1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32 #include <crypto/aead.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/netdevice.h> 36 #include <net/dst.h> 37 #include <net/inet_connection_sock.h> 38 #include <net/tcp.h> 39 #include <net/tls.h> 40 41 #include "tls.h" 42 #include "trace.h" 43 44 /* device_offload_lock is used to synchronize tls_dev_add 45 * against NETDEV_DOWN notifications. 46 */ 47 static DECLARE_RWSEM(device_offload_lock); 48 49 static struct workqueue_struct *destruct_wq __read_mostly; 50 51 static LIST_HEAD(tls_device_list); 52 static LIST_HEAD(tls_device_down_list); 53 static DEFINE_SPINLOCK(tls_device_lock); 54 55 static void tls_device_free_ctx(struct tls_context *ctx) 56 { 57 if (ctx->tx_conf == TLS_HW) { 58 kfree(tls_offload_ctx_tx(ctx)); 59 kfree(ctx->tx.rec_seq); 60 kfree(ctx->tx.iv); 61 } 62 63 if (ctx->rx_conf == TLS_HW) 64 kfree(tls_offload_ctx_rx(ctx)); 65 66 tls_ctx_free(NULL, ctx); 67 } 68 69 static void tls_device_tx_del_task(struct work_struct *work) 70 { 71 struct tls_offload_context_tx *offload_ctx = 72 container_of(work, struct tls_offload_context_tx, destruct_work); 73 struct tls_context *ctx = offload_ctx->ctx; 74 struct net_device *netdev; 75 76 /* Safe, because this is the destroy flow, refcount is 0, so 77 * tls_device_down can't store this field in parallel. 78 */ 79 netdev = rcu_dereference_protected(ctx->netdev, 80 !refcount_read(&ctx->refcount)); 81 82 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX); 83 dev_put(netdev); 84 ctx->netdev = NULL; 85 tls_device_free_ctx(ctx); 86 } 87 88 static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 89 { 90 struct net_device *netdev; 91 unsigned long flags; 92 bool async_cleanup; 93 94 spin_lock_irqsave(&tls_device_lock, flags); 95 if (unlikely(!refcount_dec_and_test(&ctx->refcount))) { 96 spin_unlock_irqrestore(&tls_device_lock, flags); 97 return; 98 } 99 100 list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */ 101 102 /* Safe, because this is the destroy flow, refcount is 0, so 103 * tls_device_down can't store this field in parallel. 104 */ 105 netdev = rcu_dereference_protected(ctx->netdev, 106 !refcount_read(&ctx->refcount)); 107 108 async_cleanup = netdev && ctx->tx_conf == TLS_HW; 109 if (async_cleanup) { 110 struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx); 111 112 /* queue_work inside the spinlock 113 * to make sure tls_device_down waits for that work. 114 */ 115 queue_work(destruct_wq, &offload_ctx->destruct_work); 116 } 117 spin_unlock_irqrestore(&tls_device_lock, flags); 118 119 if (!async_cleanup) 120 tls_device_free_ctx(ctx); 121 } 122 123 /* We assume that the socket is already connected */ 124 static struct net_device *get_netdev_for_sock(struct sock *sk) 125 { 126 struct dst_entry *dst = sk_dst_get(sk); 127 struct net_device *netdev = NULL; 128 129 if (likely(dst)) { 130 netdev = netdev_sk_get_lowest_dev(dst->dev, sk); 131 dev_hold(netdev); 132 } 133 134 dst_release(dst); 135 136 return netdev; 137 } 138 139 static void destroy_record(struct tls_record_info *record) 140 { 141 int i; 142 143 for (i = 0; i < record->num_frags; i++) 144 __skb_frag_unref(&record->frags[i], false); 145 kfree(record); 146 } 147 148 static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 149 { 150 struct tls_record_info *info, *temp; 151 152 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 153 list_del(&info->list); 154 destroy_record(info); 155 } 156 157 offload_ctx->retransmit_hint = NULL; 158 } 159 160 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) 161 { 162 struct tls_context *tls_ctx = tls_get_ctx(sk); 163 struct tls_record_info *info, *temp; 164 struct tls_offload_context_tx *ctx; 165 u64 deleted_records = 0; 166 unsigned long flags; 167 168 if (!tls_ctx) 169 return; 170 171 ctx = tls_offload_ctx_tx(tls_ctx); 172 173 spin_lock_irqsave(&ctx->lock, flags); 174 info = ctx->retransmit_hint; 175 if (info && !before(acked_seq, info->end_seq)) 176 ctx->retransmit_hint = NULL; 177 178 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 179 if (before(acked_seq, info->end_seq)) 180 break; 181 list_del(&info->list); 182 183 destroy_record(info); 184 deleted_records++; 185 } 186 187 ctx->unacked_record_sn += deleted_records; 188 spin_unlock_irqrestore(&ctx->lock, flags); 189 } 190 191 /* At this point, there should be no references on this 192 * socket and no in-flight SKBs associated with this 193 * socket, so it is safe to free all the resources. 194 */ 195 void tls_device_sk_destruct(struct sock *sk) 196 { 197 struct tls_context *tls_ctx = tls_get_ctx(sk); 198 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 199 200 tls_ctx->sk_destruct(sk); 201 202 if (tls_ctx->tx_conf == TLS_HW) { 203 if (ctx->open_record) 204 destroy_record(ctx->open_record); 205 delete_all_records(ctx); 206 crypto_free_aead(ctx->aead_send); 207 clean_acked_data_disable(inet_csk(sk)); 208 } 209 210 tls_device_queue_ctx_destruction(tls_ctx); 211 } 212 EXPORT_SYMBOL_GPL(tls_device_sk_destruct); 213 214 void tls_device_free_resources_tx(struct sock *sk) 215 { 216 struct tls_context *tls_ctx = tls_get_ctx(sk); 217 218 tls_free_partial_record(sk, tls_ctx); 219 } 220 221 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) 222 { 223 struct tls_context *tls_ctx = tls_get_ctx(sk); 224 225 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); 226 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 227 } 228 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); 229 230 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, 231 u32 seq) 232 { 233 struct net_device *netdev; 234 struct sk_buff *skb; 235 int err = 0; 236 u8 *rcd_sn; 237 238 skb = tcp_write_queue_tail(sk); 239 if (skb) 240 TCP_SKB_CB(skb)->eor = 1; 241 242 rcd_sn = tls_ctx->tx.rec_seq; 243 244 trace_tls_device_tx_resync_send(sk, seq, rcd_sn); 245 down_read(&device_offload_lock); 246 netdev = rcu_dereference_protected(tls_ctx->netdev, 247 lockdep_is_held(&device_offload_lock)); 248 if (netdev) 249 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, 250 rcd_sn, 251 TLS_OFFLOAD_CTX_DIR_TX); 252 up_read(&device_offload_lock); 253 if (err) 254 return; 255 256 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 257 } 258 259 static void tls_append_frag(struct tls_record_info *record, 260 struct page_frag *pfrag, 261 int size) 262 { 263 skb_frag_t *frag; 264 265 frag = &record->frags[record->num_frags - 1]; 266 if (skb_frag_page(frag) == pfrag->page && 267 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { 268 skb_frag_size_add(frag, size); 269 } else { 270 ++frag; 271 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset, 272 size); 273 ++record->num_frags; 274 get_page(pfrag->page); 275 } 276 277 pfrag->offset += size; 278 record->len += size; 279 } 280 281 static int tls_push_record(struct sock *sk, 282 struct tls_context *ctx, 283 struct tls_offload_context_tx *offload_ctx, 284 struct tls_record_info *record, 285 int flags) 286 { 287 struct tls_prot_info *prot = &ctx->prot_info; 288 struct tcp_sock *tp = tcp_sk(sk); 289 skb_frag_t *frag; 290 int i; 291 292 record->end_seq = tp->write_seq + record->len; 293 list_add_tail_rcu(&record->list, &offload_ctx->records_list); 294 offload_ctx->open_record = NULL; 295 296 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) 297 tls_device_resync_tx(sk, ctx, tp->write_seq); 298 299 tls_advance_record_sn(sk, prot, &ctx->tx); 300 301 for (i = 0; i < record->num_frags; i++) { 302 frag = &record->frags[i]; 303 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 304 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 305 skb_frag_size(frag), skb_frag_off(frag)); 306 sk_mem_charge(sk, skb_frag_size(frag)); 307 get_page(skb_frag_page(frag)); 308 } 309 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 310 311 /* all ready, send */ 312 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 313 } 314 315 static int tls_device_record_close(struct sock *sk, 316 struct tls_context *ctx, 317 struct tls_record_info *record, 318 struct page_frag *pfrag, 319 unsigned char record_type) 320 { 321 struct tls_prot_info *prot = &ctx->prot_info; 322 int ret; 323 324 /* append tag 325 * device will fill in the tag, we just need to append a placeholder 326 * use socket memory to improve coalescing (re-using a single buffer 327 * increases frag count) 328 * if we can't allocate memory now, steal some back from data 329 */ 330 if (likely(skb_page_frag_refill(prot->tag_size, pfrag, 331 sk->sk_allocation))) { 332 ret = 0; 333 tls_append_frag(record, pfrag, prot->tag_size); 334 } else { 335 ret = prot->tag_size; 336 if (record->len <= prot->overhead_size) 337 return -ENOMEM; 338 } 339 340 /* fill prepend */ 341 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), 342 record->len - prot->overhead_size, 343 record_type); 344 return ret; 345 } 346 347 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 348 struct page_frag *pfrag, 349 size_t prepend_size) 350 { 351 struct tls_record_info *record; 352 skb_frag_t *frag; 353 354 record = kmalloc(sizeof(*record), GFP_KERNEL); 355 if (!record) 356 return -ENOMEM; 357 358 frag = &record->frags[0]; 359 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset, 360 prepend_size); 361 362 get_page(pfrag->page); 363 pfrag->offset += prepend_size; 364 365 record->num_frags = 1; 366 record->len = prepend_size; 367 offload_ctx->open_record = record; 368 return 0; 369 } 370 371 static int tls_do_allocation(struct sock *sk, 372 struct tls_offload_context_tx *offload_ctx, 373 struct page_frag *pfrag, 374 size_t prepend_size) 375 { 376 int ret; 377 378 if (!offload_ctx->open_record) { 379 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 380 sk->sk_allocation))) { 381 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); 382 sk_stream_moderate_sndbuf(sk); 383 return -ENOMEM; 384 } 385 386 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 387 if (ret) 388 return ret; 389 390 if (pfrag->size > pfrag->offset) 391 return 0; 392 } 393 394 if (!sk_page_frag_refill(sk, pfrag)) 395 return -ENOMEM; 396 397 return 0; 398 } 399 400 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) 401 { 402 size_t pre_copy, nocache; 403 404 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); 405 if (pre_copy) { 406 pre_copy = min(pre_copy, bytes); 407 if (copy_from_iter(addr, pre_copy, i) != pre_copy) 408 return -EFAULT; 409 bytes -= pre_copy; 410 addr += pre_copy; 411 } 412 413 nocache = round_down(bytes, SMP_CACHE_BYTES); 414 if (copy_from_iter_nocache(addr, nocache, i) != nocache) 415 return -EFAULT; 416 bytes -= nocache; 417 addr += nocache; 418 419 if (bytes && copy_from_iter(addr, bytes, i) != bytes) 420 return -EFAULT; 421 422 return 0; 423 } 424 425 static int tls_push_data(struct sock *sk, 426 struct iov_iter *iter, 427 size_t size, int flags, 428 unsigned char record_type) 429 { 430 struct tls_context *tls_ctx = tls_get_ctx(sk); 431 struct tls_prot_info *prot = &tls_ctx->prot_info; 432 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 433 struct tls_record_info *record; 434 int tls_push_record_flags; 435 struct page_frag *pfrag; 436 size_t orig_size = size; 437 u32 max_open_record_len; 438 bool more = false; 439 bool done = false; 440 int copy, rc = 0; 441 long timeo; 442 443 if (flags & 444 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SPLICE_PAGES)) 445 return -EOPNOTSUPP; 446 447 if (unlikely(sk->sk_err)) 448 return -sk->sk_err; 449 450 flags |= MSG_SENDPAGE_DECRYPTED; 451 tls_push_record_flags = flags | MSG_MORE; 452 453 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 454 if (tls_is_partially_sent_record(tls_ctx)) { 455 rc = tls_push_partial_record(sk, tls_ctx, flags); 456 if (rc < 0) 457 return rc; 458 } 459 460 pfrag = sk_page_frag(sk); 461 462 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 463 * we need to leave room for an authentication tag. 464 */ 465 max_open_record_len = TLS_MAX_PAYLOAD_SIZE + 466 prot->prepend_size; 467 do { 468 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); 469 if (unlikely(rc)) { 470 rc = sk_stream_wait_memory(sk, &timeo); 471 if (!rc) 472 continue; 473 474 record = ctx->open_record; 475 if (!record) 476 break; 477 handle_error: 478 if (record_type != TLS_RECORD_TYPE_DATA) { 479 /* avoid sending partial 480 * record with type != 481 * application_data 482 */ 483 size = orig_size; 484 destroy_record(record); 485 ctx->open_record = NULL; 486 } else if (record->len > prot->prepend_size) { 487 goto last_record; 488 } 489 490 break; 491 } 492 493 record = ctx->open_record; 494 495 copy = min_t(size_t, size, max_open_record_len - record->len); 496 if (copy && (flags & MSG_SPLICE_PAGES)) { 497 struct page_frag zc_pfrag; 498 struct page **pages = &zc_pfrag.page; 499 size_t off; 500 501 rc = iov_iter_extract_pages(iter, &pages, 502 copy, 1, 0, &off); 503 if (rc <= 0) { 504 if (rc == 0) 505 rc = -EIO; 506 goto handle_error; 507 } 508 copy = rc; 509 510 if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) { 511 iov_iter_revert(iter, copy); 512 rc = -EIO; 513 goto handle_error; 514 } 515 516 zc_pfrag.offset = off; 517 zc_pfrag.size = copy; 518 tls_append_frag(record, &zc_pfrag, copy); 519 } else if (copy) { 520 copy = min_t(size_t, copy, pfrag->size - pfrag->offset); 521 522 rc = tls_device_copy_data(page_address(pfrag->page) + 523 pfrag->offset, copy, 524 iter); 525 if (rc) 526 goto handle_error; 527 tls_append_frag(record, pfrag, copy); 528 } 529 530 size -= copy; 531 if (!size) { 532 last_record: 533 tls_push_record_flags = flags; 534 if (flags & MSG_MORE) { 535 more = true; 536 break; 537 } 538 539 done = true; 540 } 541 542 if (done || record->len >= max_open_record_len || 543 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 544 rc = tls_device_record_close(sk, tls_ctx, record, 545 pfrag, record_type); 546 if (rc) { 547 if (rc > 0) { 548 size += rc; 549 } else { 550 size = orig_size; 551 destroy_record(record); 552 ctx->open_record = NULL; 553 break; 554 } 555 } 556 557 rc = tls_push_record(sk, 558 tls_ctx, 559 ctx, 560 record, 561 tls_push_record_flags); 562 if (rc < 0) 563 break; 564 } 565 } while (!done); 566 567 tls_ctx->pending_open_record_frags = more; 568 569 if (orig_size - size > 0) 570 rc = orig_size - size; 571 572 return rc; 573 } 574 575 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 576 { 577 unsigned char record_type = TLS_RECORD_TYPE_DATA; 578 struct tls_context *tls_ctx = tls_get_ctx(sk); 579 int rc; 580 581 if (!tls_ctx->zerocopy_sendfile) 582 msg->msg_flags &= ~MSG_SPLICE_PAGES; 583 584 mutex_lock(&tls_ctx->tx_lock); 585 lock_sock(sk); 586 587 if (unlikely(msg->msg_controllen)) { 588 rc = tls_process_cmsg(sk, msg, &record_type); 589 if (rc) 590 goto out; 591 } 592 593 rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags, 594 record_type); 595 596 out: 597 release_sock(sk); 598 mutex_unlock(&tls_ctx->tx_lock); 599 return rc; 600 } 601 602 void tls_device_splice_eof(struct socket *sock) 603 { 604 struct sock *sk = sock->sk; 605 struct tls_context *tls_ctx = tls_get_ctx(sk); 606 struct iov_iter iter = {}; 607 608 if (!tls_is_partially_sent_record(tls_ctx)) 609 return; 610 611 mutex_lock(&tls_ctx->tx_lock); 612 lock_sock(sk); 613 614 if (tls_is_partially_sent_record(tls_ctx)) { 615 iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0); 616 tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA); 617 } 618 619 release_sock(sk); 620 mutex_unlock(&tls_ctx->tx_lock); 621 } 622 623 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 624 u32 seq, u64 *p_record_sn) 625 { 626 u64 record_sn = context->hint_record_sn; 627 struct tls_record_info *info, *last; 628 629 info = context->retransmit_hint; 630 if (!info || 631 before(seq, info->end_seq - info->len)) { 632 /* if retransmit_hint is irrelevant start 633 * from the beginning of the list 634 */ 635 info = list_first_entry_or_null(&context->records_list, 636 struct tls_record_info, list); 637 if (!info) 638 return NULL; 639 /* send the start_marker record if seq number is before the 640 * tls offload start marker sequence number. This record is 641 * required to handle TCP packets which are before TLS offload 642 * started. 643 * And if it's not start marker, look if this seq number 644 * belongs to the list. 645 */ 646 if (likely(!tls_record_is_start_marker(info))) { 647 /* we have the first record, get the last record to see 648 * if this seq number belongs to the list. 649 */ 650 last = list_last_entry(&context->records_list, 651 struct tls_record_info, list); 652 653 if (!between(seq, tls_record_start_seq(info), 654 last->end_seq)) 655 return NULL; 656 } 657 record_sn = context->unacked_record_sn; 658 } 659 660 /* We just need the _rcu for the READ_ONCE() */ 661 rcu_read_lock(); 662 list_for_each_entry_from_rcu(info, &context->records_list, list) { 663 if (before(seq, info->end_seq)) { 664 if (!context->retransmit_hint || 665 after(info->end_seq, 666 context->retransmit_hint->end_seq)) { 667 context->hint_record_sn = record_sn; 668 context->retransmit_hint = info; 669 } 670 *p_record_sn = record_sn; 671 goto exit_rcu_unlock; 672 } 673 record_sn++; 674 } 675 info = NULL; 676 677 exit_rcu_unlock: 678 rcu_read_unlock(); 679 return info; 680 } 681 EXPORT_SYMBOL(tls_get_record); 682 683 static int tls_device_push_pending_record(struct sock *sk, int flags) 684 { 685 struct iov_iter iter; 686 687 iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0); 688 return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA); 689 } 690 691 void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 692 { 693 if (tls_is_partially_sent_record(ctx)) { 694 gfp_t sk_allocation = sk->sk_allocation; 695 696 WARN_ON_ONCE(sk->sk_write_pending); 697 698 sk->sk_allocation = GFP_ATOMIC; 699 tls_push_partial_record(sk, ctx, 700 MSG_DONTWAIT | MSG_NOSIGNAL | 701 MSG_SENDPAGE_DECRYPTED); 702 sk->sk_allocation = sk_allocation; 703 } 704 } 705 706 static void tls_device_resync_rx(struct tls_context *tls_ctx, 707 struct sock *sk, u32 seq, u8 *rcd_sn) 708 { 709 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 710 struct net_device *netdev; 711 712 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); 713 rcu_read_lock(); 714 netdev = rcu_dereference(tls_ctx->netdev); 715 if (netdev) 716 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, 717 TLS_OFFLOAD_CTX_DIR_RX); 718 rcu_read_unlock(); 719 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); 720 } 721 722 static bool 723 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, 724 s64 resync_req, u32 *seq, u16 *rcd_delta) 725 { 726 u32 is_async = resync_req & RESYNC_REQ_ASYNC; 727 u32 req_seq = resync_req >> 32; 728 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); 729 u16 i; 730 731 *rcd_delta = 0; 732 733 if (is_async) { 734 /* shouldn't get to wraparound: 735 * too long in async stage, something bad happened 736 */ 737 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) 738 return false; 739 740 /* asynchronous stage: log all headers seq such that 741 * req_seq <= seq <= end_seq, and wait for real resync request 742 */ 743 if (before(*seq, req_seq)) 744 return false; 745 if (!after(*seq, req_end) && 746 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) 747 resync_async->log[resync_async->loglen++] = *seq; 748 749 resync_async->rcd_delta++; 750 751 return false; 752 } 753 754 /* synchronous stage: check against the logged entries and 755 * proceed to check the next entries if no match was found 756 */ 757 for (i = 0; i < resync_async->loglen; i++) 758 if (req_seq == resync_async->log[i] && 759 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { 760 *rcd_delta = resync_async->rcd_delta - i; 761 *seq = req_seq; 762 resync_async->loglen = 0; 763 resync_async->rcd_delta = 0; 764 return true; 765 } 766 767 resync_async->loglen = 0; 768 resync_async->rcd_delta = 0; 769 770 if (req_seq == *seq && 771 atomic64_try_cmpxchg(&resync_async->req, 772 &resync_req, 0)) 773 return true; 774 775 return false; 776 } 777 778 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) 779 { 780 struct tls_context *tls_ctx = tls_get_ctx(sk); 781 struct tls_offload_context_rx *rx_ctx; 782 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 783 u32 sock_data, is_req_pending; 784 struct tls_prot_info *prot; 785 s64 resync_req; 786 u16 rcd_delta; 787 u32 req_seq; 788 789 if (tls_ctx->rx_conf != TLS_HW) 790 return; 791 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) 792 return; 793 794 prot = &tls_ctx->prot_info; 795 rx_ctx = tls_offload_ctx_rx(tls_ctx); 796 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 797 798 switch (rx_ctx->resync_type) { 799 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: 800 resync_req = atomic64_read(&rx_ctx->resync_req); 801 req_seq = resync_req >> 32; 802 seq += TLS_HEADER_SIZE - 1; 803 is_req_pending = resync_req; 804 805 if (likely(!is_req_pending) || req_seq != seq || 806 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 807 return; 808 break; 809 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: 810 if (likely(!rx_ctx->resync_nh_do_now)) 811 return; 812 813 /* head of next rec is already in, note that the sock_inq will 814 * include the currently parsed message when called from parser 815 */ 816 sock_data = tcp_inq(sk); 817 if (sock_data > rcd_len) { 818 trace_tls_device_rx_resync_nh_delay(sk, sock_data, 819 rcd_len); 820 return; 821 } 822 823 rx_ctx->resync_nh_do_now = 0; 824 seq += rcd_len; 825 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 826 break; 827 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: 828 resync_req = atomic64_read(&rx_ctx->resync_async->req); 829 is_req_pending = resync_req; 830 if (likely(!is_req_pending)) 831 return; 832 833 if (!tls_device_rx_resync_async(rx_ctx->resync_async, 834 resync_req, &seq, &rcd_delta)) 835 return; 836 tls_bigint_subtract(rcd_sn, rcd_delta); 837 break; 838 } 839 840 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); 841 } 842 843 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, 844 struct tls_offload_context_rx *ctx, 845 struct sock *sk, struct sk_buff *skb) 846 { 847 struct strp_msg *rxm; 848 849 /* device will request resyncs by itself based on stream scan */ 850 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) 851 return; 852 /* already scheduled */ 853 if (ctx->resync_nh_do_now) 854 return; 855 /* seen decrypted fragments since last fully-failed record */ 856 if (ctx->resync_nh_reset) { 857 ctx->resync_nh_reset = 0; 858 ctx->resync_nh.decrypted_failed = 1; 859 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; 860 return; 861 } 862 863 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) 864 return; 865 866 /* doing resync, bump the next target in case it fails */ 867 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) 868 ctx->resync_nh.decrypted_tgt *= 2; 869 else 870 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; 871 872 rxm = strp_msg(skb); 873 874 /* head of next rec is already in, parser will sync for us */ 875 if (tcp_inq(sk) > rxm->full_len) { 876 trace_tls_device_rx_resync_nh_schedule(sk); 877 ctx->resync_nh_do_now = 1; 878 } else { 879 struct tls_prot_info *prot = &tls_ctx->prot_info; 880 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 881 882 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 883 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 884 885 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, 886 rcd_sn); 887 } 888 } 889 890 static int 891 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx) 892 { 893 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); 894 const struct tls_cipher_size_desc *cipher_sz; 895 int err, offset, copy, data_len, pos; 896 struct sk_buff *skb, *skb_iter; 897 struct scatterlist sg[1]; 898 struct strp_msg *rxm; 899 char *orig_buf, *buf; 900 901 switch (tls_ctx->crypto_recv.info.cipher_type) { 902 case TLS_CIPHER_AES_GCM_128: 903 case TLS_CIPHER_AES_GCM_256: 904 break; 905 default: 906 return -EINVAL; 907 } 908 cipher_sz = &tls_cipher_size_desc[tls_ctx->crypto_recv.info.cipher_type]; 909 910 rxm = strp_msg(tls_strp_msg(sw_ctx)); 911 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv, 912 sk->sk_allocation); 913 if (!orig_buf) 914 return -ENOMEM; 915 buf = orig_buf; 916 917 err = tls_strp_msg_cow(sw_ctx); 918 if (unlikely(err)) 919 goto free_buf; 920 921 skb = tls_strp_msg(sw_ctx); 922 rxm = strp_msg(skb); 923 offset = rxm->offset; 924 925 sg_init_table(sg, 1); 926 sg_set_buf(&sg[0], buf, 927 rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv); 928 err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_sz->iv); 929 if (err) 930 goto free_buf; 931 932 /* We are interested only in the decrypted data not the auth */ 933 err = decrypt_skb(sk, sg); 934 if (err != -EBADMSG) 935 goto free_buf; 936 else 937 err = 0; 938 939 data_len = rxm->full_len - cipher_sz->tag; 940 941 if (skb_pagelen(skb) > offset) { 942 copy = min_t(int, skb_pagelen(skb) - offset, data_len); 943 944 if (skb->decrypted) { 945 err = skb_store_bits(skb, offset, buf, copy); 946 if (err) 947 goto free_buf; 948 } 949 950 offset += copy; 951 buf += copy; 952 } 953 954 pos = skb_pagelen(skb); 955 skb_walk_frags(skb, skb_iter) { 956 int frag_pos; 957 958 /* Practically all frags must belong to msg if reencrypt 959 * is needed with current strparser and coalescing logic, 960 * but strparser may "get optimized", so let's be safe. 961 */ 962 if (pos + skb_iter->len <= offset) 963 goto done_with_frag; 964 if (pos >= data_len + rxm->offset) 965 break; 966 967 frag_pos = offset - pos; 968 copy = min_t(int, skb_iter->len - frag_pos, 969 data_len + rxm->offset - offset); 970 971 if (skb_iter->decrypted) { 972 err = skb_store_bits(skb_iter, frag_pos, buf, copy); 973 if (err) 974 goto free_buf; 975 } 976 977 offset += copy; 978 buf += copy; 979 done_with_frag: 980 pos += skb_iter->len; 981 } 982 983 free_buf: 984 kfree(orig_buf); 985 return err; 986 } 987 988 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) 989 { 990 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 991 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); 992 struct sk_buff *skb = tls_strp_msg(sw_ctx); 993 struct strp_msg *rxm = strp_msg(skb); 994 int is_decrypted, is_encrypted; 995 996 if (!tls_strp_msg_mixed_decrypted(sw_ctx)) { 997 is_decrypted = skb->decrypted; 998 is_encrypted = !is_decrypted; 999 } else { 1000 is_decrypted = 0; 1001 is_encrypted = 0; 1002 } 1003 1004 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, 1005 tls_ctx->rx.rec_seq, rxm->full_len, 1006 is_encrypted, is_decrypted); 1007 1008 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) { 1009 if (likely(is_encrypted || is_decrypted)) 1010 return is_decrypted; 1011 1012 /* After tls_device_down disables the offload, the next SKB will 1013 * likely have initial fragments decrypted, and final ones not 1014 * decrypted. We need to reencrypt that single SKB. 1015 */ 1016 return tls_device_reencrypt(sk, tls_ctx); 1017 } 1018 1019 /* Return immediately if the record is either entirely plaintext or 1020 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 1021 * record. 1022 */ 1023 if (is_decrypted) { 1024 ctx->resync_nh_reset = 1; 1025 return is_decrypted; 1026 } 1027 if (is_encrypted) { 1028 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); 1029 return 0; 1030 } 1031 1032 ctx->resync_nh_reset = 1; 1033 return tls_device_reencrypt(sk, tls_ctx); 1034 } 1035 1036 static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 1037 struct net_device *netdev) 1038 { 1039 if (sk->sk_destruct != tls_device_sk_destruct) { 1040 refcount_set(&ctx->refcount, 1); 1041 dev_hold(netdev); 1042 RCU_INIT_POINTER(ctx->netdev, netdev); 1043 spin_lock_irq(&tls_device_lock); 1044 list_add_tail(&ctx->list, &tls_device_list); 1045 spin_unlock_irq(&tls_device_lock); 1046 1047 ctx->sk_destruct = sk->sk_destruct; 1048 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); 1049 } 1050 } 1051 1052 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 1053 { 1054 struct tls_context *tls_ctx = tls_get_ctx(sk); 1055 struct tls_prot_info *prot = &tls_ctx->prot_info; 1056 const struct tls_cipher_size_desc *cipher_sz; 1057 struct tls_record_info *start_marker_record; 1058 struct tls_offload_context_tx *offload_ctx; 1059 struct tls_crypto_info *crypto_info; 1060 struct net_device *netdev; 1061 char *iv, *rec_seq; 1062 struct sk_buff *skb; 1063 __be64 rcd_sn; 1064 int rc; 1065 1066 if (!ctx) 1067 return -EINVAL; 1068 1069 if (ctx->priv_ctx_tx) 1070 return -EEXIST; 1071 1072 netdev = get_netdev_for_sock(sk); 1073 if (!netdev) { 1074 pr_err_ratelimited("%s: netdev not found\n", __func__); 1075 return -EINVAL; 1076 } 1077 1078 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 1079 rc = -EOPNOTSUPP; 1080 goto release_netdev; 1081 } 1082 1083 crypto_info = &ctx->crypto_send.info; 1084 if (crypto_info->version != TLS_1_2_VERSION) { 1085 rc = -EOPNOTSUPP; 1086 goto release_netdev; 1087 } 1088 1089 switch (crypto_info->cipher_type) { 1090 case TLS_CIPHER_AES_GCM_128: 1091 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 1092 rec_seq = 1093 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 1094 break; 1095 case TLS_CIPHER_AES_GCM_256: 1096 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 1097 rec_seq = 1098 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 1099 break; 1100 default: 1101 rc = -EINVAL; 1102 goto release_netdev; 1103 } 1104 cipher_sz = &tls_cipher_size_desc[crypto_info->cipher_type]; 1105 1106 /* Sanity-check the rec_seq_size for stack allocations */ 1107 if (cipher_sz->rec_seq > TLS_MAX_REC_SEQ_SIZE) { 1108 rc = -EINVAL; 1109 goto release_netdev; 1110 } 1111 1112 prot->version = crypto_info->version; 1113 prot->cipher_type = crypto_info->cipher_type; 1114 prot->prepend_size = TLS_HEADER_SIZE + cipher_sz->iv; 1115 prot->tag_size = cipher_sz->tag; 1116 prot->overhead_size = prot->prepend_size + prot->tag_size; 1117 prot->iv_size = cipher_sz->iv; 1118 prot->salt_size = cipher_sz->salt; 1119 ctx->tx.iv = kmalloc(cipher_sz->iv + cipher_sz->salt, GFP_KERNEL); 1120 if (!ctx->tx.iv) { 1121 rc = -ENOMEM; 1122 goto release_netdev; 1123 } 1124 1125 memcpy(ctx->tx.iv + cipher_sz->salt, iv, cipher_sz->iv); 1126 1127 prot->rec_seq_size = cipher_sz->rec_seq; 1128 ctx->tx.rec_seq = kmemdup(rec_seq, cipher_sz->rec_seq, GFP_KERNEL); 1129 if (!ctx->tx.rec_seq) { 1130 rc = -ENOMEM; 1131 goto free_iv; 1132 } 1133 1134 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 1135 if (!start_marker_record) { 1136 rc = -ENOMEM; 1137 goto free_rec_seq; 1138 } 1139 1140 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); 1141 if (!offload_ctx) { 1142 rc = -ENOMEM; 1143 goto free_marker_record; 1144 } 1145 1146 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 1147 if (rc) 1148 goto free_offload_ctx; 1149 1150 /* start at rec_seq - 1 to account for the start marker record */ 1151 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 1152 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 1153 1154 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 1155 start_marker_record->len = 0; 1156 start_marker_record->num_frags = 0; 1157 1158 INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task); 1159 offload_ctx->ctx = ctx; 1160 1161 INIT_LIST_HEAD(&offload_ctx->records_list); 1162 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 1163 spin_lock_init(&offload_ctx->lock); 1164 sg_init_table(offload_ctx->sg_tx_data, 1165 ARRAY_SIZE(offload_ctx->sg_tx_data)); 1166 1167 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); 1168 ctx->push_pending_record = tls_device_push_pending_record; 1169 1170 /* TLS offload is greatly simplified if we don't send 1171 * SKBs where only part of the payload needs to be encrypted. 1172 * So mark the last skb in the write queue as end of record. 1173 */ 1174 skb = tcp_write_queue_tail(sk); 1175 if (skb) 1176 TCP_SKB_CB(skb)->eor = 1; 1177 1178 /* Avoid offloading if the device is down 1179 * We don't want to offload new flows after 1180 * the NETDEV_DOWN event 1181 * 1182 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1183 * handler thus protecting from the device going down before 1184 * ctx was added to tls_device_list. 1185 */ 1186 down_read(&device_offload_lock); 1187 if (!(netdev->flags & IFF_UP)) { 1188 rc = -EINVAL; 1189 goto release_lock; 1190 } 1191 1192 ctx->priv_ctx_tx = offload_ctx; 1193 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 1194 &ctx->crypto_send.info, 1195 tcp_sk(sk)->write_seq); 1196 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, 1197 tcp_sk(sk)->write_seq, rec_seq, rc); 1198 if (rc) 1199 goto release_lock; 1200 1201 tls_device_attach(ctx, sk, netdev); 1202 up_read(&device_offload_lock); 1203 1204 /* following this assignment tls_is_skb_tx_device_offloaded 1205 * will return true and the context might be accessed 1206 * by the netdev's xmit function. 1207 */ 1208 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 1209 dev_put(netdev); 1210 1211 return 0; 1212 1213 release_lock: 1214 up_read(&device_offload_lock); 1215 clean_acked_data_disable(inet_csk(sk)); 1216 crypto_free_aead(offload_ctx->aead_send); 1217 free_offload_ctx: 1218 kfree(offload_ctx); 1219 ctx->priv_ctx_tx = NULL; 1220 free_marker_record: 1221 kfree(start_marker_record); 1222 free_rec_seq: 1223 kfree(ctx->tx.rec_seq); 1224 free_iv: 1225 kfree(ctx->tx.iv); 1226 release_netdev: 1227 dev_put(netdev); 1228 return rc; 1229 } 1230 1231 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 1232 { 1233 struct tls12_crypto_info_aes_gcm_128 *info; 1234 struct tls_offload_context_rx *context; 1235 struct net_device *netdev; 1236 int rc = 0; 1237 1238 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) 1239 return -EOPNOTSUPP; 1240 1241 netdev = get_netdev_for_sock(sk); 1242 if (!netdev) { 1243 pr_err_ratelimited("%s: netdev not found\n", __func__); 1244 return -EINVAL; 1245 } 1246 1247 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 1248 rc = -EOPNOTSUPP; 1249 goto release_netdev; 1250 } 1251 1252 /* Avoid offloading if the device is down 1253 * We don't want to offload new flows after 1254 * the NETDEV_DOWN event 1255 * 1256 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1257 * handler thus protecting from the device going down before 1258 * ctx was added to tls_device_list. 1259 */ 1260 down_read(&device_offload_lock); 1261 if (!(netdev->flags & IFF_UP)) { 1262 rc = -EINVAL; 1263 goto release_lock; 1264 } 1265 1266 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); 1267 if (!context) { 1268 rc = -ENOMEM; 1269 goto release_lock; 1270 } 1271 context->resync_nh_reset = 1; 1272 1273 ctx->priv_ctx_rx = context; 1274 rc = tls_set_sw_offload(sk, ctx, 0); 1275 if (rc) 1276 goto release_ctx; 1277 1278 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 1279 &ctx->crypto_recv.info, 1280 tcp_sk(sk)->copied_seq); 1281 info = (void *)&ctx->crypto_recv.info; 1282 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, 1283 tcp_sk(sk)->copied_seq, info->rec_seq, rc); 1284 if (rc) 1285 goto free_sw_resources; 1286 1287 tls_device_attach(ctx, sk, netdev); 1288 up_read(&device_offload_lock); 1289 1290 dev_put(netdev); 1291 1292 return 0; 1293 1294 free_sw_resources: 1295 up_read(&device_offload_lock); 1296 tls_sw_free_resources_rx(sk); 1297 down_read(&device_offload_lock); 1298 release_ctx: 1299 ctx->priv_ctx_rx = NULL; 1300 release_lock: 1301 up_read(&device_offload_lock); 1302 release_netdev: 1303 dev_put(netdev); 1304 return rc; 1305 } 1306 1307 void tls_device_offload_cleanup_rx(struct sock *sk) 1308 { 1309 struct tls_context *tls_ctx = tls_get_ctx(sk); 1310 struct net_device *netdev; 1311 1312 down_read(&device_offload_lock); 1313 netdev = rcu_dereference_protected(tls_ctx->netdev, 1314 lockdep_is_held(&device_offload_lock)); 1315 if (!netdev) 1316 goto out; 1317 1318 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 1319 TLS_OFFLOAD_CTX_DIR_RX); 1320 1321 if (tls_ctx->tx_conf != TLS_HW) { 1322 dev_put(netdev); 1323 rcu_assign_pointer(tls_ctx->netdev, NULL); 1324 } else { 1325 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); 1326 } 1327 out: 1328 up_read(&device_offload_lock); 1329 tls_sw_release_resources_rx(sk); 1330 } 1331 1332 static int tls_device_down(struct net_device *netdev) 1333 { 1334 struct tls_context *ctx, *tmp; 1335 unsigned long flags; 1336 LIST_HEAD(list); 1337 1338 /* Request a write lock to block new offload attempts */ 1339 down_write(&device_offload_lock); 1340 1341 spin_lock_irqsave(&tls_device_lock, flags); 1342 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 1343 struct net_device *ctx_netdev = 1344 rcu_dereference_protected(ctx->netdev, 1345 lockdep_is_held(&device_offload_lock)); 1346 1347 if (ctx_netdev != netdev || 1348 !refcount_inc_not_zero(&ctx->refcount)) 1349 continue; 1350 1351 list_move(&ctx->list, &list); 1352 } 1353 spin_unlock_irqrestore(&tls_device_lock, flags); 1354 1355 list_for_each_entry_safe(ctx, tmp, &list, list) { 1356 /* Stop offloaded TX and switch to the fallback. 1357 * tls_is_skb_tx_device_offloaded will return false. 1358 */ 1359 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw); 1360 1361 /* Stop the RX and TX resync. 1362 * tls_dev_resync must not be called after tls_dev_del. 1363 */ 1364 rcu_assign_pointer(ctx->netdev, NULL); 1365 1366 /* Start skipping the RX resync logic completely. */ 1367 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags); 1368 1369 /* Sync with inflight packets. After this point: 1370 * TX: no non-encrypted packets will be passed to the driver. 1371 * RX: resync requests from the driver will be ignored. 1372 */ 1373 synchronize_net(); 1374 1375 /* Release the offload context on the driver side. */ 1376 if (ctx->tx_conf == TLS_HW) 1377 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1378 TLS_OFFLOAD_CTX_DIR_TX); 1379 if (ctx->rx_conf == TLS_HW && 1380 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) 1381 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1382 TLS_OFFLOAD_CTX_DIR_RX); 1383 1384 dev_put(netdev); 1385 1386 /* Move the context to a separate list for two reasons: 1387 * 1. When the context is deallocated, list_del is called. 1388 * 2. It's no longer an offloaded context, so we don't want to 1389 * run offload-specific code on this context. 1390 */ 1391 spin_lock_irqsave(&tls_device_lock, flags); 1392 list_move_tail(&ctx->list, &tls_device_down_list); 1393 spin_unlock_irqrestore(&tls_device_lock, flags); 1394 1395 /* Device contexts for RX and TX will be freed in on sk_destruct 1396 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW. 1397 * Now release the ref taken above. 1398 */ 1399 if (refcount_dec_and_test(&ctx->refcount)) { 1400 /* sk_destruct ran after tls_device_down took a ref, and 1401 * it returned early. Complete the destruction here. 1402 */ 1403 list_del(&ctx->list); 1404 tls_device_free_ctx(ctx); 1405 } 1406 } 1407 1408 up_write(&device_offload_lock); 1409 1410 flush_workqueue(destruct_wq); 1411 1412 return NOTIFY_DONE; 1413 } 1414 1415 static int tls_dev_event(struct notifier_block *this, unsigned long event, 1416 void *ptr) 1417 { 1418 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1419 1420 if (!dev->tlsdev_ops && 1421 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 1422 return NOTIFY_DONE; 1423 1424 switch (event) { 1425 case NETDEV_REGISTER: 1426 case NETDEV_FEAT_CHANGE: 1427 if (netif_is_bond_master(dev)) 1428 return NOTIFY_DONE; 1429 if ((dev->features & NETIF_F_HW_TLS_RX) && 1430 !dev->tlsdev_ops->tls_dev_resync) 1431 return NOTIFY_BAD; 1432 1433 if (dev->tlsdev_ops && 1434 dev->tlsdev_ops->tls_dev_add && 1435 dev->tlsdev_ops->tls_dev_del) 1436 return NOTIFY_DONE; 1437 else 1438 return NOTIFY_BAD; 1439 case NETDEV_DOWN: 1440 return tls_device_down(dev); 1441 } 1442 return NOTIFY_DONE; 1443 } 1444 1445 static struct notifier_block tls_dev_notifier = { 1446 .notifier_call = tls_dev_event, 1447 }; 1448 1449 int __init tls_device_init(void) 1450 { 1451 int err; 1452 1453 destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0); 1454 if (!destruct_wq) 1455 return -ENOMEM; 1456 1457 err = register_netdevice_notifier(&tls_dev_notifier); 1458 if (err) 1459 destroy_workqueue(destruct_wq); 1460 1461 return err; 1462 } 1463 1464 void __exit tls_device_cleanup(void) 1465 { 1466 unregister_netdevice_notifier(&tls_dev_notifier); 1467 destroy_workqueue(destruct_wq); 1468 clean_acked_data_flush(); 1469 } 1470