xref: /linux/net/tls/tls_device_fallback.c (revision 086099893fcebeae50f9020588080de43c82e4c0)
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <net/tls.h>
33 #include <crypto/aead.h>
34 #include <crypto/scatterwalk.h>
35 #include <net/ip6_checksum.h>
36 
37 static void chain_to_walk(struct scatterlist *sg, struct scatter_walk *walk)
38 {
39 	struct scatterlist *src = walk->sg;
40 	int diff = walk->offset - src->offset;
41 
42 	sg_set_page(sg, sg_page(src),
43 		    src->length - diff, walk->offset);
44 
45 	scatterwalk_crypto_chain(sg, sg_next(src), 2);
46 }
47 
48 static int tls_enc_record(struct aead_request *aead_req,
49 			  struct crypto_aead *aead, char *aad,
50 			  char *iv, __be64 rcd_sn,
51 			  struct scatter_walk *in,
52 			  struct scatter_walk *out, int *in_len,
53 			  struct tls_prot_info *prot)
54 {
55 	unsigned char buf[TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE];
56 	struct scatterlist sg_in[3];
57 	struct scatterlist sg_out[3];
58 	u16 len;
59 	int rc;
60 
61 	len = min_t(int, *in_len, ARRAY_SIZE(buf));
62 
63 	scatterwalk_copychunks(buf, in, len, 0);
64 	scatterwalk_copychunks(buf, out, len, 1);
65 
66 	*in_len -= len;
67 	if (!*in_len)
68 		return 0;
69 
70 	scatterwalk_pagedone(in, 0, 1);
71 	scatterwalk_pagedone(out, 1, 1);
72 
73 	len = buf[4] | (buf[3] << 8);
74 	len -= TLS_CIPHER_AES_GCM_128_IV_SIZE;
75 
76 	tls_make_aad(aad, len - TLS_CIPHER_AES_GCM_128_TAG_SIZE,
77 		(char *)&rcd_sn, buf[0], prot);
78 
79 	memcpy(iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, buf + TLS_HEADER_SIZE,
80 	       TLS_CIPHER_AES_GCM_128_IV_SIZE);
81 
82 	sg_init_table(sg_in, ARRAY_SIZE(sg_in));
83 	sg_init_table(sg_out, ARRAY_SIZE(sg_out));
84 	sg_set_buf(sg_in, aad, TLS_AAD_SPACE_SIZE);
85 	sg_set_buf(sg_out, aad, TLS_AAD_SPACE_SIZE);
86 	chain_to_walk(sg_in + 1, in);
87 	chain_to_walk(sg_out + 1, out);
88 
89 	*in_len -= len;
90 	if (*in_len < 0) {
91 		*in_len += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
92 		/* the input buffer doesn't contain the entire record.
93 		 * trim len accordingly. The resulting authentication tag
94 		 * will contain garbage, but we don't care, so we won't
95 		 * include any of it in the output skb
96 		 * Note that we assume the output buffer length
97 		 * is larger then input buffer length + tag size
98 		 */
99 		if (*in_len < 0)
100 			len += *in_len;
101 
102 		*in_len = 0;
103 	}
104 
105 	if (*in_len) {
106 		scatterwalk_copychunks(NULL, in, len, 2);
107 		scatterwalk_pagedone(in, 0, 1);
108 		scatterwalk_copychunks(NULL, out, len, 2);
109 		scatterwalk_pagedone(out, 1, 1);
110 	}
111 
112 	len -= TLS_CIPHER_AES_GCM_128_TAG_SIZE;
113 	aead_request_set_crypt(aead_req, sg_in, sg_out, len, iv);
114 
115 	rc = crypto_aead_encrypt(aead_req);
116 
117 	return rc;
118 }
119 
120 static void tls_init_aead_request(struct aead_request *aead_req,
121 				  struct crypto_aead *aead)
122 {
123 	aead_request_set_tfm(aead_req, aead);
124 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
125 }
126 
127 static struct aead_request *tls_alloc_aead_request(struct crypto_aead *aead,
128 						   gfp_t flags)
129 {
130 	unsigned int req_size = sizeof(struct aead_request) +
131 		crypto_aead_reqsize(aead);
132 	struct aead_request *aead_req;
133 
134 	aead_req = kzalloc(req_size, flags);
135 	if (aead_req)
136 		tls_init_aead_request(aead_req, aead);
137 	return aead_req;
138 }
139 
140 static int tls_enc_records(struct aead_request *aead_req,
141 			   struct crypto_aead *aead, struct scatterlist *sg_in,
142 			   struct scatterlist *sg_out, char *aad, char *iv,
143 			   u64 rcd_sn, int len, struct tls_prot_info *prot)
144 {
145 	struct scatter_walk out, in;
146 	int rc;
147 
148 	scatterwalk_start(&in, sg_in);
149 	scatterwalk_start(&out, sg_out);
150 
151 	do {
152 		rc = tls_enc_record(aead_req, aead, aad, iv,
153 				    cpu_to_be64(rcd_sn), &in, &out, &len, prot);
154 		rcd_sn++;
155 
156 	} while (rc == 0 && len);
157 
158 	scatterwalk_done(&in, 0, 0);
159 	scatterwalk_done(&out, 1, 0);
160 
161 	return rc;
162 }
163 
164 /* Can't use icsk->icsk_af_ops->send_check here because the ip addresses
165  * might have been changed by NAT.
166  */
167 static void update_chksum(struct sk_buff *skb, int headln)
168 {
169 	struct tcphdr *th = tcp_hdr(skb);
170 	int datalen = skb->len - headln;
171 	const struct ipv6hdr *ipv6h;
172 	const struct iphdr *iph;
173 
174 	/* We only changed the payload so if we are using partial we don't
175 	 * need to update anything.
176 	 */
177 	if (likely(skb->ip_summed == CHECKSUM_PARTIAL))
178 		return;
179 
180 	skb->ip_summed = CHECKSUM_PARTIAL;
181 	skb->csum_start = skb_transport_header(skb) - skb->head;
182 	skb->csum_offset = offsetof(struct tcphdr, check);
183 
184 	if (skb->sk->sk_family == AF_INET6) {
185 		ipv6h = ipv6_hdr(skb);
186 		th->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
187 					     datalen, IPPROTO_TCP, 0);
188 	} else {
189 		iph = ip_hdr(skb);
190 		th->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, datalen,
191 					       IPPROTO_TCP, 0);
192 	}
193 }
194 
195 static void complete_skb(struct sk_buff *nskb, struct sk_buff *skb, int headln)
196 {
197 	struct sock *sk = skb->sk;
198 	int delta;
199 
200 	skb_copy_header(nskb, skb);
201 
202 	skb_put(nskb, skb->len);
203 	memcpy(nskb->data, skb->data, headln);
204 
205 	nskb->destructor = skb->destructor;
206 	nskb->sk = sk;
207 	skb->destructor = NULL;
208 	skb->sk = NULL;
209 
210 	update_chksum(nskb, headln);
211 
212 	/* sock_efree means skb must gone through skb_orphan_partial() */
213 	if (nskb->destructor == sock_efree)
214 		return;
215 
216 	delta = nskb->truesize - skb->truesize;
217 	if (likely(delta < 0))
218 		WARN_ON_ONCE(refcount_sub_and_test(-delta, &sk->sk_wmem_alloc));
219 	else if (delta)
220 		refcount_add(delta, &sk->sk_wmem_alloc);
221 }
222 
223 /* This function may be called after the user socket is already
224  * closed so make sure we don't use anything freed during
225  * tls_sk_proto_close here
226  */
227 
228 static int fill_sg_in(struct scatterlist *sg_in,
229 		      struct sk_buff *skb,
230 		      struct tls_offload_context_tx *ctx,
231 		      u64 *rcd_sn,
232 		      s32 *sync_size,
233 		      int *resync_sgs)
234 {
235 	int tcp_payload_offset = skb_transport_offset(skb) + tcp_hdrlen(skb);
236 	int payload_len = skb->len - tcp_payload_offset;
237 	u32 tcp_seq = ntohl(tcp_hdr(skb)->seq);
238 	struct tls_record_info *record;
239 	unsigned long flags;
240 	int remaining;
241 	int i;
242 
243 	spin_lock_irqsave(&ctx->lock, flags);
244 	record = tls_get_record(ctx, tcp_seq, rcd_sn);
245 	if (!record) {
246 		spin_unlock_irqrestore(&ctx->lock, flags);
247 		return -EINVAL;
248 	}
249 
250 	*sync_size = tcp_seq - tls_record_start_seq(record);
251 	if (*sync_size < 0) {
252 		int is_start_marker = tls_record_is_start_marker(record);
253 
254 		spin_unlock_irqrestore(&ctx->lock, flags);
255 		/* This should only occur if the relevant record was
256 		 * already acked. In that case it should be ok
257 		 * to drop the packet and avoid retransmission.
258 		 *
259 		 * There is a corner case where the packet contains
260 		 * both an acked and a non-acked record.
261 		 * We currently don't handle that case and rely
262 		 * on TCP to retranmit a packet that doesn't contain
263 		 * already acked payload.
264 		 */
265 		if (!is_start_marker)
266 			*sync_size = 0;
267 		return -EINVAL;
268 	}
269 
270 	remaining = *sync_size;
271 	for (i = 0; remaining > 0; i++) {
272 		skb_frag_t *frag = &record->frags[i];
273 
274 		__skb_frag_ref(frag);
275 		sg_set_page(sg_in + i, skb_frag_page(frag),
276 			    skb_frag_size(frag), skb_frag_off(frag));
277 
278 		remaining -= skb_frag_size(frag);
279 
280 		if (remaining < 0)
281 			sg_in[i].length += remaining;
282 	}
283 	*resync_sgs = i;
284 
285 	spin_unlock_irqrestore(&ctx->lock, flags);
286 	if (skb_to_sgvec(skb, &sg_in[i], tcp_payload_offset, payload_len) < 0)
287 		return -EINVAL;
288 
289 	return 0;
290 }
291 
292 static void fill_sg_out(struct scatterlist sg_out[3], void *buf,
293 			struct tls_context *tls_ctx,
294 			struct sk_buff *nskb,
295 			int tcp_payload_offset,
296 			int payload_len,
297 			int sync_size,
298 			void *dummy_buf)
299 {
300 	sg_set_buf(&sg_out[0], dummy_buf, sync_size);
301 	sg_set_buf(&sg_out[1], nskb->data + tcp_payload_offset, payload_len);
302 	/* Add room for authentication tag produced by crypto */
303 	dummy_buf += sync_size;
304 	sg_set_buf(&sg_out[2], dummy_buf, TLS_CIPHER_AES_GCM_128_TAG_SIZE);
305 }
306 
307 static struct sk_buff *tls_enc_skb(struct tls_context *tls_ctx,
308 				   struct scatterlist sg_out[3],
309 				   struct scatterlist *sg_in,
310 				   struct sk_buff *skb,
311 				   s32 sync_size, u64 rcd_sn)
312 {
313 	int tcp_payload_offset = skb_transport_offset(skb) + tcp_hdrlen(skb);
314 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
315 	int payload_len = skb->len - tcp_payload_offset;
316 	void *buf, *iv, *aad, *dummy_buf;
317 	struct aead_request *aead_req;
318 	struct sk_buff *nskb = NULL;
319 	int buf_len;
320 
321 	aead_req = tls_alloc_aead_request(ctx->aead_send, GFP_ATOMIC);
322 	if (!aead_req)
323 		return NULL;
324 
325 	buf_len = TLS_CIPHER_AES_GCM_128_SALT_SIZE +
326 		  TLS_CIPHER_AES_GCM_128_IV_SIZE +
327 		  TLS_AAD_SPACE_SIZE +
328 		  sync_size +
329 		  TLS_CIPHER_AES_GCM_128_TAG_SIZE;
330 	buf = kmalloc(buf_len, GFP_ATOMIC);
331 	if (!buf)
332 		goto free_req;
333 
334 	iv = buf;
335 	memcpy(iv, tls_ctx->crypto_send.aes_gcm_128.salt,
336 	       TLS_CIPHER_AES_GCM_128_SALT_SIZE);
337 	aad = buf + TLS_CIPHER_AES_GCM_128_SALT_SIZE +
338 	      TLS_CIPHER_AES_GCM_128_IV_SIZE;
339 	dummy_buf = aad + TLS_AAD_SPACE_SIZE;
340 
341 	nskb = alloc_skb(skb_headroom(skb) + skb->len, GFP_ATOMIC);
342 	if (!nskb)
343 		goto free_buf;
344 
345 	skb_reserve(nskb, skb_headroom(skb));
346 
347 	fill_sg_out(sg_out, buf, tls_ctx, nskb, tcp_payload_offset,
348 		    payload_len, sync_size, dummy_buf);
349 
350 	if (tls_enc_records(aead_req, ctx->aead_send, sg_in, sg_out, aad, iv,
351 			    rcd_sn, sync_size + payload_len,
352 			    &tls_ctx->prot_info) < 0)
353 		goto free_nskb;
354 
355 	complete_skb(nskb, skb, tcp_payload_offset);
356 
357 	/* validate_xmit_skb_list assumes that if the skb wasn't segmented
358 	 * nskb->prev will point to the skb itself
359 	 */
360 	nskb->prev = nskb;
361 
362 free_buf:
363 	kfree(buf);
364 free_req:
365 	kfree(aead_req);
366 	return nskb;
367 free_nskb:
368 	kfree_skb(nskb);
369 	nskb = NULL;
370 	goto free_buf;
371 }
372 
373 static struct sk_buff *tls_sw_fallback(struct sock *sk, struct sk_buff *skb)
374 {
375 	int tcp_payload_offset = skb_transport_offset(skb) + tcp_hdrlen(skb);
376 	struct tls_context *tls_ctx = tls_get_ctx(sk);
377 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
378 	int payload_len = skb->len - tcp_payload_offset;
379 	struct scatterlist *sg_in, sg_out[3];
380 	struct sk_buff *nskb = NULL;
381 	int sg_in_max_elements;
382 	int resync_sgs = 0;
383 	s32 sync_size = 0;
384 	u64 rcd_sn;
385 
386 	/* worst case is:
387 	 * MAX_SKB_FRAGS in tls_record_info
388 	 * MAX_SKB_FRAGS + 1 in SKB head and frags.
389 	 */
390 	sg_in_max_elements = 2 * MAX_SKB_FRAGS + 1;
391 
392 	if (!payload_len)
393 		return skb;
394 
395 	sg_in = kmalloc_array(sg_in_max_elements, sizeof(*sg_in), GFP_ATOMIC);
396 	if (!sg_in)
397 		goto free_orig;
398 
399 	sg_init_table(sg_in, sg_in_max_elements);
400 	sg_init_table(sg_out, ARRAY_SIZE(sg_out));
401 
402 	if (fill_sg_in(sg_in, skb, ctx, &rcd_sn, &sync_size, &resync_sgs)) {
403 		/* bypass packets before kernel TLS socket option was set */
404 		if (sync_size < 0 && payload_len <= -sync_size)
405 			nskb = skb_get(skb);
406 		goto put_sg;
407 	}
408 
409 	nskb = tls_enc_skb(tls_ctx, sg_out, sg_in, skb, sync_size, rcd_sn);
410 
411 put_sg:
412 	while (resync_sgs)
413 		put_page(sg_page(&sg_in[--resync_sgs]));
414 	kfree(sg_in);
415 free_orig:
416 	if (nskb)
417 		consume_skb(skb);
418 	else
419 		kfree_skb(skb);
420 	return nskb;
421 }
422 
423 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
424 				      struct net_device *dev,
425 				      struct sk_buff *skb)
426 {
427 	if (dev == tls_get_ctx(sk)->netdev || netif_is_bond_master(dev))
428 		return skb;
429 
430 	return tls_sw_fallback(sk, skb);
431 }
432 EXPORT_SYMBOL_GPL(tls_validate_xmit_skb);
433 
434 struct sk_buff *tls_validate_xmit_skb_sw(struct sock *sk,
435 					 struct net_device *dev,
436 					 struct sk_buff *skb)
437 {
438 	return tls_sw_fallback(sk, skb);
439 }
440 
441 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb)
442 {
443 	return tls_sw_fallback(skb->sk, skb);
444 }
445 EXPORT_SYMBOL_GPL(tls_encrypt_skb);
446 
447 int tls_sw_fallback_init(struct sock *sk,
448 			 struct tls_offload_context_tx *offload_ctx,
449 			 struct tls_crypto_info *crypto_info)
450 {
451 	const u8 *key;
452 	int rc;
453 
454 	offload_ctx->aead_send =
455 	    crypto_alloc_aead("gcm(aes)", 0, CRYPTO_ALG_ASYNC);
456 	if (IS_ERR(offload_ctx->aead_send)) {
457 		rc = PTR_ERR(offload_ctx->aead_send);
458 		pr_err_ratelimited("crypto_alloc_aead failed rc=%d\n", rc);
459 		offload_ctx->aead_send = NULL;
460 		goto err_out;
461 	}
462 
463 	key = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->key;
464 
465 	rc = crypto_aead_setkey(offload_ctx->aead_send, key,
466 				TLS_CIPHER_AES_GCM_128_KEY_SIZE);
467 	if (rc)
468 		goto free_aead;
469 
470 	rc = crypto_aead_setauthsize(offload_ctx->aead_send,
471 				     TLS_CIPHER_AES_GCM_128_TAG_SIZE);
472 	if (rc)
473 		goto free_aead;
474 
475 	return 0;
476 free_aead:
477 	crypto_free_aead(offload_ctx->aead_send);
478 err_out:
479 	return rc;
480 }
481