1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 36 #include <net/tcp.h> 37 #include <net/inet_common.h> 38 #include <linux/highmem.h> 39 #include <linux/netdevice.h> 40 #include <linux/sched/signal.h> 41 #include <linux/inetdevice.h> 42 #include <linux/inet_diag.h> 43 44 #include <net/snmp.h> 45 #include <net/tls.h> 46 #include <net/tls_toe.h> 47 48 #include "tls.h" 49 50 MODULE_AUTHOR("Mellanox Technologies"); 51 MODULE_DESCRIPTION("Transport Layer Security Support"); 52 MODULE_LICENSE("Dual BSD/GPL"); 53 MODULE_ALIAS_TCP_ULP("tls"); 54 55 enum { 56 TLSV4, 57 TLSV6, 58 TLS_NUM_PROTS, 59 }; 60 61 #define CIPHER_SIZE_DESC(cipher) [cipher] = { \ 62 .iv = cipher ## _IV_SIZE, \ 63 .key = cipher ## _KEY_SIZE, \ 64 .salt = cipher ## _SALT_SIZE, \ 65 .tag = cipher ## _TAG_SIZE, \ 66 .rec_seq = cipher ## _REC_SEQ_SIZE, \ 67 } 68 69 const struct tls_cipher_size_desc tls_cipher_size_desc[] = { 70 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128), 71 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256), 72 CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128), 73 CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305), 74 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM), 75 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM), 76 }; 77 78 static const struct proto *saved_tcpv6_prot; 79 static DEFINE_MUTEX(tcpv6_prot_mutex); 80 static const struct proto *saved_tcpv4_prot; 81 static DEFINE_MUTEX(tcpv4_prot_mutex); 82 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 83 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; 84 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 85 const struct proto *base); 86 87 void update_sk_prot(struct sock *sk, struct tls_context *ctx) 88 { 89 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 90 91 WRITE_ONCE(sk->sk_prot, 92 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); 93 WRITE_ONCE(sk->sk_socket->ops, 94 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]); 95 } 96 97 int wait_on_pending_writer(struct sock *sk, long *timeo) 98 { 99 int rc = 0; 100 DEFINE_WAIT_FUNC(wait, woken_wake_function); 101 102 add_wait_queue(sk_sleep(sk), &wait); 103 while (1) { 104 if (!*timeo) { 105 rc = -EAGAIN; 106 break; 107 } 108 109 if (signal_pending(current)) { 110 rc = sock_intr_errno(*timeo); 111 break; 112 } 113 114 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) 115 break; 116 } 117 remove_wait_queue(sk_sleep(sk), &wait); 118 return rc; 119 } 120 121 int tls_push_sg(struct sock *sk, 122 struct tls_context *ctx, 123 struct scatterlist *sg, 124 u16 first_offset, 125 int flags) 126 { 127 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; 128 int ret = 0; 129 struct page *p; 130 size_t size; 131 int offset = first_offset; 132 133 size = sg->length - offset; 134 offset += sg->offset; 135 136 ctx->in_tcp_sendpages = true; 137 while (1) { 138 if (sg_is_last(sg)) 139 sendpage_flags = flags; 140 141 /* is sending application-limited? */ 142 tcp_rate_check_app_limited(sk); 143 p = sg_page(sg); 144 retry: 145 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); 146 147 if (ret != size) { 148 if (ret > 0) { 149 offset += ret; 150 size -= ret; 151 goto retry; 152 } 153 154 offset -= sg->offset; 155 ctx->partially_sent_offset = offset; 156 ctx->partially_sent_record = (void *)sg; 157 ctx->in_tcp_sendpages = false; 158 return ret; 159 } 160 161 put_page(p); 162 sk_mem_uncharge(sk, sg->length); 163 sg = sg_next(sg); 164 if (!sg) 165 break; 166 167 offset = sg->offset; 168 size = sg->length; 169 } 170 171 ctx->in_tcp_sendpages = false; 172 173 return 0; 174 } 175 176 static int tls_handle_open_record(struct sock *sk, int flags) 177 { 178 struct tls_context *ctx = tls_get_ctx(sk); 179 180 if (tls_is_pending_open_record(ctx)) 181 return ctx->push_pending_record(sk, flags); 182 183 return 0; 184 } 185 186 int tls_process_cmsg(struct sock *sk, struct msghdr *msg, 187 unsigned char *record_type) 188 { 189 struct cmsghdr *cmsg; 190 int rc = -EINVAL; 191 192 for_each_cmsghdr(cmsg, msg) { 193 if (!CMSG_OK(msg, cmsg)) 194 return -EINVAL; 195 if (cmsg->cmsg_level != SOL_TLS) 196 continue; 197 198 switch (cmsg->cmsg_type) { 199 case TLS_SET_RECORD_TYPE: 200 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) 201 return -EINVAL; 202 203 if (msg->msg_flags & MSG_MORE) 204 return -EINVAL; 205 206 rc = tls_handle_open_record(sk, msg->msg_flags); 207 if (rc) 208 return rc; 209 210 *record_type = *(unsigned char *)CMSG_DATA(cmsg); 211 rc = 0; 212 break; 213 default: 214 return -EINVAL; 215 } 216 } 217 218 return rc; 219 } 220 221 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 222 int flags) 223 { 224 struct scatterlist *sg; 225 u16 offset; 226 227 sg = ctx->partially_sent_record; 228 offset = ctx->partially_sent_offset; 229 230 ctx->partially_sent_record = NULL; 231 return tls_push_sg(sk, ctx, sg, offset, flags); 232 } 233 234 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) 235 { 236 struct scatterlist *sg; 237 238 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { 239 put_page(sg_page(sg)); 240 sk_mem_uncharge(sk, sg->length); 241 } 242 ctx->partially_sent_record = NULL; 243 } 244 245 static void tls_write_space(struct sock *sk) 246 { 247 struct tls_context *ctx = tls_get_ctx(sk); 248 249 /* If in_tcp_sendpages call lower protocol write space handler 250 * to ensure we wake up any waiting operations there. For example 251 * if do_tcp_sendpages where to call sk_wait_event. 252 */ 253 if (ctx->in_tcp_sendpages) { 254 ctx->sk_write_space(sk); 255 return; 256 } 257 258 #ifdef CONFIG_TLS_DEVICE 259 if (ctx->tx_conf == TLS_HW) 260 tls_device_write_space(sk, ctx); 261 else 262 #endif 263 tls_sw_write_space(sk, ctx); 264 265 ctx->sk_write_space(sk); 266 } 267 268 /** 269 * tls_ctx_free() - free TLS ULP context 270 * @sk: socket to with @ctx is attached 271 * @ctx: TLS context structure 272 * 273 * Free TLS context. If @sk is %NULL caller guarantees that the socket 274 * to which @ctx was attached has no outstanding references. 275 */ 276 void tls_ctx_free(struct sock *sk, struct tls_context *ctx) 277 { 278 if (!ctx) 279 return; 280 281 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); 282 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); 283 mutex_destroy(&ctx->tx_lock); 284 285 if (sk) 286 kfree_rcu(ctx, rcu); 287 else 288 kfree(ctx); 289 } 290 291 static void tls_sk_proto_cleanup(struct sock *sk, 292 struct tls_context *ctx, long timeo) 293 { 294 if (unlikely(sk->sk_write_pending) && 295 !wait_on_pending_writer(sk, &timeo)) 296 tls_handle_open_record(sk, 0); 297 298 /* We need these for tls_sw_fallback handling of other packets */ 299 if (ctx->tx_conf == TLS_SW) { 300 kfree(ctx->tx.rec_seq); 301 kfree(ctx->tx.iv); 302 tls_sw_release_resources_tx(sk); 303 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 304 } else if (ctx->tx_conf == TLS_HW) { 305 tls_device_free_resources_tx(sk); 306 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 307 } 308 309 if (ctx->rx_conf == TLS_SW) { 310 tls_sw_release_resources_rx(sk); 311 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 312 } else if (ctx->rx_conf == TLS_HW) { 313 tls_device_offload_cleanup_rx(sk); 314 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 315 } 316 } 317 318 static void tls_sk_proto_close(struct sock *sk, long timeout) 319 { 320 struct inet_connection_sock *icsk = inet_csk(sk); 321 struct tls_context *ctx = tls_get_ctx(sk); 322 long timeo = sock_sndtimeo(sk, 0); 323 bool free_ctx; 324 325 if (ctx->tx_conf == TLS_SW) 326 tls_sw_cancel_work_tx(ctx); 327 328 lock_sock(sk); 329 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; 330 331 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) 332 tls_sk_proto_cleanup(sk, ctx, timeo); 333 334 write_lock_bh(&sk->sk_callback_lock); 335 if (free_ctx) 336 rcu_assign_pointer(icsk->icsk_ulp_data, NULL); 337 WRITE_ONCE(sk->sk_prot, ctx->sk_proto); 338 if (sk->sk_write_space == tls_write_space) 339 sk->sk_write_space = ctx->sk_write_space; 340 write_unlock_bh(&sk->sk_callback_lock); 341 release_sock(sk); 342 if (ctx->tx_conf == TLS_SW) 343 tls_sw_free_ctx_tx(ctx); 344 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 345 tls_sw_strparser_done(ctx); 346 if (ctx->rx_conf == TLS_SW) 347 tls_sw_free_ctx_rx(ctx); 348 ctx->sk_proto->close(sk, timeout); 349 350 if (free_ctx) 351 tls_ctx_free(sk, ctx); 352 } 353 354 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval, 355 int __user *optlen, int tx) 356 { 357 int rc = 0; 358 struct tls_context *ctx = tls_get_ctx(sk); 359 struct tls_crypto_info *crypto_info; 360 struct cipher_context *cctx; 361 int len; 362 363 if (get_user(len, optlen)) 364 return -EFAULT; 365 366 if (!optval || (len < sizeof(*crypto_info))) { 367 rc = -EINVAL; 368 goto out; 369 } 370 371 if (!ctx) { 372 rc = -EBUSY; 373 goto out; 374 } 375 376 /* get user crypto info */ 377 if (tx) { 378 crypto_info = &ctx->crypto_send.info; 379 cctx = &ctx->tx; 380 } else { 381 crypto_info = &ctx->crypto_recv.info; 382 cctx = &ctx->rx; 383 } 384 385 if (!TLS_CRYPTO_INFO_READY(crypto_info)) { 386 rc = -EBUSY; 387 goto out; 388 } 389 390 if (len == sizeof(*crypto_info)) { 391 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) 392 rc = -EFAULT; 393 goto out; 394 } 395 396 switch (crypto_info->cipher_type) { 397 case TLS_CIPHER_AES_GCM_128: { 398 struct tls12_crypto_info_aes_gcm_128 * 399 crypto_info_aes_gcm_128 = 400 container_of(crypto_info, 401 struct tls12_crypto_info_aes_gcm_128, 402 info); 403 404 if (len != sizeof(*crypto_info_aes_gcm_128)) { 405 rc = -EINVAL; 406 goto out; 407 } 408 lock_sock(sk); 409 memcpy(crypto_info_aes_gcm_128->iv, 410 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 411 TLS_CIPHER_AES_GCM_128_IV_SIZE); 412 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq, 413 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); 414 release_sock(sk); 415 if (copy_to_user(optval, 416 crypto_info_aes_gcm_128, 417 sizeof(*crypto_info_aes_gcm_128))) 418 rc = -EFAULT; 419 break; 420 } 421 case TLS_CIPHER_AES_GCM_256: { 422 struct tls12_crypto_info_aes_gcm_256 * 423 crypto_info_aes_gcm_256 = 424 container_of(crypto_info, 425 struct tls12_crypto_info_aes_gcm_256, 426 info); 427 428 if (len != sizeof(*crypto_info_aes_gcm_256)) { 429 rc = -EINVAL; 430 goto out; 431 } 432 lock_sock(sk); 433 memcpy(crypto_info_aes_gcm_256->iv, 434 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, 435 TLS_CIPHER_AES_GCM_256_IV_SIZE); 436 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq, 437 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); 438 release_sock(sk); 439 if (copy_to_user(optval, 440 crypto_info_aes_gcm_256, 441 sizeof(*crypto_info_aes_gcm_256))) 442 rc = -EFAULT; 443 break; 444 } 445 case TLS_CIPHER_AES_CCM_128: { 446 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 = 447 container_of(crypto_info, 448 struct tls12_crypto_info_aes_ccm_128, info); 449 450 if (len != sizeof(*aes_ccm_128)) { 451 rc = -EINVAL; 452 goto out; 453 } 454 lock_sock(sk); 455 memcpy(aes_ccm_128->iv, 456 cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE, 457 TLS_CIPHER_AES_CCM_128_IV_SIZE); 458 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq, 459 TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE); 460 release_sock(sk); 461 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128))) 462 rc = -EFAULT; 463 break; 464 } 465 case TLS_CIPHER_CHACHA20_POLY1305: { 466 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 = 467 container_of(crypto_info, 468 struct tls12_crypto_info_chacha20_poly1305, 469 info); 470 471 if (len != sizeof(*chacha20_poly1305)) { 472 rc = -EINVAL; 473 goto out; 474 } 475 lock_sock(sk); 476 memcpy(chacha20_poly1305->iv, 477 cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE, 478 TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE); 479 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq, 480 TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE); 481 release_sock(sk); 482 if (copy_to_user(optval, chacha20_poly1305, 483 sizeof(*chacha20_poly1305))) 484 rc = -EFAULT; 485 break; 486 } 487 case TLS_CIPHER_SM4_GCM: { 488 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info = 489 container_of(crypto_info, 490 struct tls12_crypto_info_sm4_gcm, info); 491 492 if (len != sizeof(*sm4_gcm_info)) { 493 rc = -EINVAL; 494 goto out; 495 } 496 lock_sock(sk); 497 memcpy(sm4_gcm_info->iv, 498 cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE, 499 TLS_CIPHER_SM4_GCM_IV_SIZE); 500 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq, 501 TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE); 502 release_sock(sk); 503 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info))) 504 rc = -EFAULT; 505 break; 506 } 507 case TLS_CIPHER_SM4_CCM: { 508 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info = 509 container_of(crypto_info, 510 struct tls12_crypto_info_sm4_ccm, info); 511 512 if (len != sizeof(*sm4_ccm_info)) { 513 rc = -EINVAL; 514 goto out; 515 } 516 lock_sock(sk); 517 memcpy(sm4_ccm_info->iv, 518 cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE, 519 TLS_CIPHER_SM4_CCM_IV_SIZE); 520 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq, 521 TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE); 522 release_sock(sk); 523 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info))) 524 rc = -EFAULT; 525 break; 526 } 527 default: 528 rc = -EINVAL; 529 } 530 531 out: 532 return rc; 533 } 534 535 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval, 536 int __user *optlen) 537 { 538 struct tls_context *ctx = tls_get_ctx(sk); 539 unsigned int value; 540 int len; 541 542 if (get_user(len, optlen)) 543 return -EFAULT; 544 545 if (len != sizeof(value)) 546 return -EINVAL; 547 548 value = ctx->zerocopy_sendfile; 549 if (copy_to_user(optval, &value, sizeof(value))) 550 return -EFAULT; 551 552 return 0; 553 } 554 555 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval, 556 int __user *optlen) 557 { 558 struct tls_context *ctx = tls_get_ctx(sk); 559 int value, len; 560 561 if (ctx->prot_info.version != TLS_1_3_VERSION) 562 return -EINVAL; 563 564 if (get_user(len, optlen)) 565 return -EFAULT; 566 if (len < sizeof(value)) 567 return -EINVAL; 568 569 lock_sock(sk); 570 value = -EINVAL; 571 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) 572 value = ctx->rx_no_pad; 573 release_sock(sk); 574 if (value < 0) 575 return value; 576 577 if (put_user(sizeof(value), optlen)) 578 return -EFAULT; 579 if (copy_to_user(optval, &value, sizeof(value))) 580 return -EFAULT; 581 582 return 0; 583 } 584 585 static int do_tls_getsockopt(struct sock *sk, int optname, 586 char __user *optval, int __user *optlen) 587 { 588 int rc = 0; 589 590 switch (optname) { 591 case TLS_TX: 592 case TLS_RX: 593 rc = do_tls_getsockopt_conf(sk, optval, optlen, 594 optname == TLS_TX); 595 break; 596 case TLS_TX_ZEROCOPY_RO: 597 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen); 598 break; 599 case TLS_RX_EXPECT_NO_PAD: 600 rc = do_tls_getsockopt_no_pad(sk, optval, optlen); 601 break; 602 default: 603 rc = -ENOPROTOOPT; 604 break; 605 } 606 return rc; 607 } 608 609 static int tls_getsockopt(struct sock *sk, int level, int optname, 610 char __user *optval, int __user *optlen) 611 { 612 struct tls_context *ctx = tls_get_ctx(sk); 613 614 if (level != SOL_TLS) 615 return ctx->sk_proto->getsockopt(sk, level, 616 optname, optval, optlen); 617 618 return do_tls_getsockopt(sk, optname, optval, optlen); 619 } 620 621 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, 622 unsigned int optlen, int tx) 623 { 624 struct tls_crypto_info *crypto_info; 625 struct tls_crypto_info *alt_crypto_info; 626 struct tls_context *ctx = tls_get_ctx(sk); 627 size_t optsize; 628 int rc = 0; 629 int conf; 630 631 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) 632 return -EINVAL; 633 634 if (tx) { 635 crypto_info = &ctx->crypto_send.info; 636 alt_crypto_info = &ctx->crypto_recv.info; 637 } else { 638 crypto_info = &ctx->crypto_recv.info; 639 alt_crypto_info = &ctx->crypto_send.info; 640 } 641 642 /* Currently we don't support set crypto info more than one time */ 643 if (TLS_CRYPTO_INFO_READY(crypto_info)) 644 return -EBUSY; 645 646 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); 647 if (rc) { 648 rc = -EFAULT; 649 goto err_crypto_info; 650 } 651 652 /* check version */ 653 if (crypto_info->version != TLS_1_2_VERSION && 654 crypto_info->version != TLS_1_3_VERSION) { 655 rc = -EINVAL; 656 goto err_crypto_info; 657 } 658 659 /* Ensure that TLS version and ciphers are same in both directions */ 660 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { 661 if (alt_crypto_info->version != crypto_info->version || 662 alt_crypto_info->cipher_type != crypto_info->cipher_type) { 663 rc = -EINVAL; 664 goto err_crypto_info; 665 } 666 } 667 668 switch (crypto_info->cipher_type) { 669 case TLS_CIPHER_AES_GCM_128: 670 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); 671 break; 672 case TLS_CIPHER_AES_GCM_256: { 673 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); 674 break; 675 } 676 case TLS_CIPHER_AES_CCM_128: 677 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); 678 break; 679 case TLS_CIPHER_CHACHA20_POLY1305: 680 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305); 681 break; 682 case TLS_CIPHER_SM4_GCM: 683 optsize = sizeof(struct tls12_crypto_info_sm4_gcm); 684 break; 685 case TLS_CIPHER_SM4_CCM: 686 optsize = sizeof(struct tls12_crypto_info_sm4_ccm); 687 break; 688 default: 689 rc = -EINVAL; 690 goto err_crypto_info; 691 } 692 693 if (optlen != optsize) { 694 rc = -EINVAL; 695 goto err_crypto_info; 696 } 697 698 rc = copy_from_sockptr_offset(crypto_info + 1, optval, 699 sizeof(*crypto_info), 700 optlen - sizeof(*crypto_info)); 701 if (rc) { 702 rc = -EFAULT; 703 goto err_crypto_info; 704 } 705 706 if (tx) { 707 rc = tls_set_device_offload(sk, ctx); 708 conf = TLS_HW; 709 if (!rc) { 710 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); 711 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); 712 } else { 713 rc = tls_set_sw_offload(sk, ctx, 1); 714 if (rc) 715 goto err_crypto_info; 716 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); 717 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); 718 conf = TLS_SW; 719 } 720 } else { 721 rc = tls_set_device_offload_rx(sk, ctx); 722 conf = TLS_HW; 723 if (!rc) { 724 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); 725 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); 726 } else { 727 rc = tls_set_sw_offload(sk, ctx, 0); 728 if (rc) 729 goto err_crypto_info; 730 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); 731 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); 732 conf = TLS_SW; 733 } 734 tls_sw_strparser_arm(sk, ctx); 735 } 736 737 if (tx) 738 ctx->tx_conf = conf; 739 else 740 ctx->rx_conf = conf; 741 update_sk_prot(sk, ctx); 742 if (tx) { 743 ctx->sk_write_space = sk->sk_write_space; 744 sk->sk_write_space = tls_write_space; 745 } else { 746 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx); 747 748 tls_strp_check_rcv(&rx_ctx->strp); 749 } 750 return 0; 751 752 err_crypto_info: 753 memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); 754 return rc; 755 } 756 757 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval, 758 unsigned int optlen) 759 { 760 struct tls_context *ctx = tls_get_ctx(sk); 761 unsigned int value; 762 763 if (sockptr_is_null(optval) || optlen != sizeof(value)) 764 return -EINVAL; 765 766 if (copy_from_sockptr(&value, optval, sizeof(value))) 767 return -EFAULT; 768 769 if (value > 1) 770 return -EINVAL; 771 772 ctx->zerocopy_sendfile = value; 773 774 return 0; 775 } 776 777 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval, 778 unsigned int optlen) 779 { 780 struct tls_context *ctx = tls_get_ctx(sk); 781 u32 val; 782 int rc; 783 784 if (ctx->prot_info.version != TLS_1_3_VERSION || 785 sockptr_is_null(optval) || optlen < sizeof(val)) 786 return -EINVAL; 787 788 rc = copy_from_sockptr(&val, optval, sizeof(val)); 789 if (rc) 790 return -EFAULT; 791 if (val > 1) 792 return -EINVAL; 793 rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val)); 794 if (rc < 1) 795 return rc == 0 ? -EINVAL : rc; 796 797 lock_sock(sk); 798 rc = -EINVAL; 799 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) { 800 ctx->rx_no_pad = val; 801 tls_update_rx_zc_capable(ctx); 802 rc = 0; 803 } 804 release_sock(sk); 805 806 return rc; 807 } 808 809 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, 810 unsigned int optlen) 811 { 812 int rc = 0; 813 814 switch (optname) { 815 case TLS_TX: 816 case TLS_RX: 817 lock_sock(sk); 818 rc = do_tls_setsockopt_conf(sk, optval, optlen, 819 optname == TLS_TX); 820 release_sock(sk); 821 break; 822 case TLS_TX_ZEROCOPY_RO: 823 lock_sock(sk); 824 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen); 825 release_sock(sk); 826 break; 827 case TLS_RX_EXPECT_NO_PAD: 828 rc = do_tls_setsockopt_no_pad(sk, optval, optlen); 829 break; 830 default: 831 rc = -ENOPROTOOPT; 832 break; 833 } 834 return rc; 835 } 836 837 static int tls_setsockopt(struct sock *sk, int level, int optname, 838 sockptr_t optval, unsigned int optlen) 839 { 840 struct tls_context *ctx = tls_get_ctx(sk); 841 842 if (level != SOL_TLS) 843 return ctx->sk_proto->setsockopt(sk, level, optname, optval, 844 optlen); 845 846 return do_tls_setsockopt(sk, optname, optval, optlen); 847 } 848 849 struct tls_context *tls_ctx_create(struct sock *sk) 850 { 851 struct inet_connection_sock *icsk = inet_csk(sk); 852 struct tls_context *ctx; 853 854 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 855 if (!ctx) 856 return NULL; 857 858 mutex_init(&ctx->tx_lock); 859 rcu_assign_pointer(icsk->icsk_ulp_data, ctx); 860 ctx->sk_proto = READ_ONCE(sk->sk_prot); 861 ctx->sk = sk; 862 return ctx; 863 } 864 865 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 866 const struct proto_ops *base) 867 { 868 ops[TLS_BASE][TLS_BASE] = *base; 869 870 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; 871 ops[TLS_SW ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked; 872 873 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE]; 874 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read; 875 876 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE]; 877 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read; 878 879 #ifdef CONFIG_TLS_DEVICE 880 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; 881 ops[TLS_HW ][TLS_BASE].sendpage_locked = NULL; 882 883 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ]; 884 ops[TLS_HW ][TLS_SW ].sendpage_locked = NULL; 885 886 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ]; 887 888 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ]; 889 890 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ]; 891 ops[TLS_HW ][TLS_HW ].sendpage_locked = NULL; 892 #endif 893 #ifdef CONFIG_TLS_TOE 894 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 895 #endif 896 } 897 898 static void tls_build_proto(struct sock *sk) 899 { 900 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; 901 struct proto *prot = READ_ONCE(sk->sk_prot); 902 903 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ 904 if (ip_ver == TLSV6 && 905 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { 906 mutex_lock(&tcpv6_prot_mutex); 907 if (likely(prot != saved_tcpv6_prot)) { 908 build_protos(tls_prots[TLSV6], prot); 909 build_proto_ops(tls_proto_ops[TLSV6], 910 sk->sk_socket->ops); 911 smp_store_release(&saved_tcpv6_prot, prot); 912 } 913 mutex_unlock(&tcpv6_prot_mutex); 914 } 915 916 if (ip_ver == TLSV4 && 917 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { 918 mutex_lock(&tcpv4_prot_mutex); 919 if (likely(prot != saved_tcpv4_prot)) { 920 build_protos(tls_prots[TLSV4], prot); 921 build_proto_ops(tls_proto_ops[TLSV4], 922 sk->sk_socket->ops); 923 smp_store_release(&saved_tcpv4_prot, prot); 924 } 925 mutex_unlock(&tcpv4_prot_mutex); 926 } 927 } 928 929 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], 930 const struct proto *base) 931 { 932 prot[TLS_BASE][TLS_BASE] = *base; 933 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; 934 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; 935 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; 936 937 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 938 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; 939 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; 940 941 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; 942 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; 943 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 944 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; 945 946 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; 947 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; 948 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; 949 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; 950 951 #ifdef CONFIG_TLS_DEVICE 952 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; 953 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; 954 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; 955 956 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; 957 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; 958 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; 959 960 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; 961 962 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; 963 964 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; 965 #endif 966 #ifdef CONFIG_TLS_TOE 967 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; 968 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; 969 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; 970 #endif 971 } 972 973 static int tls_init(struct sock *sk) 974 { 975 struct tls_context *ctx; 976 int rc = 0; 977 978 tls_build_proto(sk); 979 980 #ifdef CONFIG_TLS_TOE 981 if (tls_toe_bypass(sk)) 982 return 0; 983 #endif 984 985 /* The TLS ulp is currently supported only for TCP sockets 986 * in ESTABLISHED state. 987 * Supporting sockets in LISTEN state will require us 988 * to modify the accept implementation to clone rather then 989 * share the ulp context. 990 */ 991 if (sk->sk_state != TCP_ESTABLISHED) 992 return -ENOTCONN; 993 994 /* allocate tls context */ 995 write_lock_bh(&sk->sk_callback_lock); 996 ctx = tls_ctx_create(sk); 997 if (!ctx) { 998 rc = -ENOMEM; 999 goto out; 1000 } 1001 1002 ctx->tx_conf = TLS_BASE; 1003 ctx->rx_conf = TLS_BASE; 1004 update_sk_prot(sk, ctx); 1005 out: 1006 write_unlock_bh(&sk->sk_callback_lock); 1007 return rc; 1008 } 1009 1010 static void tls_update(struct sock *sk, struct proto *p, 1011 void (*write_space)(struct sock *sk)) 1012 { 1013 struct tls_context *ctx; 1014 1015 WARN_ON_ONCE(sk->sk_prot == p); 1016 1017 ctx = tls_get_ctx(sk); 1018 if (likely(ctx)) { 1019 ctx->sk_write_space = write_space; 1020 ctx->sk_proto = p; 1021 } else { 1022 /* Pairs with lockless read in sk_clone_lock(). */ 1023 WRITE_ONCE(sk->sk_prot, p); 1024 sk->sk_write_space = write_space; 1025 } 1026 } 1027 1028 static u16 tls_user_config(struct tls_context *ctx, bool tx) 1029 { 1030 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 1031 1032 switch (config) { 1033 case TLS_BASE: 1034 return TLS_CONF_BASE; 1035 case TLS_SW: 1036 return TLS_CONF_SW; 1037 case TLS_HW: 1038 return TLS_CONF_HW; 1039 case TLS_HW_RECORD: 1040 return TLS_CONF_HW_RECORD; 1041 } 1042 return 0; 1043 } 1044 1045 static int tls_get_info(const struct sock *sk, struct sk_buff *skb) 1046 { 1047 u16 version, cipher_type; 1048 struct tls_context *ctx; 1049 struct nlattr *start; 1050 int err; 1051 1052 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); 1053 if (!start) 1054 return -EMSGSIZE; 1055 1056 rcu_read_lock(); 1057 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); 1058 if (!ctx) { 1059 err = 0; 1060 goto nla_failure; 1061 } 1062 version = ctx->prot_info.version; 1063 if (version) { 1064 err = nla_put_u16(skb, TLS_INFO_VERSION, version); 1065 if (err) 1066 goto nla_failure; 1067 } 1068 cipher_type = ctx->prot_info.cipher_type; 1069 if (cipher_type) { 1070 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); 1071 if (err) 1072 goto nla_failure; 1073 } 1074 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); 1075 if (err) 1076 goto nla_failure; 1077 1078 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); 1079 if (err) 1080 goto nla_failure; 1081 1082 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) { 1083 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX); 1084 if (err) 1085 goto nla_failure; 1086 } 1087 if (ctx->rx_no_pad) { 1088 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD); 1089 if (err) 1090 goto nla_failure; 1091 } 1092 1093 rcu_read_unlock(); 1094 nla_nest_end(skb, start); 1095 return 0; 1096 1097 nla_failure: 1098 rcu_read_unlock(); 1099 nla_nest_cancel(skb, start); 1100 return err; 1101 } 1102 1103 static size_t tls_get_info_size(const struct sock *sk) 1104 { 1105 size_t size = 0; 1106 1107 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ 1108 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ 1109 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ 1110 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ 1111 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 1112 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */ 1113 nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */ 1114 0; 1115 1116 return size; 1117 } 1118 1119 static int __net_init tls_init_net(struct net *net) 1120 { 1121 int err; 1122 1123 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); 1124 if (!net->mib.tls_statistics) 1125 return -ENOMEM; 1126 1127 err = tls_proc_init(net); 1128 if (err) 1129 goto err_free_stats; 1130 1131 return 0; 1132 err_free_stats: 1133 free_percpu(net->mib.tls_statistics); 1134 return err; 1135 } 1136 1137 static void __net_exit tls_exit_net(struct net *net) 1138 { 1139 tls_proc_fini(net); 1140 free_percpu(net->mib.tls_statistics); 1141 } 1142 1143 static struct pernet_operations tls_proc_ops = { 1144 .init = tls_init_net, 1145 .exit = tls_exit_net, 1146 }; 1147 1148 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { 1149 .name = "tls", 1150 .owner = THIS_MODULE, 1151 .init = tls_init, 1152 .update = tls_update, 1153 .get_info = tls_get_info, 1154 .get_info_size = tls_get_info_size, 1155 }; 1156 1157 static int __init tls_register(void) 1158 { 1159 int err; 1160 1161 err = register_pernet_subsys(&tls_proc_ops); 1162 if (err) 1163 return err; 1164 1165 err = tls_strp_dev_init(); 1166 if (err) 1167 goto err_pernet; 1168 1169 err = tls_device_init(); 1170 if (err) 1171 goto err_strp; 1172 1173 tcp_register_ulp(&tcp_tls_ulp_ops); 1174 1175 return 0; 1176 err_strp: 1177 tls_strp_dev_exit(); 1178 err_pernet: 1179 unregister_pernet_subsys(&tls_proc_ops); 1180 return err; 1181 } 1182 1183 static void __exit tls_unregister(void) 1184 { 1185 tcp_unregister_ulp(&tcp_tls_ulp_ops); 1186 tls_strp_dev_exit(); 1187 tls_device_cleanup(); 1188 unregister_pernet_subsys(&tls_proc_ops); 1189 } 1190 1191 module_init(tls_register); 1192 module_exit(tls_unregister); 1193