1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/snmp.h> 45 #include <net/tls.h> 46 #include <net/tls_toe.h> 47 48 MODULE_AUTHOR("Mellanox Technologies"); 49 MODULE_DESCRIPTION("Transport Layer Security Support"); 50 MODULE_LICENSE("Dual BSD/GPL"); 51 MODULE_ALIAS_TCP_ULP("tls"); 52 53 enum { 54 TLSV4, 55 TLSV6, 56 TLS_NUM_PROTS, 57 }; 58 59 static struct proto *saved_tcpv6_prot; 60 static DEFINE_MUTEX(tcpv6_prot_mutex); 61 static struct proto *saved_tcpv4_prot; 62 static DEFINE_MUTEX(tcpv4_prot_mutex); 63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 64 static struct proto_ops tls_sw_proto_ops; 65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 66 struct proto *base); 67 68 void update_sk_prot(struct sock *sk, struct tls_context *ctx) 69 { 70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 71 72 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]; 73 } 74 75 int wait_on_pending_writer(struct sock *sk, long *timeo) 76 { 77 int rc = 0; 78 DEFINE_WAIT_FUNC(wait, woken_wake_function); 79 80 add_wait_queue(sk_sleep(sk), &wait); 81 while (1) { 82 if (!*timeo) { 83 rc = -EAGAIN; 84 break; 85 } 86 87 if (signal_pending(current)) { 88 rc = sock_intr_errno(*timeo); 89 break; 90 } 91 92 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 93 break; 94 } 95 remove_wait_queue(sk_sleep(sk), &wait); 96 return rc; 97 } 98 99 int tls_push_sg(struct sock *sk, 100 struct tls_context *ctx, 101 struct scatterlist *sg, 102 u16 first_offset, 103 int flags) 104 { 105 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 106 int ret = 0; 107 struct page *p; 108 size_t size; 109 int offset = first_offset; 110 111 size = sg->length - offset; 112 offset += sg->offset; 113 114 ctx->in_tcp_sendpages = true; 115 while (1) { 116 if (sg_is_last(sg)) 117 sendpage_flags = flags; 118 119 /* is sending application-limited? */ 120 tcp_rate_check_app_limited(sk); 121 p = sg_page(sg); 122 retry: 123 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 124 125 if (ret != size) { 126 if (ret > 0) { 127 offset += ret; 128 size -= ret; 129 goto retry; 130 } 131 132 offset -= sg->offset; 133 ctx->partially_sent_offset = offset; 134 ctx->partially_sent_record = (void *)sg; 135 ctx->in_tcp_sendpages = false; 136 return ret; 137 } 138 139 put_page(p); 140 sk_mem_uncharge(sk, sg->length); 141 sg = sg_next(sg); 142 if (!sg) 143 break; 144 145 offset = sg->offset; 146 size = sg->length; 147 } 148 149 ctx->in_tcp_sendpages = false; 150 151 return 0; 152 } 153 154 static int tls_handle_open_record(struct sock *sk, int flags) 155 { 156 struct tls_context *ctx = tls_get_ctx(sk); 157 158 if (tls_is_pending_open_record(ctx)) 159 return ctx->push_pending_record(sk, flags); 160 161 return 0; 162 } 163 164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 165 unsigned char *record_type) 166 { 167 struct cmsghdr *cmsg; 168 int rc = -EINVAL; 169 170 for_each_cmsghdr(cmsg, msg) { 171 if (!CMSG_OK(msg, cmsg)) 172 return -EINVAL; 173 if (cmsg->cmsg_level != SOL_TLS) 174 continue; 175 176 switch (cmsg->cmsg_type) { 177 case TLS_SET_RECORD_TYPE: 178 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 179 return -EINVAL; 180 181 if (msg->msg_flags & MSG_MORE) 182 return -EINVAL; 183 184 rc = tls_handle_open_record(sk, msg->msg_flags); 185 if (rc) 186 return rc; 187 188 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 189 rc = 0; 190 break; 191 default: 192 return -EINVAL; 193 } 194 } 195 196 return rc; 197 } 198 199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 200 int flags) 201 { 202 struct scatterlist *sg; 203 u16 offset; 204 205 sg = ctx->partially_sent_record; 206 offset = ctx->partially_sent_offset; 207 208 ctx->partially_sent_record = NULL; 209 return tls_push_sg(sk, ctx, sg, offset, flags); 210 } 211 212 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 213 { 214 struct scatterlist *sg; 215 216 sg = ctx->partially_sent_record; 217 if (!sg) 218 return false; 219 220 while (1) { 221 put_page(sg_page(sg)); 222 sk_mem_uncharge(sk, sg->length); 223 224 if (sg_is_last(sg)) 225 break; 226 sg++; 227 } 228 ctx->partially_sent_record = NULL; 229 return true; 230 } 231 232 static void tls_write_space(struct sock *sk) 233 { 234 struct tls_context *ctx = tls_get_ctx(sk); 235 236 /* If in_tcp_sendpages call lower protocol write space handler 237 * to ensure we wake up any waiting operations there. For example 238 * if do_tcp_sendpages where to call sk_wait_event. 239 */ 240 if (ctx->in_tcp_sendpages) { 241 ctx->sk_write_space(sk); 242 return; 243 } 244 245 #ifdef CONFIG_TLS_DEVICE 246 if (ctx->tx_conf == TLS_HW) 247 tls_device_write_space(sk, ctx); 248 else 249 #endif 250 tls_sw_write_space(sk, ctx); 251 252 ctx->sk_write_space(sk); 253 } 254 255 /** 256 * tls_ctx_free() - free TLS ULP context 257 * @sk: socket to with @ctx is attached 258 * @ctx: TLS context structure 259 * 260 * Free TLS context. If @sk is %NULL caller guarantees that the socket 261 * to which @ctx was attached has no outstanding references. 262 */ 263 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 264 { 265 if (!ctx) 266 return; 267 268 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 269 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 270 271 if (sk) 272 kfree_rcu(ctx, rcu); 273 else 274 kfree(ctx); 275 } 276 277 static void tls_sk_proto_cleanup(struct sock *sk, 278 struct tls_context *ctx, long timeo) 279 { 280 if (unlikely(sk->sk_write_pending) && 281 !wait_on_pending_writer(sk, &timeo)) 282 tls_handle_open_record(sk, 0); 283 284 /* We need these for tls_sw_fallback handling of other packets */ 285 if (ctx->tx_conf == TLS_SW) { 286 kfree(ctx->tx.rec_seq); 287 kfree(ctx->tx.iv); 288 tls_sw_release_resources_tx(sk); 289 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 290 } else if (ctx->tx_conf == TLS_HW) { 291 tls_device_free_resources_tx(sk); 292 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 293 } 294 295 if (ctx->rx_conf == TLS_SW) { 296 tls_sw_release_resources_rx(sk); 297 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 298 } else if (ctx->rx_conf == TLS_HW) { 299 tls_device_offload_cleanup_rx(sk); 300 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 301 } 302 } 303 304 static void tls_sk_proto_close(struct sock *sk, long timeout) 305 { 306 struct inet_connection_sock *icsk = inet_csk(sk); 307 struct tls_context *ctx = tls_get_ctx(sk); 308 long timeo = sock_sndtimeo(sk, 0); 309 bool free_ctx; 310 311 if (ctx->tx_conf == TLS_SW) 312 tls_sw_cancel_work_tx(ctx); 313 314 lock_sock(sk); 315 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 316 317 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 318 tls_sk_proto_cleanup(sk, ctx, timeo); 319 320 write_lock_bh(&sk->sk_callback_lock); 321 if (free_ctx) 322 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 323 sk->sk_prot = ctx->sk_proto; 324 if (sk->sk_write_space == tls_write_space) 325 sk->sk_write_space = ctx->sk_write_space; 326 write_unlock_bh(&sk->sk_callback_lock); 327 release_sock(sk); 328 if (ctx->tx_conf == TLS_SW) 329 tls_sw_free_ctx_tx(ctx); 330 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 331 tls_sw_strparser_done(ctx); 332 if (ctx->rx_conf == TLS_SW) 333 tls_sw_free_ctx_rx(ctx); 334 ctx->sk_proto->close(sk, timeout); 335 336 if (free_ctx) 337 tls_ctx_free(sk, ctx); 338 } 339 340 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, 341 int __user *optlen) 342 { 343 int rc = 0; 344 struct tls_context *ctx = tls_get_ctx(sk); 345 struct tls_crypto_info *crypto_info; 346 int len; 347 348 if (get_user(len, optlen)) 349 return -EFAULT; 350 351 if (!optval || (len < sizeof(*crypto_info))) { 352 rc = -EINVAL; 353 goto out; 354 } 355 356 if (!ctx) { 357 rc = -EBUSY; 358 goto out; 359 } 360 361 /* get user crypto info */ 362 crypto_info = &ctx->crypto_send.info; 363 364 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 365 rc = -EBUSY; 366 goto out; 367 } 368 369 if (len == sizeof(*crypto_info)) { 370 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 371 rc = -EFAULT; 372 goto out; 373 } 374 375 switch (crypto_info->cipher_type) { 376 case TLS_CIPHER_AES_GCM_128: { 377 struct tls12_crypto_info_aes_gcm_128 * 378 crypto_info_aes_gcm_128 = 379 container_of(crypto_info, 380 struct tls12_crypto_info_aes_gcm_128, 381 info); 382 383 if (len != sizeof(*crypto_info_aes_gcm_128)) { 384 rc = -EINVAL; 385 goto out; 386 } 387 lock_sock(sk); 388 memcpy(crypto_info_aes_gcm_128->iv, 389 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 390 TLS_CIPHER_AES_GCM_128_IV_SIZE); 391 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, 392 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 393 release_sock(sk); 394 if (copy_to_user(optval, 395 crypto_info_aes_gcm_128, 396 sizeof(*crypto_info_aes_gcm_128))) 397 rc = -EFAULT; 398 break; 399 } 400 case TLS_CIPHER_AES_GCM_256: { 401 struct tls12_crypto_info_aes_gcm_256 * 402 crypto_info_aes_gcm_256 = 403 container_of(crypto_info, 404 struct tls12_crypto_info_aes_gcm_256, 405 info); 406 407 if (len != sizeof(*crypto_info_aes_gcm_256)) { 408 rc = -EINVAL; 409 goto out; 410 } 411 lock_sock(sk); 412 memcpy(crypto_info_aes_gcm_256->iv, 413 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 414 TLS_CIPHER_AES_GCM_256_IV_SIZE); 415 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq, 416 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 417 release_sock(sk); 418 if (copy_to_user(optval, 419 crypto_info_aes_gcm_256, 420 sizeof(*crypto_info_aes_gcm_256))) 421 rc = -EFAULT; 422 break; 423 } 424 default: 425 rc = -EINVAL; 426 } 427 428 out: 429 return rc; 430 } 431 432 static int do_tls_getsockopt(struct sock *sk, int optname, 433 char __user *optval, int __user *optlen) 434 { 435 int rc = 0; 436 437 switch (optname) { 438 case TLS_TX: 439 rc = do_tls_getsockopt_tx(sk, optval, optlen); 440 break; 441 default: 442 rc = -ENOPROTOOPT; 443 break; 444 } 445 return rc; 446 } 447 448 static int tls_getsockopt(struct sock *sk, int level, int optname, 449 char __user *optval, int __user *optlen) 450 { 451 struct tls_context *ctx = tls_get_ctx(sk); 452 453 if (level != SOL_TLS) 454 return ctx->sk_proto->getsockopt(sk, level, 455 optname, optval, optlen); 456 457 return do_tls_getsockopt(sk, optname, optval, optlen); 458 } 459 460 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, 461 unsigned int optlen, int tx) 462 { 463 struct tls_crypto_info *crypto_info; 464 struct tls_crypto_info *alt_crypto_info; 465 struct tls_context *ctx = tls_get_ctx(sk); 466 size_t optsize; 467 int rc = 0; 468 int conf; 469 470 if (!optval || (optlen < sizeof(*crypto_info))) { 471 rc = -EINVAL; 472 goto out; 473 } 474 475 if (tx) { 476 crypto_info = &ctx->crypto_send.info; 477 alt_crypto_info = &ctx->crypto_recv.info; 478 } else { 479 crypto_info = &ctx->crypto_recv.info; 480 alt_crypto_info = &ctx->crypto_send.info; 481 } 482 483 /* Currently we don't support set crypto info more than one time */ 484 if (TLS_CRYPTO_INFO_READY(crypto_info)) { 485 rc = -EBUSY; 486 goto out; 487 } 488 489 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); 490 if (rc) { 491 rc = -EFAULT; 492 goto err_crypto_info; 493 } 494 495 /* check version */ 496 if (crypto_info->version != TLS_1_2_VERSION && 497 crypto_info->version != TLS_1_3_VERSION) { 498 rc = -ENOTSUPP; 499 goto err_crypto_info; 500 } 501 502 /* Ensure that TLS version and ciphers are same in both directions */ 503 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 504 if (alt_crypto_info->version != crypto_info->version || 505 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 506 rc = -EINVAL; 507 goto err_crypto_info; 508 } 509 } 510 511 switch (crypto_info->cipher_type) { 512 case TLS_CIPHER_AES_GCM_128: 513 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 514 break; 515 case TLS_CIPHER_AES_GCM_256: { 516 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 517 break; 518 } 519 case TLS_CIPHER_AES_CCM_128: 520 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 521 break; 522 default: 523 rc = -EINVAL; 524 goto err_crypto_info; 525 } 526 527 if (optlen != optsize) { 528 rc = -EINVAL; 529 goto err_crypto_info; 530 } 531 532 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), 533 optlen - sizeof(*crypto_info)); 534 if (rc) { 535 rc = -EFAULT; 536 goto err_crypto_info; 537 } 538 539 if (tx) { 540 rc = tls_set_device_offload(sk, ctx); 541 conf = TLS_HW; 542 if (!rc) { 543 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); 544 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 545 } else { 546 rc = tls_set_sw_offload(sk, ctx, 1); 547 if (rc) 548 goto err_crypto_info; 549 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); 550 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 551 conf = TLS_SW; 552 } 553 } else { 554 rc = tls_set_device_offload_rx(sk, ctx); 555 conf = TLS_HW; 556 if (!rc) { 557 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); 558 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 559 } else { 560 rc = tls_set_sw_offload(sk, ctx, 0); 561 if (rc) 562 goto err_crypto_info; 563 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); 564 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 565 conf = TLS_SW; 566 } 567 tls_sw_strparser_arm(sk, ctx); 568 } 569 570 if (tx) 571 ctx->tx_conf = conf; 572 else 573 ctx->rx_conf = conf; 574 update_sk_prot(sk, ctx); 575 if (tx) { 576 ctx->sk_write_space = sk->sk_write_space; 577 sk->sk_write_space = tls_write_space; 578 } else { 579 sk->sk_socket->ops = &tls_sw_proto_ops; 580 } 581 goto out; 582 583 err_crypto_info: 584 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 585 out: 586 return rc; 587 } 588 589 static int do_tls_setsockopt(struct sock *sk, int optname, 590 char __user *optval, unsigned int optlen) 591 { 592 int rc = 0; 593 594 switch (optname) { 595 case TLS_TX: 596 case TLS_RX: 597 lock_sock(sk); 598 rc = do_tls_setsockopt_conf(sk, optval, optlen, 599 optname == TLS_TX); 600 release_sock(sk); 601 break; 602 default: 603 rc = -ENOPROTOOPT; 604 break; 605 } 606 return rc; 607 } 608 609 static int tls_setsockopt(struct sock *sk, int level, int optname, 610 char __user *optval, unsigned int optlen) 611 { 612 struct tls_context *ctx = tls_get_ctx(sk); 613 614 if (level != SOL_TLS) 615 return ctx->sk_proto->setsockopt(sk, level, optname, optval, 616 optlen); 617 618 return do_tls_setsockopt(sk, optname, optval, optlen); 619 } 620 621 struct tls_context *tls_ctx_create(struct sock *sk) 622 { 623 struct inet_connection_sock *icsk = inet_csk(sk); 624 struct tls_context *ctx; 625 626 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 627 if (!ctx) 628 return NULL; 629 630 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 631 ctx->sk_proto = sk->sk_prot; 632 return ctx; 633 } 634 635 static void tls_build_proto(struct sock *sk) 636 { 637 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 638 639 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 640 if (ip_ver == TLSV6 && 641 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { 642 mutex_lock(&tcpv6_prot_mutex); 643 if (likely(sk->sk_prot != saved_tcpv6_prot)) { 644 build_protos(tls_prots[TLSV6], sk->sk_prot); 645 smp_store_release(&saved_tcpv6_prot, sk->sk_prot); 646 } 647 mutex_unlock(&tcpv6_prot_mutex); 648 } 649 650 if (ip_ver == TLSV4 && 651 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) { 652 mutex_lock(&tcpv4_prot_mutex); 653 if (likely(sk->sk_prot != saved_tcpv4_prot)) { 654 build_protos(tls_prots[TLSV4], sk->sk_prot); 655 smp_store_release(&saved_tcpv4_prot, sk->sk_prot); 656 } 657 mutex_unlock(&tcpv4_prot_mutex); 658 } 659 } 660 661 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 662 struct proto *base) 663 { 664 prot[TLS_BASE][TLS_BASE] = *base; 665 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 666 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 667 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 668 669 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 670 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 671 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 672 673 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 674 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 675 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read; 676 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 677 678 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 679 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 680 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read; 681 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 682 683 #ifdef CONFIG_TLS_DEVICE 684 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 685 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 686 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 687 688 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 689 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 690 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 691 692 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 693 694 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 695 696 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 697 #endif 698 #ifdef CONFIG_TLS_TOE 699 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 700 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; 701 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; 702 #endif 703 } 704 705 static int tls_init(struct sock *sk) 706 { 707 struct tls_context *ctx; 708 int rc = 0; 709 710 tls_build_proto(sk); 711 712 #ifdef CONFIG_TLS_TOE 713 if (tls_toe_bypass(sk)) 714 return 0; 715 #endif 716 717 /* The TLS ulp is currently supported only for TCP sockets 718 * in ESTABLISHED state. 719 * Supporting sockets in LISTEN state will require us 720 * to modify the accept implementation to clone rather then 721 * share the ulp context. 722 */ 723 if (sk->sk_state != TCP_ESTABLISHED) 724 return -ENOTSUPP; 725 726 /* allocate tls context */ 727 write_lock_bh(&sk->sk_callback_lock); 728 ctx = tls_ctx_create(sk); 729 if (!ctx) { 730 rc = -ENOMEM; 731 goto out; 732 } 733 734 ctx->tx_conf = TLS_BASE; 735 ctx->rx_conf = TLS_BASE; 736 update_sk_prot(sk, ctx); 737 out: 738 write_unlock_bh(&sk->sk_callback_lock); 739 return rc; 740 } 741 742 static void tls_update(struct sock *sk, struct proto *p) 743 { 744 struct tls_context *ctx; 745 746 ctx = tls_get_ctx(sk); 747 if (likely(ctx)) 748 ctx->sk_proto = p; 749 else 750 sk->sk_prot = p; 751 } 752 753 static int tls_get_info(const struct sock *sk, struct sk_buff *skb) 754 { 755 u16 version, cipher_type; 756 struct tls_context *ctx; 757 struct nlattr *start; 758 int err; 759 760 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 761 if (!start) 762 return -EMSGSIZE; 763 764 rcu_read_lock(); 765 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 766 if (!ctx) { 767 err = 0; 768 goto nla_failure; 769 } 770 version = ctx->prot_info.version; 771 if (version) { 772 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 773 if (err) 774 goto nla_failure; 775 } 776 cipher_type = ctx->prot_info.cipher_type; 777 if (cipher_type) { 778 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 779 if (err) 780 goto nla_failure; 781 } 782 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 783 if (err) 784 goto nla_failure; 785 786 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 787 if (err) 788 goto nla_failure; 789 790 rcu_read_unlock(); 791 nla_nest_end(skb, start); 792 return 0; 793 794 nla_failure: 795 rcu_read_unlock(); 796 nla_nest_cancel(skb, start); 797 return err; 798 } 799 800 static size_t tls_get_info_size(const struct sock *sk) 801 { 802 size_t size = 0; 803 804 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 805 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 806 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 807 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 808 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 809 0; 810 811 return size; 812 } 813 814 static int __net_init tls_init_net(struct net *net) 815 { 816 int err; 817 818 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); 819 if (!net->mib.tls_statistics) 820 return -ENOMEM; 821 822 err = tls_proc_init(net); 823 if (err) 824 goto err_free_stats; 825 826 return 0; 827 err_free_stats: 828 free_percpu(net->mib.tls_statistics); 829 return err; 830 } 831 832 static void __net_exit tls_exit_net(struct net *net) 833 { 834 tls_proc_fini(net); 835 free_percpu(net->mib.tls_statistics); 836 } 837 838 static struct pernet_operations tls_proc_ops = { 839 .init = tls_init_net, 840 .exit = tls_exit_net, 841 }; 842 843 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 844 .name = "tls", 845 .owner = THIS_MODULE, 846 .init = tls_init, 847 .update = tls_update, 848 .get_info = tls_get_info, 849 .get_info_size = tls_get_info_size, 850 }; 851 852 static int __init tls_register(void) 853 { 854 int err; 855 856 err = register_pernet_subsys(&tls_proc_ops); 857 if (err) 858 return err; 859 860 tls_sw_proto_ops = inet_stream_ops; 861 tls_sw_proto_ops.splice_read = tls_sw_splice_read; 862 863 tls_device_init(); 864 tcp_register_ulp(&tcp_tls_ulp_ops); 865 866 return 0; 867 } 868 869 static void __exit tls_unregister(void) 870 { 871 tcp_unregister_ulp(&tcp_tls_ulp_ops); 872 tls_device_cleanup(); 873 unregister_pernet_subsys(&tls_proc_ops); 874 } 875 876 module_init(tls_register); 877 module_exit(tls_unregister); 878