1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32 #include <crypto/aead.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/netdevice.h> 36 #include <net/dst.h> 37 #include <net/inet_connection_sock.h> 38 #include <net/tcp.h> 39 #include <net/tls.h> 40 41 #include "trace.h" 42 43 /* device_offload_lock is used to synchronize tls_dev_add 44 * against NETDEV_DOWN notifications. 45 */ 46 static DECLARE_RWSEM(device_offload_lock); 47 48 static void tls_device_gc_task(struct work_struct *work); 49 50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task); 51 static LIST_HEAD(tls_device_gc_list); 52 static LIST_HEAD(tls_device_list); 53 static LIST_HEAD(tls_device_down_list); 54 static DEFINE_SPINLOCK(tls_device_lock); 55 56 static void tls_device_free_ctx(struct tls_context *ctx) 57 { 58 if (ctx->tx_conf == TLS_HW) { 59 kfree(tls_offload_ctx_tx(ctx)); 60 kfree(ctx->tx.rec_seq); 61 kfree(ctx->tx.iv); 62 } 63 64 if (ctx->rx_conf == TLS_HW) 65 kfree(tls_offload_ctx_rx(ctx)); 66 67 tls_ctx_free(NULL, ctx); 68 } 69 70 static void tls_device_gc_task(struct work_struct *work) 71 { 72 struct tls_context *ctx, *tmp; 73 unsigned long flags; 74 LIST_HEAD(gc_list); 75 76 spin_lock_irqsave(&tls_device_lock, flags); 77 list_splice_init(&tls_device_gc_list, &gc_list); 78 spin_unlock_irqrestore(&tls_device_lock, flags); 79 80 list_for_each_entry_safe(ctx, tmp, &gc_list, list) { 81 struct net_device *netdev = ctx->netdev; 82 83 if (netdev && ctx->tx_conf == TLS_HW) { 84 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 85 TLS_OFFLOAD_CTX_DIR_TX); 86 dev_put(netdev); 87 ctx->netdev = NULL; 88 } 89 90 list_del(&ctx->list); 91 tls_device_free_ctx(ctx); 92 } 93 } 94 95 static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 96 { 97 unsigned long flags; 98 99 spin_lock_irqsave(&tls_device_lock, flags); 100 list_move_tail(&ctx->list, &tls_device_gc_list); 101 102 /* schedule_work inside the spinlock 103 * to make sure tls_device_down waits for that work. 104 */ 105 schedule_work(&tls_device_gc_work); 106 107 spin_unlock_irqrestore(&tls_device_lock, flags); 108 } 109 110 /* We assume that the socket is already connected */ 111 static struct net_device *get_netdev_for_sock(struct sock *sk) 112 { 113 struct dst_entry *dst = sk_dst_get(sk); 114 struct net_device *netdev = NULL; 115 116 if (likely(dst)) { 117 netdev = netdev_sk_get_lowest_dev(dst->dev, sk); 118 dev_hold(netdev); 119 } 120 121 dst_release(dst); 122 123 return netdev; 124 } 125 126 static void destroy_record(struct tls_record_info *record) 127 { 128 int i; 129 130 for (i = 0; i < record->num_frags; i++) 131 __skb_frag_unref(&record->frags[i], false); 132 kfree(record); 133 } 134 135 static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 136 { 137 struct tls_record_info *info, *temp; 138 139 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 140 list_del(&info->list); 141 destroy_record(info); 142 } 143 144 offload_ctx->retransmit_hint = NULL; 145 } 146 147 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) 148 { 149 struct tls_context *tls_ctx = tls_get_ctx(sk); 150 struct tls_record_info *info, *temp; 151 struct tls_offload_context_tx *ctx; 152 u64 deleted_records = 0; 153 unsigned long flags; 154 155 if (!tls_ctx) 156 return; 157 158 ctx = tls_offload_ctx_tx(tls_ctx); 159 160 spin_lock_irqsave(&ctx->lock, flags); 161 info = ctx->retransmit_hint; 162 if (info && !before(acked_seq, info->end_seq)) 163 ctx->retransmit_hint = NULL; 164 165 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 166 if (before(acked_seq, info->end_seq)) 167 break; 168 list_del(&info->list); 169 170 destroy_record(info); 171 deleted_records++; 172 } 173 174 ctx->unacked_record_sn += deleted_records; 175 spin_unlock_irqrestore(&ctx->lock, flags); 176 } 177 178 /* At this point, there should be no references on this 179 * socket and no in-flight SKBs associated with this 180 * socket, so it is safe to free all the resources. 181 */ 182 void tls_device_sk_destruct(struct sock *sk) 183 { 184 struct tls_context *tls_ctx = tls_get_ctx(sk); 185 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 186 187 tls_ctx->sk_destruct(sk); 188 189 if (tls_ctx->tx_conf == TLS_HW) { 190 if (ctx->open_record) 191 destroy_record(ctx->open_record); 192 delete_all_records(ctx); 193 crypto_free_aead(ctx->aead_send); 194 clean_acked_data_disable(inet_csk(sk)); 195 } 196 197 if (refcount_dec_and_test(&tls_ctx->refcount)) 198 tls_device_queue_ctx_destruction(tls_ctx); 199 } 200 EXPORT_SYMBOL_GPL(tls_device_sk_destruct); 201 202 void tls_device_free_resources_tx(struct sock *sk) 203 { 204 struct tls_context *tls_ctx = tls_get_ctx(sk); 205 206 tls_free_partial_record(sk, tls_ctx); 207 } 208 209 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) 210 { 211 struct tls_context *tls_ctx = tls_get_ctx(sk); 212 213 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); 214 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 215 } 216 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); 217 218 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, 219 u32 seq) 220 { 221 struct net_device *netdev; 222 struct sk_buff *skb; 223 int err = 0; 224 u8 *rcd_sn; 225 226 skb = tcp_write_queue_tail(sk); 227 if (skb) 228 TCP_SKB_CB(skb)->eor = 1; 229 230 rcd_sn = tls_ctx->tx.rec_seq; 231 232 trace_tls_device_tx_resync_send(sk, seq, rcd_sn); 233 down_read(&device_offload_lock); 234 netdev = tls_ctx->netdev; 235 if (netdev) 236 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, 237 rcd_sn, 238 TLS_OFFLOAD_CTX_DIR_TX); 239 up_read(&device_offload_lock); 240 if (err) 241 return; 242 243 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 244 } 245 246 static void tls_append_frag(struct tls_record_info *record, 247 struct page_frag *pfrag, 248 int size) 249 { 250 skb_frag_t *frag; 251 252 frag = &record->frags[record->num_frags - 1]; 253 if (skb_frag_page(frag) == pfrag->page && 254 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { 255 skb_frag_size_add(frag, size); 256 } else { 257 ++frag; 258 __skb_frag_set_page(frag, pfrag->page); 259 skb_frag_off_set(frag, pfrag->offset); 260 skb_frag_size_set(frag, size); 261 ++record->num_frags; 262 get_page(pfrag->page); 263 } 264 265 pfrag->offset += size; 266 record->len += size; 267 } 268 269 static int tls_push_record(struct sock *sk, 270 struct tls_context *ctx, 271 struct tls_offload_context_tx *offload_ctx, 272 struct tls_record_info *record, 273 int flags) 274 { 275 struct tls_prot_info *prot = &ctx->prot_info; 276 struct tcp_sock *tp = tcp_sk(sk); 277 skb_frag_t *frag; 278 int i; 279 280 record->end_seq = tp->write_seq + record->len; 281 list_add_tail_rcu(&record->list, &offload_ctx->records_list); 282 offload_ctx->open_record = NULL; 283 284 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) 285 tls_device_resync_tx(sk, ctx, tp->write_seq); 286 287 tls_advance_record_sn(sk, prot, &ctx->tx); 288 289 for (i = 0; i < record->num_frags; i++) { 290 frag = &record->frags[i]; 291 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 292 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 293 skb_frag_size(frag), skb_frag_off(frag)); 294 sk_mem_charge(sk, skb_frag_size(frag)); 295 get_page(skb_frag_page(frag)); 296 } 297 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 298 299 /* all ready, send */ 300 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 301 } 302 303 static int tls_device_record_close(struct sock *sk, 304 struct tls_context *ctx, 305 struct tls_record_info *record, 306 struct page_frag *pfrag, 307 unsigned char record_type) 308 { 309 struct tls_prot_info *prot = &ctx->prot_info; 310 int ret; 311 312 /* append tag 313 * device will fill in the tag, we just need to append a placeholder 314 * use socket memory to improve coalescing (re-using a single buffer 315 * increases frag count) 316 * if we can't allocate memory now, steal some back from data 317 */ 318 if (likely(skb_page_frag_refill(prot->tag_size, pfrag, 319 sk->sk_allocation))) { 320 ret = 0; 321 tls_append_frag(record, pfrag, prot->tag_size); 322 } else { 323 ret = prot->tag_size; 324 if (record->len <= prot->overhead_size) 325 return -ENOMEM; 326 } 327 328 /* fill prepend */ 329 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), 330 record->len - prot->overhead_size, 331 record_type); 332 return ret; 333 } 334 335 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 336 struct page_frag *pfrag, 337 size_t prepend_size) 338 { 339 struct tls_record_info *record; 340 skb_frag_t *frag; 341 342 record = kmalloc(sizeof(*record), GFP_KERNEL); 343 if (!record) 344 return -ENOMEM; 345 346 frag = &record->frags[0]; 347 __skb_frag_set_page(frag, pfrag->page); 348 skb_frag_off_set(frag, pfrag->offset); 349 skb_frag_size_set(frag, prepend_size); 350 351 get_page(pfrag->page); 352 pfrag->offset += prepend_size; 353 354 record->num_frags = 1; 355 record->len = prepend_size; 356 offload_ctx->open_record = record; 357 return 0; 358 } 359 360 static int tls_do_allocation(struct sock *sk, 361 struct tls_offload_context_tx *offload_ctx, 362 struct page_frag *pfrag, 363 size_t prepend_size) 364 { 365 int ret; 366 367 if (!offload_ctx->open_record) { 368 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 369 sk->sk_allocation))) { 370 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); 371 sk_stream_moderate_sndbuf(sk); 372 return -ENOMEM; 373 } 374 375 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 376 if (ret) 377 return ret; 378 379 if (pfrag->size > pfrag->offset) 380 return 0; 381 } 382 383 if (!sk_page_frag_refill(sk, pfrag)) 384 return -ENOMEM; 385 386 return 0; 387 } 388 389 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) 390 { 391 size_t pre_copy, nocache; 392 393 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); 394 if (pre_copy) { 395 pre_copy = min(pre_copy, bytes); 396 if (copy_from_iter(addr, pre_copy, i) != pre_copy) 397 return -EFAULT; 398 bytes -= pre_copy; 399 addr += pre_copy; 400 } 401 402 nocache = round_down(bytes, SMP_CACHE_BYTES); 403 if (copy_from_iter_nocache(addr, nocache, i) != nocache) 404 return -EFAULT; 405 bytes -= nocache; 406 addr += nocache; 407 408 if (bytes && copy_from_iter(addr, bytes, i) != bytes) 409 return -EFAULT; 410 411 return 0; 412 } 413 414 static int tls_push_data(struct sock *sk, 415 struct iov_iter *msg_iter, 416 size_t size, int flags, 417 unsigned char record_type) 418 { 419 struct tls_context *tls_ctx = tls_get_ctx(sk); 420 struct tls_prot_info *prot = &tls_ctx->prot_info; 421 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 422 struct tls_record_info *record; 423 int tls_push_record_flags; 424 struct page_frag *pfrag; 425 size_t orig_size = size; 426 u32 max_open_record_len; 427 bool more = false; 428 bool done = false; 429 int copy, rc = 0; 430 long timeo; 431 432 if (flags & 433 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) 434 return -EOPNOTSUPP; 435 436 if (unlikely(sk->sk_err)) 437 return -sk->sk_err; 438 439 flags |= MSG_SENDPAGE_DECRYPTED; 440 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST; 441 442 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 443 if (tls_is_partially_sent_record(tls_ctx)) { 444 rc = tls_push_partial_record(sk, tls_ctx, flags); 445 if (rc < 0) 446 return rc; 447 } 448 449 pfrag = sk_page_frag(sk); 450 451 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 452 * we need to leave room for an authentication tag. 453 */ 454 max_open_record_len = TLS_MAX_PAYLOAD_SIZE + 455 prot->prepend_size; 456 do { 457 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); 458 if (unlikely(rc)) { 459 rc = sk_stream_wait_memory(sk, &timeo); 460 if (!rc) 461 continue; 462 463 record = ctx->open_record; 464 if (!record) 465 break; 466 handle_error: 467 if (record_type != TLS_RECORD_TYPE_DATA) { 468 /* avoid sending partial 469 * record with type != 470 * application_data 471 */ 472 size = orig_size; 473 destroy_record(record); 474 ctx->open_record = NULL; 475 } else if (record->len > prot->prepend_size) { 476 goto last_record; 477 } 478 479 break; 480 } 481 482 record = ctx->open_record; 483 copy = min_t(size_t, size, (pfrag->size - pfrag->offset)); 484 copy = min_t(size_t, copy, (max_open_record_len - record->len)); 485 486 if (copy) { 487 rc = tls_device_copy_data(page_address(pfrag->page) + 488 pfrag->offset, copy, msg_iter); 489 if (rc) 490 goto handle_error; 491 tls_append_frag(record, pfrag, copy); 492 } 493 494 size -= copy; 495 if (!size) { 496 last_record: 497 tls_push_record_flags = flags; 498 if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) { 499 more = true; 500 break; 501 } 502 503 done = true; 504 } 505 506 if (done || record->len >= max_open_record_len || 507 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 508 rc = tls_device_record_close(sk, tls_ctx, record, 509 pfrag, record_type); 510 if (rc) { 511 if (rc > 0) { 512 size += rc; 513 } else { 514 size = orig_size; 515 destroy_record(record); 516 ctx->open_record = NULL; 517 break; 518 } 519 } 520 521 rc = tls_push_record(sk, 522 tls_ctx, 523 ctx, 524 record, 525 tls_push_record_flags); 526 if (rc < 0) 527 break; 528 } 529 } while (!done); 530 531 tls_ctx->pending_open_record_frags = more; 532 533 if (orig_size - size > 0) 534 rc = orig_size - size; 535 536 return rc; 537 } 538 539 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 540 { 541 unsigned char record_type = TLS_RECORD_TYPE_DATA; 542 struct tls_context *tls_ctx = tls_get_ctx(sk); 543 int rc; 544 545 mutex_lock(&tls_ctx->tx_lock); 546 lock_sock(sk); 547 548 if (unlikely(msg->msg_controllen)) { 549 rc = tls_proccess_cmsg(sk, msg, &record_type); 550 if (rc) 551 goto out; 552 } 553 554 rc = tls_push_data(sk, &msg->msg_iter, size, 555 msg->msg_flags, record_type); 556 557 out: 558 release_sock(sk); 559 mutex_unlock(&tls_ctx->tx_lock); 560 return rc; 561 } 562 563 int tls_device_sendpage(struct sock *sk, struct page *page, 564 int offset, size_t size, int flags) 565 { 566 struct tls_context *tls_ctx = tls_get_ctx(sk); 567 struct iov_iter msg_iter; 568 char *kaddr; 569 struct kvec iov; 570 int rc; 571 572 if (flags & MSG_SENDPAGE_NOTLAST) 573 flags |= MSG_MORE; 574 575 mutex_lock(&tls_ctx->tx_lock); 576 lock_sock(sk); 577 578 if (flags & MSG_OOB) { 579 rc = -EOPNOTSUPP; 580 goto out; 581 } 582 583 kaddr = kmap(page); 584 iov.iov_base = kaddr + offset; 585 iov.iov_len = size; 586 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size); 587 rc = tls_push_data(sk, &msg_iter, size, 588 flags, TLS_RECORD_TYPE_DATA); 589 kunmap(page); 590 591 out: 592 release_sock(sk); 593 mutex_unlock(&tls_ctx->tx_lock); 594 return rc; 595 } 596 597 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 598 u32 seq, u64 *p_record_sn) 599 { 600 u64 record_sn = context->hint_record_sn; 601 struct tls_record_info *info, *last; 602 603 info = context->retransmit_hint; 604 if (!info || 605 before(seq, info->end_seq - info->len)) { 606 /* if retransmit_hint is irrelevant start 607 * from the beginning of the list 608 */ 609 info = list_first_entry_or_null(&context->records_list, 610 struct tls_record_info, list); 611 if (!info) 612 return NULL; 613 /* send the start_marker record if seq number is before the 614 * tls offload start marker sequence number. This record is 615 * required to handle TCP packets which are before TLS offload 616 * started. 617 * And if it's not start marker, look if this seq number 618 * belongs to the list. 619 */ 620 if (likely(!tls_record_is_start_marker(info))) { 621 /* we have the first record, get the last record to see 622 * if this seq number belongs to the list. 623 */ 624 last = list_last_entry(&context->records_list, 625 struct tls_record_info, list); 626 627 if (!between(seq, tls_record_start_seq(info), 628 last->end_seq)) 629 return NULL; 630 } 631 record_sn = context->unacked_record_sn; 632 } 633 634 /* We just need the _rcu for the READ_ONCE() */ 635 rcu_read_lock(); 636 list_for_each_entry_from_rcu(info, &context->records_list, list) { 637 if (before(seq, info->end_seq)) { 638 if (!context->retransmit_hint || 639 after(info->end_seq, 640 context->retransmit_hint->end_seq)) { 641 context->hint_record_sn = record_sn; 642 context->retransmit_hint = info; 643 } 644 *p_record_sn = record_sn; 645 goto exit_rcu_unlock; 646 } 647 record_sn++; 648 } 649 info = NULL; 650 651 exit_rcu_unlock: 652 rcu_read_unlock(); 653 return info; 654 } 655 EXPORT_SYMBOL(tls_get_record); 656 657 static int tls_device_push_pending_record(struct sock *sk, int flags) 658 { 659 struct iov_iter msg_iter; 660 661 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0); 662 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA); 663 } 664 665 void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 666 { 667 if (tls_is_partially_sent_record(ctx)) { 668 gfp_t sk_allocation = sk->sk_allocation; 669 670 WARN_ON_ONCE(sk->sk_write_pending); 671 672 sk->sk_allocation = GFP_ATOMIC; 673 tls_push_partial_record(sk, ctx, 674 MSG_DONTWAIT | MSG_NOSIGNAL | 675 MSG_SENDPAGE_DECRYPTED); 676 sk->sk_allocation = sk_allocation; 677 } 678 } 679 680 static void tls_device_resync_rx(struct tls_context *tls_ctx, 681 struct sock *sk, u32 seq, u8 *rcd_sn) 682 { 683 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 684 struct net_device *netdev; 685 686 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); 687 rcu_read_lock(); 688 netdev = READ_ONCE(tls_ctx->netdev); 689 if (netdev) 690 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, 691 TLS_OFFLOAD_CTX_DIR_RX); 692 rcu_read_unlock(); 693 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); 694 } 695 696 static bool 697 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, 698 s64 resync_req, u32 *seq, u16 *rcd_delta) 699 { 700 u32 is_async = resync_req & RESYNC_REQ_ASYNC; 701 u32 req_seq = resync_req >> 32; 702 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); 703 u16 i; 704 705 *rcd_delta = 0; 706 707 if (is_async) { 708 /* shouldn't get to wraparound: 709 * too long in async stage, something bad happened 710 */ 711 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) 712 return false; 713 714 /* asynchronous stage: log all headers seq such that 715 * req_seq <= seq <= end_seq, and wait for real resync request 716 */ 717 if (before(*seq, req_seq)) 718 return false; 719 if (!after(*seq, req_end) && 720 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) 721 resync_async->log[resync_async->loglen++] = *seq; 722 723 resync_async->rcd_delta++; 724 725 return false; 726 } 727 728 /* synchronous stage: check against the logged entries and 729 * proceed to check the next entries if no match was found 730 */ 731 for (i = 0; i < resync_async->loglen; i++) 732 if (req_seq == resync_async->log[i] && 733 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { 734 *rcd_delta = resync_async->rcd_delta - i; 735 *seq = req_seq; 736 resync_async->loglen = 0; 737 resync_async->rcd_delta = 0; 738 return true; 739 } 740 741 resync_async->loglen = 0; 742 resync_async->rcd_delta = 0; 743 744 if (req_seq == *seq && 745 atomic64_try_cmpxchg(&resync_async->req, 746 &resync_req, 0)) 747 return true; 748 749 return false; 750 } 751 752 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) 753 { 754 struct tls_context *tls_ctx = tls_get_ctx(sk); 755 struct tls_offload_context_rx *rx_ctx; 756 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 757 u32 sock_data, is_req_pending; 758 struct tls_prot_info *prot; 759 s64 resync_req; 760 u16 rcd_delta; 761 u32 req_seq; 762 763 if (tls_ctx->rx_conf != TLS_HW) 764 return; 765 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) 766 return; 767 768 prot = &tls_ctx->prot_info; 769 rx_ctx = tls_offload_ctx_rx(tls_ctx); 770 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 771 772 switch (rx_ctx->resync_type) { 773 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: 774 resync_req = atomic64_read(&rx_ctx->resync_req); 775 req_seq = resync_req >> 32; 776 seq += TLS_HEADER_SIZE - 1; 777 is_req_pending = resync_req; 778 779 if (likely(!is_req_pending) || req_seq != seq || 780 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 781 return; 782 break; 783 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: 784 if (likely(!rx_ctx->resync_nh_do_now)) 785 return; 786 787 /* head of next rec is already in, note that the sock_inq will 788 * include the currently parsed message when called from parser 789 */ 790 sock_data = tcp_inq(sk); 791 if (sock_data > rcd_len) { 792 trace_tls_device_rx_resync_nh_delay(sk, sock_data, 793 rcd_len); 794 return; 795 } 796 797 rx_ctx->resync_nh_do_now = 0; 798 seq += rcd_len; 799 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 800 break; 801 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: 802 resync_req = atomic64_read(&rx_ctx->resync_async->req); 803 is_req_pending = resync_req; 804 if (likely(!is_req_pending)) 805 return; 806 807 if (!tls_device_rx_resync_async(rx_ctx->resync_async, 808 resync_req, &seq, &rcd_delta)) 809 return; 810 tls_bigint_subtract(rcd_sn, rcd_delta); 811 break; 812 } 813 814 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); 815 } 816 817 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, 818 struct tls_offload_context_rx *ctx, 819 struct sock *sk, struct sk_buff *skb) 820 { 821 struct strp_msg *rxm; 822 823 /* device will request resyncs by itself based on stream scan */ 824 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) 825 return; 826 /* already scheduled */ 827 if (ctx->resync_nh_do_now) 828 return; 829 /* seen decrypted fragments since last fully-failed record */ 830 if (ctx->resync_nh_reset) { 831 ctx->resync_nh_reset = 0; 832 ctx->resync_nh.decrypted_failed = 1; 833 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; 834 return; 835 } 836 837 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) 838 return; 839 840 /* doing resync, bump the next target in case it fails */ 841 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) 842 ctx->resync_nh.decrypted_tgt *= 2; 843 else 844 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; 845 846 rxm = strp_msg(skb); 847 848 /* head of next rec is already in, parser will sync for us */ 849 if (tcp_inq(sk) > rxm->full_len) { 850 trace_tls_device_rx_resync_nh_schedule(sk); 851 ctx->resync_nh_do_now = 1; 852 } else { 853 struct tls_prot_info *prot = &tls_ctx->prot_info; 854 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 855 856 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 857 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 858 859 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, 860 rcd_sn); 861 } 862 } 863 864 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb) 865 { 866 struct strp_msg *rxm = strp_msg(skb); 867 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos; 868 struct sk_buff *skb_iter, *unused; 869 struct scatterlist sg[1]; 870 char *orig_buf, *buf; 871 872 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + 873 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation); 874 if (!orig_buf) 875 return -ENOMEM; 876 buf = orig_buf; 877 878 nsg = skb_cow_data(skb, 0, &unused); 879 if (unlikely(nsg < 0)) { 880 err = nsg; 881 goto free_buf; 882 } 883 884 sg_init_table(sg, 1); 885 sg_set_buf(&sg[0], buf, 886 rxm->full_len + TLS_HEADER_SIZE + 887 TLS_CIPHER_AES_GCM_128_IV_SIZE); 888 err = skb_copy_bits(skb, offset, buf, 889 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); 890 if (err) 891 goto free_buf; 892 893 /* We are interested only in the decrypted data not the auth */ 894 err = decrypt_skb(sk, skb, sg); 895 if (err != -EBADMSG) 896 goto free_buf; 897 else 898 err = 0; 899 900 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE; 901 902 if (skb_pagelen(skb) > offset) { 903 copy = min_t(int, skb_pagelen(skb) - offset, data_len); 904 905 if (skb->decrypted) { 906 err = skb_store_bits(skb, offset, buf, copy); 907 if (err) 908 goto free_buf; 909 } 910 911 offset += copy; 912 buf += copy; 913 } 914 915 pos = skb_pagelen(skb); 916 skb_walk_frags(skb, skb_iter) { 917 int frag_pos; 918 919 /* Practically all frags must belong to msg if reencrypt 920 * is needed with current strparser and coalescing logic, 921 * but strparser may "get optimized", so let's be safe. 922 */ 923 if (pos + skb_iter->len <= offset) 924 goto done_with_frag; 925 if (pos >= data_len + rxm->offset) 926 break; 927 928 frag_pos = offset - pos; 929 copy = min_t(int, skb_iter->len - frag_pos, 930 data_len + rxm->offset - offset); 931 932 if (skb_iter->decrypted) { 933 err = skb_store_bits(skb_iter, frag_pos, buf, copy); 934 if (err) 935 goto free_buf; 936 } 937 938 offset += copy; 939 buf += copy; 940 done_with_frag: 941 pos += skb_iter->len; 942 } 943 944 free_buf: 945 kfree(orig_buf); 946 return err; 947 } 948 949 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 950 struct sk_buff *skb, struct strp_msg *rxm) 951 { 952 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 953 int is_decrypted = skb->decrypted; 954 int is_encrypted = !is_decrypted; 955 struct sk_buff *skb_iter; 956 957 /* Check if all the data is decrypted already */ 958 skb_walk_frags(skb, skb_iter) { 959 is_decrypted &= skb_iter->decrypted; 960 is_encrypted &= !skb_iter->decrypted; 961 } 962 963 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, 964 tls_ctx->rx.rec_seq, rxm->full_len, 965 is_encrypted, is_decrypted); 966 967 ctx->sw.decrypted |= is_decrypted; 968 969 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) { 970 if (likely(is_encrypted || is_decrypted)) 971 return 0; 972 973 /* After tls_device_down disables the offload, the next SKB will 974 * likely have initial fragments decrypted, and final ones not 975 * decrypted. We need to reencrypt that single SKB. 976 */ 977 return tls_device_reencrypt(sk, skb); 978 } 979 980 /* Return immediately if the record is either entirely plaintext or 981 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 982 * record. 983 */ 984 if (is_decrypted) { 985 ctx->resync_nh_reset = 1; 986 return 0; 987 } 988 if (is_encrypted) { 989 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); 990 return 0; 991 } 992 993 ctx->resync_nh_reset = 1; 994 return tls_device_reencrypt(sk, skb); 995 } 996 997 static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 998 struct net_device *netdev) 999 { 1000 if (sk->sk_destruct != tls_device_sk_destruct) { 1001 refcount_set(&ctx->refcount, 1); 1002 dev_hold(netdev); 1003 ctx->netdev = netdev; 1004 spin_lock_irq(&tls_device_lock); 1005 list_add_tail(&ctx->list, &tls_device_list); 1006 spin_unlock_irq(&tls_device_lock); 1007 1008 ctx->sk_destruct = sk->sk_destruct; 1009 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); 1010 } 1011 } 1012 1013 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 1014 { 1015 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 1016 struct tls_context *tls_ctx = tls_get_ctx(sk); 1017 struct tls_prot_info *prot = &tls_ctx->prot_info; 1018 struct tls_record_info *start_marker_record; 1019 struct tls_offload_context_tx *offload_ctx; 1020 struct tls_crypto_info *crypto_info; 1021 struct net_device *netdev; 1022 char *iv, *rec_seq; 1023 struct sk_buff *skb; 1024 __be64 rcd_sn; 1025 int rc; 1026 1027 if (!ctx) 1028 return -EINVAL; 1029 1030 if (ctx->priv_ctx_tx) 1031 return -EEXIST; 1032 1033 netdev = get_netdev_for_sock(sk); 1034 if (!netdev) { 1035 pr_err_ratelimited("%s: netdev not found\n", __func__); 1036 return -EINVAL; 1037 } 1038 1039 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 1040 rc = -EOPNOTSUPP; 1041 goto release_netdev; 1042 } 1043 1044 crypto_info = &ctx->crypto_send.info; 1045 if (crypto_info->version != TLS_1_2_VERSION) { 1046 rc = -EOPNOTSUPP; 1047 goto release_netdev; 1048 } 1049 1050 switch (crypto_info->cipher_type) { 1051 case TLS_CIPHER_AES_GCM_128: 1052 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1053 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 1054 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1055 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 1056 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 1057 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 1058 rec_seq = 1059 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 1060 break; 1061 default: 1062 rc = -EINVAL; 1063 goto release_netdev; 1064 } 1065 1066 /* Sanity-check the rec_seq_size for stack allocations */ 1067 if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 1068 rc = -EINVAL; 1069 goto release_netdev; 1070 } 1071 1072 prot->version = crypto_info->version; 1073 prot->cipher_type = crypto_info->cipher_type; 1074 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 1075 prot->tag_size = tag_size; 1076 prot->overhead_size = prot->prepend_size + prot->tag_size; 1077 prot->iv_size = iv_size; 1078 prot->salt_size = salt_size; 1079 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 1080 GFP_KERNEL); 1081 if (!ctx->tx.iv) { 1082 rc = -ENOMEM; 1083 goto release_netdev; 1084 } 1085 1086 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 1087 1088 prot->rec_seq_size = rec_seq_size; 1089 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 1090 if (!ctx->tx.rec_seq) { 1091 rc = -ENOMEM; 1092 goto free_iv; 1093 } 1094 1095 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 1096 if (!start_marker_record) { 1097 rc = -ENOMEM; 1098 goto free_rec_seq; 1099 } 1100 1101 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); 1102 if (!offload_ctx) { 1103 rc = -ENOMEM; 1104 goto free_marker_record; 1105 } 1106 1107 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 1108 if (rc) 1109 goto free_offload_ctx; 1110 1111 /* start at rec_seq - 1 to account for the start marker record */ 1112 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 1113 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 1114 1115 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 1116 start_marker_record->len = 0; 1117 start_marker_record->num_frags = 0; 1118 1119 INIT_LIST_HEAD(&offload_ctx->records_list); 1120 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 1121 spin_lock_init(&offload_ctx->lock); 1122 sg_init_table(offload_ctx->sg_tx_data, 1123 ARRAY_SIZE(offload_ctx->sg_tx_data)); 1124 1125 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); 1126 ctx->push_pending_record = tls_device_push_pending_record; 1127 1128 /* TLS offload is greatly simplified if we don't send 1129 * SKBs where only part of the payload needs to be encrypted. 1130 * So mark the last skb in the write queue as end of record. 1131 */ 1132 skb = tcp_write_queue_tail(sk); 1133 if (skb) 1134 TCP_SKB_CB(skb)->eor = 1; 1135 1136 /* Avoid offloading if the device is down 1137 * We don't want to offload new flows after 1138 * the NETDEV_DOWN event 1139 * 1140 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1141 * handler thus protecting from the device going down before 1142 * ctx was added to tls_device_list. 1143 */ 1144 down_read(&device_offload_lock); 1145 if (!(netdev->flags & IFF_UP)) { 1146 rc = -EINVAL; 1147 goto release_lock; 1148 } 1149 1150 ctx->priv_ctx_tx = offload_ctx; 1151 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 1152 &ctx->crypto_send.info, 1153 tcp_sk(sk)->write_seq); 1154 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, 1155 tcp_sk(sk)->write_seq, rec_seq, rc); 1156 if (rc) 1157 goto release_lock; 1158 1159 tls_device_attach(ctx, sk, netdev); 1160 up_read(&device_offload_lock); 1161 1162 /* following this assignment tls_is_sk_tx_device_offloaded 1163 * will return true and the context might be accessed 1164 * by the netdev's xmit function. 1165 */ 1166 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 1167 dev_put(netdev); 1168 1169 return 0; 1170 1171 release_lock: 1172 up_read(&device_offload_lock); 1173 clean_acked_data_disable(inet_csk(sk)); 1174 crypto_free_aead(offload_ctx->aead_send); 1175 free_offload_ctx: 1176 kfree(offload_ctx); 1177 ctx->priv_ctx_tx = NULL; 1178 free_marker_record: 1179 kfree(start_marker_record); 1180 free_rec_seq: 1181 kfree(ctx->tx.rec_seq); 1182 free_iv: 1183 kfree(ctx->tx.iv); 1184 release_netdev: 1185 dev_put(netdev); 1186 return rc; 1187 } 1188 1189 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 1190 { 1191 struct tls12_crypto_info_aes_gcm_128 *info; 1192 struct tls_offload_context_rx *context; 1193 struct net_device *netdev; 1194 int rc = 0; 1195 1196 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) 1197 return -EOPNOTSUPP; 1198 1199 netdev = get_netdev_for_sock(sk); 1200 if (!netdev) { 1201 pr_err_ratelimited("%s: netdev not found\n", __func__); 1202 return -EINVAL; 1203 } 1204 1205 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 1206 rc = -EOPNOTSUPP; 1207 goto release_netdev; 1208 } 1209 1210 /* Avoid offloading if the device is down 1211 * We don't want to offload new flows after 1212 * the NETDEV_DOWN event 1213 * 1214 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1215 * handler thus protecting from the device going down before 1216 * ctx was added to tls_device_list. 1217 */ 1218 down_read(&device_offload_lock); 1219 if (!(netdev->flags & IFF_UP)) { 1220 rc = -EINVAL; 1221 goto release_lock; 1222 } 1223 1224 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); 1225 if (!context) { 1226 rc = -ENOMEM; 1227 goto release_lock; 1228 } 1229 context->resync_nh_reset = 1; 1230 1231 ctx->priv_ctx_rx = context; 1232 rc = tls_set_sw_offload(sk, ctx, 0); 1233 if (rc) 1234 goto release_ctx; 1235 1236 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 1237 &ctx->crypto_recv.info, 1238 tcp_sk(sk)->copied_seq); 1239 info = (void *)&ctx->crypto_recv.info; 1240 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, 1241 tcp_sk(sk)->copied_seq, info->rec_seq, rc); 1242 if (rc) 1243 goto free_sw_resources; 1244 1245 tls_device_attach(ctx, sk, netdev); 1246 up_read(&device_offload_lock); 1247 1248 dev_put(netdev); 1249 1250 return 0; 1251 1252 free_sw_resources: 1253 up_read(&device_offload_lock); 1254 tls_sw_free_resources_rx(sk); 1255 down_read(&device_offload_lock); 1256 release_ctx: 1257 ctx->priv_ctx_rx = NULL; 1258 release_lock: 1259 up_read(&device_offload_lock); 1260 release_netdev: 1261 dev_put(netdev); 1262 return rc; 1263 } 1264 1265 void tls_device_offload_cleanup_rx(struct sock *sk) 1266 { 1267 struct tls_context *tls_ctx = tls_get_ctx(sk); 1268 struct net_device *netdev; 1269 1270 down_read(&device_offload_lock); 1271 netdev = tls_ctx->netdev; 1272 if (!netdev) 1273 goto out; 1274 1275 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 1276 TLS_OFFLOAD_CTX_DIR_RX); 1277 1278 if (tls_ctx->tx_conf != TLS_HW) { 1279 dev_put(netdev); 1280 tls_ctx->netdev = NULL; 1281 } else { 1282 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); 1283 } 1284 out: 1285 up_read(&device_offload_lock); 1286 tls_sw_release_resources_rx(sk); 1287 } 1288 1289 static int tls_device_down(struct net_device *netdev) 1290 { 1291 struct tls_context *ctx, *tmp; 1292 unsigned long flags; 1293 LIST_HEAD(list); 1294 1295 /* Request a write lock to block new offload attempts */ 1296 down_write(&device_offload_lock); 1297 1298 spin_lock_irqsave(&tls_device_lock, flags); 1299 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 1300 if (ctx->netdev != netdev || 1301 !refcount_inc_not_zero(&ctx->refcount)) 1302 continue; 1303 1304 list_move(&ctx->list, &list); 1305 } 1306 spin_unlock_irqrestore(&tls_device_lock, flags); 1307 1308 list_for_each_entry_safe(ctx, tmp, &list, list) { 1309 /* Stop offloaded TX and switch to the fallback. 1310 * tls_is_sk_tx_device_offloaded will return false. 1311 */ 1312 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw); 1313 1314 /* Stop the RX and TX resync. 1315 * tls_dev_resync must not be called after tls_dev_del. 1316 */ 1317 WRITE_ONCE(ctx->netdev, NULL); 1318 1319 /* Start skipping the RX resync logic completely. */ 1320 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags); 1321 1322 /* Sync with inflight packets. After this point: 1323 * TX: no non-encrypted packets will be passed to the driver. 1324 * RX: resync requests from the driver will be ignored. 1325 */ 1326 synchronize_net(); 1327 1328 /* Release the offload context on the driver side. */ 1329 if (ctx->tx_conf == TLS_HW) 1330 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1331 TLS_OFFLOAD_CTX_DIR_TX); 1332 if (ctx->rx_conf == TLS_HW && 1333 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) 1334 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1335 TLS_OFFLOAD_CTX_DIR_RX); 1336 1337 dev_put(netdev); 1338 1339 /* Move the context to a separate list for two reasons: 1340 * 1. When the context is deallocated, list_del is called. 1341 * 2. It's no longer an offloaded context, so we don't want to 1342 * run offload-specific code on this context. 1343 */ 1344 spin_lock_irqsave(&tls_device_lock, flags); 1345 list_move_tail(&ctx->list, &tls_device_down_list); 1346 spin_unlock_irqrestore(&tls_device_lock, flags); 1347 1348 /* Device contexts for RX and TX will be freed in on sk_destruct 1349 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW. 1350 */ 1351 } 1352 1353 up_write(&device_offload_lock); 1354 1355 flush_work(&tls_device_gc_work); 1356 1357 return NOTIFY_DONE; 1358 } 1359 1360 static int tls_dev_event(struct notifier_block *this, unsigned long event, 1361 void *ptr) 1362 { 1363 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1364 1365 if (!dev->tlsdev_ops && 1366 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 1367 return NOTIFY_DONE; 1368 1369 switch (event) { 1370 case NETDEV_REGISTER: 1371 case NETDEV_FEAT_CHANGE: 1372 if (netif_is_bond_master(dev)) 1373 return NOTIFY_DONE; 1374 if ((dev->features & NETIF_F_HW_TLS_RX) && 1375 !dev->tlsdev_ops->tls_dev_resync) 1376 return NOTIFY_BAD; 1377 1378 if (dev->tlsdev_ops && 1379 dev->tlsdev_ops->tls_dev_add && 1380 dev->tlsdev_ops->tls_dev_del) 1381 return NOTIFY_DONE; 1382 else 1383 return NOTIFY_BAD; 1384 case NETDEV_DOWN: 1385 return tls_device_down(dev); 1386 } 1387 return NOTIFY_DONE; 1388 } 1389 1390 static struct notifier_block tls_dev_notifier = { 1391 .notifier_call = tls_dev_event, 1392 }; 1393 1394 void __init tls_device_init(void) 1395 { 1396 register_netdevice_notifier(&tls_dev_notifier); 1397 } 1398 1399 void __exit tls_device_cleanup(void) 1400 { 1401 unregister_netdevice_notifier(&tls_dev_notifier); 1402 flush_work(&tls_device_gc_work); 1403 clean_acked_data_flush(); 1404 } 1405