_crypto_info_aes_gcm_256 *
404 		  crypto_info_aes_gcm_256 =
405 		  container_of(crypto_info,
406 			       struct tls12_crypto_info_aes_gcm_256,
407 			       info);
408 
409 		if (len != sizeof(*crypto_info_aes_gcm_256)) {
410 			rc = -EINVAL;
411 			goto out;
412 		}
413 		lock_sock(sk);
414 		memcpy(crypto_info_aes_gcm_256->iv,
415 		       cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
416 		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
417 		memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
418 		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
419 		release_sock(sk);
420 		if (copy_to_user(optval,
421 				 crypto_info_aes_gcm_256,
422 				 sizeof(*crypto_info_aes_gcm_256)))
423 			rc = -EFAULT;
424 		break;
425 	}
426 	case TLS_CIPHER_AES_CCM_128: {
427 		struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
428 			container_of(crypto_info,
429 				struct tls12_crypto_info_aes_ccm_128, info);
430 
431 		if (len != sizeof(*aes_ccm_128)) {
432 			rc = -EINVAL;
433 			goto out;
434 		}
435 		lock_sock(sk);
436 		memcpy(aes_ccm_128->iv,
437 		       cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
438 		       TLS_CIPHER_AES_CCM_128_IV_SIZE);
439 		memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
440 		       TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
441 		release_sock(sk);
442 		if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
443 			rc = -EFAULT;
444 		break;
445 	}
446 	case TLS_CIPHER_CHACHA20_POLY1305: {
447 		struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
448 			container_of(crypto_info,
449 				struct tls12_crypto_info_chacha20_poly1305,
450 				info);
451 
452 		if (len != sizeof(*chacha20_poly1305)) {
453 			rc = -EINVAL;
454 			goto out;
455 		}
456 		lock_sock(sk);
457 		memcpy(chacha20_poly1305->iv,
458 		       cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
459 		       TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
460 		memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
461 		       TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
462 		release_sock(sk);
463 		if (copy_to_user(optval, chacha20_poly1305,
464 				sizeof(*chacha20_poly1305)))
465 			rc = -EFAULT;
466 		break;
467 	}
468 	case TLS_CIPHER_SM4_GCM: {
469 		struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
470 			container_of(crypto_info,
471 				struct tls12_crypto_info_sm4_gcm, info);
472 
473 		if (len != sizeof(*sm4_gcm_info)) {
474 			rc = -EINVAL;
475 			goto out;
476 		}
477 		lock_sock(sk);
478 		memcpy(sm4_gcm_info->iv,
479 		       cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
480 		       TLS_CIPHER_SM4_GCM_IV_SIZE);
481 		memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
482 		       TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
483 		release_sock(sk);
484 		if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
485 			rc = -EFAULT;
486 		break;
487 	}
488 	case TLS_CIPHER_SM4_CCM: {
489 		struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
490 			container_of(crypto_info,
491 				struct tls12_crypto_info_sm4_ccm, info);
492 
493 		if (len != sizeof(*sm4_ccm_info)) {
494 			rc = -EINVAL;
495 			goto out;
496 		}
497 		lock_sock(sk);
498 		memcpy(sm4_ccm_info->iv,
499 		       cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
500 		       TLS_CIPHER_SM4_CCM_IV_SIZE);
501 		memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
502 		       TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
503 		release_sock(sk);
504 		if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
505 			rc = -EFAULT;
506 		break;
507 	}
508 	default:
509 		rc = -EINVAL;
510 	}
511 
512 out:
513 	return rc;
514 }
515 
516 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
517 				   int __user *optlen)
518 {
519 	struct tls_context *ctx = tls_get_ctx(sk);
520 	unsigned int value;
521 	int len;
522 
523 	if (get_user(len, optlen))
524 		return -EFAULT;
525 
526 	if (len != sizeof(value))
527 		return -EINVAL;
528 
529 	value = ctx->zerocopy_sendfile;
530 	if (copy_to_user(optval, &value, sizeof(value)))
531 		return -EFAULT;
532 
533 	return 0;
534 }
535 
536 static int do_tls_getsockopt(struct sock *sk, int optname,
537 			     char __user *optval, int __user *optlen)
538 {
539 	int rc = 0;
540 
541 	switch (optname) {
542 	case TLS_TX:
543 	case TLS_RX:
544 		rc = do_tls_getsockopt_conf(sk, optval, optlen,
545 					    optname == TLS_TX);
546 		break;
547 	case TLS_TX_ZEROCOPY_RO:
548 		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
549 		break;
550 	default:
551 		rc = -ENOPROTOOPT;
552 		break;
553 	}
554 	return rc;
555 }
556 
557 static int tls_getsockopt(struct sock *sk, int level, int optname,
558 			  char __user *optval, int __user *optlen)
559 {
560 	struct tls_context *ctx = tls_get_ctx(sk);
561 
562 	if (level != SOL_TLS)
563 		return ctx->sk_proto->getsockopt(sk, level,
564 						 optname, optval, optlen);
565 
566 	return do_tls_getsockopt(sk, optname, optval, optlen);
567 }
568 
569 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
570 				  unsigned int optlen, int tx)
571 {
572 	struct tls_crypto_info *crypto_info;
573 	struct tls_crypto_info *alt_crypto_info;
574 	struct tls_context *ctx = tls_get_ctx(sk);
575 	size_t optsize;
576 	int rc = 0;
577 	int conf;
578 
579 	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
580 		return -EINVAL;
581 
582 	if (tx) {
583 		crypto_info = &ctx->crypto_send.info;
584 		alt_crypto_info = &ctx->crypto_recv.info;
585 	} else {
586 		crypto_info = &ctx->crypto_recv.info;
587 		alt_crypto_info = &ctx->crypto_send.info;
588 	}
589 
590 	/* Currently we don't support set crypto info more than one time */
591 	if (TLS_CRYPTO_INFO_READY(crypto_info))
592 		return -EBUSY;
593 
594 	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
595 	if (rc) {
596 		rc = -EFAULT;
597 		goto err_crypto_info;
598 	}
599 
600 	/* check version */
601 	if (crypto_info->version != TLS_1_2_VERSION &&
602 	    crypto_info->version != TLS_1_3_VERSION) {
603 		rc = -EINVAL;
604 		goto err_crypto_info;
605 	}
606 
607 	/* Ensure that TLS version and ciphers are same in both directions */
608 	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
609 		if (alt_crypto_info->version != crypto_info->version ||
610 		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
611 			rc = -EINVAL;
612 			goto err_crypto_info;
613 		}
614 	}
615 
616 	switch (crypto_info->cipher_type) {
617 	case TLS_CIPHER_AES_GCM_128:
618 		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
619 		break;
620 	case TLS_CIPHER_AES_GCM_256: {
621 		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
622 		break;
623 	}
624 	case TLS_CIPHER_AES_CCM_128:
625 		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
626 		break;
627 	case TLS_CIPHER_CHACHA20_POLY1305:
628 		optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
629 		break;
630 	case TLS_CIPHER_SM4_GCM:
631 		optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
632 		break;
633 	case TLS_CIPHER_SM4_CCM:
634 		optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
635 		break;
636 	default:
637 		rc = -EINVAL;
638 		goto err_crypto_info;
639 	}
640 
641 	if (optlen != optsize) {
642 		rc = -EINVAL;
643 		goto err_crypto_info;
644 	}
645 
646 	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
647 				      sizeof(*crypto_info),
648 				      optlen - sizeof(*crypto_info));
649 	if (rc) {
650 		rc = -EFAULT;
651 		goto err_crypto_info;
652 	}
653 
654 	if (tx) {
655 		rc = tls_set_device_offload(sk, ctx);
656 		conf = TLS_HW;
657 		if (!rc) {
658 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
659 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
660 		} else {
661 			rc = tls_set_sw_offload(sk, ctx, 1);
662 			if (rc)
663 				goto err_crypto_info;
664 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
665 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
666 			conf = TLS_SW;
667 		}
668 	} else {
669 		rc = tls_set_device_offload_rx(sk, ctx);
670 		conf = TLS_HW;
671 		if (!rc) {
672 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
673 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
674 		} else {
675 			rc = tls_set_sw_offload(sk, ctx, 0);
676 			if (rc)
677 				goto err_crypto_info;
678 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
679 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
680 			conf = TLS_SW;
681 		}
682 		tls_sw_strparser_arm(sk, ctx);
683 	}
684 
685 	if (tx)
686 		ctx->tx_conf = conf;
687 	else
688 		ctx->rx_conf = conf;
689 	update_sk_prot(sk, ctx);
690 	if (tx) {
691 		ctx->sk_write_space = sk->sk_write_space;
692 		sk->sk_write_space = tls_write_space;
693 	}
694 	return 0;
695 
696 err_crypto_info:
697 	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
698 	return rc;
699 }
700 
701 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
702 				   unsigned int optlen)
703 {
704 	struct tls_context *ctx = tls_get_ctx(sk);
705 	unsigned int value;
706 
707 	if (sockptr_is_null(optval) || optlen != sizeof(value))
708 		return -EINVAL;
709 
710 	if (copy_from_sockptr(&value, optval, sizeof(value)))
711 		return -EFAULT;
712 
713 	if (value > 1)
714 		return -EINVAL;
715 
716 	ctx->zerocopy_sendfile = value;
717 
718 	return 0;
719 }
720 
721 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
722 			     unsigned int optlen)
723 {
724 	int rc = 0;
725 
726 	switch (optname) {
727 	case TLS_TX:
728 	case TLS_RX:
729 		lock_sock(sk);
730 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
731 					    optname == TLS_TX);
732 		release_sock(sk);
733 		break;
734 	case TLS_TX_ZEROCOPY_RO:
735 		lock_sock(sk);
736 		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
737 		release_sock(sk);
738 		break;
739 	default:
740 		rc = -ENOPROTOOPT;
741 		break;
742 	}
743 	return rc;
744 }
745 
746 static int tls_setsockopt(struct sock *sk, int level, int optname,
747 			  sockptr_t optval, unsigned int optlen)
748 {
749 	struct tls_context *ctx = tls_get_ctx(sk);
750 
751 	if (level != SOL_TLS)
752 		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
753 						 optlen);
754 
755 	return do_tls_setsockopt(sk, optname, optval, optlen);
756 }
757 
758 struct tls_context *tls_ctx_create(struct sock *sk)
759 {
760 	struct inet_connection_sock *icsk = inet_csk(sk);
761 	struct tls_context *ctx;
762 
763 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
764 	if (!ctx)
765 		return NULL;
766 
767 	mutex_init(&ctx->tx_lock);
768 	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
769 	ctx->sk_proto = READ_ONCE(sk->sk_prot);
770 	ctx->sk = sk;
771 	return ctx;
772 }
773 
774 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
775 			    const struct proto_ops *base)
776 {
777 	ops[TLS_BASE][TLS_BASE] = *base;
778 
779 	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
780 	ops[TLS_SW  ][TLS_BASE].sendpage_locked	= tls_sw_sendpage_locked;
781 
782 	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
783 	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
784 
785 	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
786 	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
787 
788 #ifdef CONFIG_TLS_DEVICE
789 	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
790 	ops[TLS_HW  ][TLS_BASE].sendpage_locked	= NULL;
791 
792 	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
793 	ops[TLS_HW  ][TLS_SW  ].sendpage_locked	= NULL;
794 
795 	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
796 
797 	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
798 
799 	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
800 	ops[TLS_HW  ][TLS_HW  ].sendpage_locked	= NULL;
801 #endif
802 #ifdef CONFIG_TLS_TOE
803 	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
804 #endif
805 }
806 
807 static void tls_build_proto(struct sock *sk)
808 {
809 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
810 	struct proto *prot = READ_ONCE(sk->sk_prot);
811 
812 	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
813 	if (ip_ver == TLSV6 &&
814 	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
815 		mutex_lock(&tcpv6_prot_mutex);
816 		if (likely(prot != saved_tcpv6_prot)) {
817 			build_protos(tls_prots[TLSV6], prot);
818 			build_proto_ops(tls_proto_ops[TLSV6],
819 					sk->sk_socket->ops);
820 			smp_store_release(&saved_tcpv6_prot, prot);
821 		}
822 		mutex_unlock(&tcpv6_prot_mutex);
823 	}
824 
825 	if (ip_ver == TLSV4 &&
826 	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
827 		mutex_lock(&tcpv4_prot_mutex);
828 		if (likely(prot != saved_tcpv4_prot)) {
829 			build_protos(tls_prots[TLSV4], prot);
830 			build_proto_ops(tls_proto_ops[TLSV4],
831 					sk->sk_socket->ops);
832 			smp_store_release(&saved_tcpv4_prot, prot);
833 		}
834 		mutex_unlock(&tcpv4_prot_mutex);
835 	}
836 }
837 
838 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
839 			 const struct proto *base)
840 {
841 	prot[TLS_BASE][TLS_BASE] = *base;
842 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
843 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
844 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
845 
846 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
847 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
848 	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
849 
850 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
851 	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
852 	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
853 	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
854 
855 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
856 	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
857 	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
858 	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
859 
860 #ifdef CONFIG_TLS_DEVICE
861 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
862 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
863 	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
864 
865 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
866 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
867 	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
868 
869 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
870 
871 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
872 
873 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
874 #endif
875 #ifdef CONFIG_TLS_TOE
876 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
877 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
878 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
879 #endif
880 }
881 
882 static int tls_init(struct sock *sk)
883 {
884 	struct tls_context *ctx;
885 	int rc = 0;
886 
887 	tls_build_proto(sk);
888 
889 #ifdef CONFIG_TLS_TOE
890 	if (tls_toe_bypass(sk))
891 		return 0;
892 #endif
893 
894 	/* The TLS ulp is currently supported only for TCP sockets
895 	 * in ESTABLISHED state.
896 	 * Supporting sockets in LISTEN state will require us
897 	 * to modify the accept implementation to clone rather then
898 	 * share the ulp context.
899 	 */
900 	if (sk->sk_state != TCP_ESTABLISHED)
901 		return -ENOTCONN;
902 
903 	/* allocate tls context */
904 	write_lock_bh(&sk->sk_callback_lock);
905 	ctx = tls_ctx_create(sk);
906 	if (!ctx) {
907 		rc = -ENOMEM;
908 		goto out;
909 	}
910 
911 	ctx->tx_conf = TLS_BASE;
912 	ctx->rx_conf = TLS_BASE;
913 	update_sk_prot(sk, ctx);
914 out:
915 	write_unlock_bh(&sk->sk_callback_lock);
916 	return rc;
917 }
918 
919 static void tls_update(struct sock *sk, struct proto *p,
920 		       void (*write_space)(struct sock *sk))
921 {
922 	struct tls_context *ctx;
923 
924 	WARN_ON_ONCE(sk->sk_prot == p);
925 
926 	ctx = tls_get_ctx(sk);
927 	if (likely(ctx)) {
928 		ctx->sk_write_space = write_space;
929 		ctx->sk_proto = p;
930 	} else {
931 		/* Pairs with lockless read in sk_clone_lock(). */
932 		WRITE_ONCE(sk->sk_prot, p);
933 		sk->sk_write_space = write_space;
934 	}
935 }
936 
937 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
938 {
939 	u16 version, cipher_type;
940 	struct tls_context *ctx;
941 	struct nlattr *start;
942 	int err;
943 
944 	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
945 	if (!start)
946 		return -EMSGSIZE;
947 
948 	rcu_read_lock();
949 	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
950 	if (!ctx) {
951 		err = 0;
952 		goto nla_failure;
953 	}
954 	version = ctx->prot_info.version;
955 	if (version) {
956 		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
957 		if (err)
958 			goto nla_failure;
959 	}
960 	cipher_type = ctx->prot_info.cipher_type;
961 	if (cipher_type) {
962 		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
963 		if (err)
964 			goto nla_failure;
965 	}
966 	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
967 	if (err)
968 		goto nla_failure;
969 
970 	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
971 	if (err)
972 		goto nla_failure;
973 
974 	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
975 		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
976 		if (err)
977 			goto nla_failure;
978 	}
979 
980 	rcu_read_unlock();
981 	nla_nest_end(skb, start);
982 	return 0;
983 
984 nla_failure:
985 	rcu_read_unlock();
986 	nla_nest_cancel(skb, start);
987 	return err;
988 }
989 
990 static size_t tls_get_info_size(const struct sock *sk)
991 {
992 	size_t size = 0;
993 
994 	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
995 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
996 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
997 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
998 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
999 		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1000 		0;
1001 
1002 	return size;
1003 }
1004 
1005 static int __net_init tls_init_net(struct net *net)
1006 {
1007 	int err;
1008 
1009 	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1010 	if (!net->mib.tls_statistics)
1011 		return -ENOMEM;
1012 
1013 	err = tls_proc_init(net);
1014 	if (err)
1015 		goto err_free_stats;
1016 
1017 	return 0;
1018 err_free_stats:
1019 	free_percpu(net->mib.tls_statistics);
1020 	return err;
1021 }
1022 
1023 static void __net_exit tls_exit_net(struct net *net)
1024 {
1025 	tls_proc_fini(net);
1026 	free_percpu(net->mib.tls_statistics);
1027 }
1028 
1029 static struct pernet_operations tls_proc_ops = {
1030 	.init = tls_init_net,
1031 	.exit = tls_exit_net,
1032 };
1033 
1034 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1035 	.name			= "tls",
1036 	.owner			= THIS_MODULE,
1037 	.init			= tls_init,
1038 	.update			= tls_update,
1039 	.get_info		= tls_get_info,
1040 	.get_info_size		= tls_get_info_size,
1041 };
1042 
1043 static int __init tls_register(void)
1044 {
1045 	int err;
1046 
1047 	err = register_pernet_subsys(&tls_proc_ops);
1048 	if (err)
1049 		return err;
1050 
1051 	tls_device_init();
1052 	tcp_register_ulp(&tcp_tls_ulp_ops);
1053 
1054 	return 0;
1055 }
1056 
1057 static void __exit tls_unregister(void)
1058 {
1059 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1060 	tls_device_cleanup();
1061 	unregister_pernet_subsys(&tls_proc_ops);
1062 }
1063 
1064 module_init(tls_register);
1065 module_exit(tls_unregister);
1066