1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32 #include <crypto/aead.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/netdevice.h> 36 #include <net/dst.h> 37 #include <net/inet_connection_sock.h> 38 #include <net/tcp.h> 39 #include <net/tls.h> 40 41 #include "trace.h" 42 43 /* device_offload_lock is used to synchronize tls_dev_add 44 * against NETDEV_DOWN notifications. 45 */ 46 static DECLARE_RWSEM(device_offload_lock); 47 48 static void tls_device_gc_task(struct work_struct *work); 49 50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task); 51 static LIST_HEAD(tls_device_gc_list); 52 static LIST_HEAD(tls_device_list); 53 static DEFINE_SPINLOCK(tls_device_lock); 54 55 static void tls_device_free_ctx(struct tls_context *ctx) 56 { 57 if (ctx->tx_conf == TLS_HW) { 58 kfree(tls_offload_ctx_tx(ctx)); 59 kfree(ctx->tx.rec_seq); 60 kfree(ctx->tx.iv); 61 } 62 63 if (ctx->rx_conf == TLS_HW) 64 kfree(tls_offload_ctx_rx(ctx)); 65 66 tls_ctx_free(NULL, ctx); 67 } 68 69 static void tls_device_gc_task(struct work_struct *work) 70 { 71 struct tls_context *ctx, *tmp; 72 unsigned long flags; 73 LIST_HEAD(gc_list); 74 75 spin_lock_irqsave(&tls_device_lock, flags); 76 list_splice_init(&tls_device_gc_list, &gc_list); 77 spin_unlock_irqrestore(&tls_device_lock, flags); 78 79 list_for_each_entry_safe(ctx, tmp, &gc_list, list) { 80 struct net_device *netdev = ctx->netdev; 81 82 if (netdev && ctx->tx_conf == TLS_HW) { 83 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 84 TLS_OFFLOAD_CTX_DIR_TX); 85 dev_put(netdev); 86 ctx->netdev = NULL; 87 } 88 89 list_del(&ctx->list); 90 tls_device_free_ctx(ctx); 91 } 92 } 93 94 static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 95 { 96 unsigned long flags; 97 98 spin_lock_irqsave(&tls_device_lock, flags); 99 list_move_tail(&ctx->list, &tls_device_gc_list); 100 101 /* schedule_work inside the spinlock 102 * to make sure tls_device_down waits for that work. 103 */ 104 schedule_work(&tls_device_gc_work); 105 106 spin_unlock_irqrestore(&tls_device_lock, flags); 107 } 108 109 /* We assume that the socket is already connected */ 110 static struct net_device *get_netdev_for_sock(struct sock *sk) 111 { 112 struct dst_entry *dst = sk_dst_get(sk); 113 struct net_device *netdev = NULL; 114 115 if (likely(dst)) { 116 netdev = netdev_sk_get_lowest_dev(dst->dev, sk); 117 dev_hold(netdev); 118 } 119 120 dst_release(dst); 121 122 return netdev; 123 } 124 125 static void destroy_record(struct tls_record_info *record) 126 { 127 int i; 128 129 for (i = 0; i < record->num_frags; i++) 130 __skb_frag_unref(&record->frags[i]); 131 kfree(record); 132 } 133 134 static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 135 { 136 struct tls_record_info *info, *temp; 137 138 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 139 list_del(&info->list); 140 destroy_record(info); 141 } 142 143 offload_ctx->retransmit_hint = NULL; 144 } 145 146 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) 147 { 148 struct tls_context *tls_ctx = tls_get_ctx(sk); 149 struct tls_record_info *info, *temp; 150 struct tls_offload_context_tx *ctx; 151 u64 deleted_records = 0; 152 unsigned long flags; 153 154 if (!tls_ctx) 155 return; 156 157 ctx = tls_offload_ctx_tx(tls_ctx); 158 159 spin_lock_irqsave(&ctx->lock, flags); 160 info = ctx->retransmit_hint; 161 if (info && !before(acked_seq, info->end_seq)) 162 ctx->retransmit_hint = NULL; 163 164 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 165 if (before(acked_seq, info->end_seq)) 166 break; 167 list_del(&info->list); 168 169 destroy_record(info); 170 deleted_records++; 171 } 172 173 ctx->unacked_record_sn += deleted_records; 174 spin_unlock_irqrestore(&ctx->lock, flags); 175 } 176 177 /* At this point, there should be no references on this 178 * socket and no in-flight SKBs associated with this 179 * socket, so it is safe to free all the resources. 180 */ 181 void tls_device_sk_destruct(struct sock *sk) 182 { 183 struct tls_context *tls_ctx = tls_get_ctx(sk); 184 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 185 186 tls_ctx->sk_destruct(sk); 187 188 if (tls_ctx->tx_conf == TLS_HW) { 189 if (ctx->open_record) 190 destroy_record(ctx->open_record); 191 delete_all_records(ctx); 192 crypto_free_aead(ctx->aead_send); 193 clean_acked_data_disable(inet_csk(sk)); 194 } 195 196 if (refcount_dec_and_test(&tls_ctx->refcount)) 197 tls_device_queue_ctx_destruction(tls_ctx); 198 } 199 EXPORT_SYMBOL_GPL(tls_device_sk_destruct); 200 201 void tls_device_free_resources_tx(struct sock *sk) 202 { 203 struct tls_context *tls_ctx = tls_get_ctx(sk); 204 205 tls_free_partial_record(sk, tls_ctx); 206 } 207 208 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) 209 { 210 struct tls_context *tls_ctx = tls_get_ctx(sk); 211 212 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); 213 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 214 } 215 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); 216 217 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, 218 u32 seq) 219 { 220 struct net_device *netdev; 221 struct sk_buff *skb; 222 int err = 0; 223 u8 *rcd_sn; 224 225 skb = tcp_write_queue_tail(sk); 226 if (skb) 227 TCP_SKB_CB(skb)->eor = 1; 228 229 rcd_sn = tls_ctx->tx.rec_seq; 230 231 trace_tls_device_tx_resync_send(sk, seq, rcd_sn); 232 down_read(&device_offload_lock); 233 netdev = tls_ctx->netdev; 234 if (netdev) 235 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, 236 rcd_sn, 237 TLS_OFFLOAD_CTX_DIR_TX); 238 up_read(&device_offload_lock); 239 if (err) 240 return; 241 242 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 243 } 244 245 static void tls_append_frag(struct tls_record_info *record, 246 struct page_frag *pfrag, 247 int size) 248 { 249 skb_frag_t *frag; 250 251 frag = &record->frags[record->num_frags - 1]; 252 if (skb_frag_page(frag) == pfrag->page && 253 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { 254 skb_frag_size_add(frag, size); 255 } else { 256 ++frag; 257 __skb_frag_set_page(frag, pfrag->page); 258 skb_frag_off_set(frag, pfrag->offset); 259 skb_frag_size_set(frag, size); 260 ++record->num_frags; 261 get_page(pfrag->page); 262 } 263 264 pfrag->offset += size; 265 record->len += size; 266 } 267 268 static int tls_push_record(struct sock *sk, 269 struct tls_context *ctx, 270 struct tls_offload_context_tx *offload_ctx, 271 struct tls_record_info *record, 272 int flags) 273 { 274 struct tls_prot_info *prot = &ctx->prot_info; 275 struct tcp_sock *tp = tcp_sk(sk); 276 skb_frag_t *frag; 277 int i; 278 279 record->end_seq = tp->write_seq + record->len; 280 list_add_tail_rcu(&record->list, &offload_ctx->records_list); 281 offload_ctx->open_record = NULL; 282 283 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) 284 tls_device_resync_tx(sk, ctx, tp->write_seq); 285 286 tls_advance_record_sn(sk, prot, &ctx->tx); 287 288 for (i = 0; i < record->num_frags; i++) { 289 frag = &record->frags[i]; 290 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 291 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 292 skb_frag_size(frag), skb_frag_off(frag)); 293 sk_mem_charge(sk, skb_frag_size(frag)); 294 get_page(skb_frag_page(frag)); 295 } 296 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 297 298 /* all ready, send */ 299 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 300 } 301 302 static int tls_device_record_close(struct sock *sk, 303 struct tls_context *ctx, 304 struct tls_record_info *record, 305 struct page_frag *pfrag, 306 unsigned char record_type) 307 { 308 struct tls_prot_info *prot = &ctx->prot_info; 309 int ret; 310 311 /* append tag 312 * device will fill in the tag, we just need to append a placeholder 313 * use socket memory to improve coalescing (re-using a single buffer 314 * increases frag count) 315 * if we can't allocate memory now, steal some back from data 316 */ 317 if (likely(skb_page_frag_refill(prot->tag_size, pfrag, 318 sk->sk_allocation))) { 319 ret = 0; 320 tls_append_frag(record, pfrag, prot->tag_size); 321 } else { 322 ret = prot->tag_size; 323 if (record->len <= prot->overhead_size) 324 return -ENOMEM; 325 } 326 327 /* fill prepend */ 328 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), 329 record->len - prot->overhead_size, 330 record_type); 331 return ret; 332 } 333 334 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 335 struct page_frag *pfrag, 336 size_t prepend_size) 337 { 338 struct tls_record_info *record; 339 skb_frag_t *frag; 340 341 record = kmalloc(sizeof(*record), GFP_KERNEL); 342 if (!record) 343 return -ENOMEM; 344 345 frag = &record->frags[0]; 346 __skb_frag_set_page(frag, pfrag->page); 347 skb_frag_off_set(frag, pfrag->offset); 348 skb_frag_size_set(frag, prepend_size); 349 350 get_page(pfrag->page); 351 pfrag->offset += prepend_size; 352 353 record->num_frags = 1; 354 record->len = prepend_size; 355 offload_ctx->open_record = record; 356 return 0; 357 } 358 359 static int tls_do_allocation(struct sock *sk, 360 struct tls_offload_context_tx *offload_ctx, 361 struct page_frag *pfrag, 362 size_t prepend_size) 363 { 364 int ret; 365 366 if (!offload_ctx->open_record) { 367 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 368 sk->sk_allocation))) { 369 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); 370 sk_stream_moderate_sndbuf(sk); 371 return -ENOMEM; 372 } 373 374 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 375 if (ret) 376 return ret; 377 378 if (pfrag->size > pfrag->offset) 379 return 0; 380 } 381 382 if (!sk_page_frag_refill(sk, pfrag)) 383 return -ENOMEM; 384 385 return 0; 386 } 387 388 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) 389 { 390 size_t pre_copy, nocache; 391 392 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); 393 if (pre_copy) { 394 pre_copy = min(pre_copy, bytes); 395 if (copy_from_iter(addr, pre_copy, i) != pre_copy) 396 return -EFAULT; 397 bytes -= pre_copy; 398 addr += pre_copy; 399 } 400 401 nocache = round_down(bytes, SMP_CACHE_BYTES); 402 if (copy_from_iter_nocache(addr, nocache, i) != nocache) 403 return -EFAULT; 404 bytes -= nocache; 405 addr += nocache; 406 407 if (bytes && copy_from_iter(addr, bytes, i) != bytes) 408 return -EFAULT; 409 410 return 0; 411 } 412 413 static int tls_push_data(struct sock *sk, 414 struct iov_iter *msg_iter, 415 size_t size, int flags, 416 unsigned char record_type) 417 { 418 struct tls_context *tls_ctx = tls_get_ctx(sk); 419 struct tls_prot_info *prot = &tls_ctx->prot_info; 420 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 421 struct tls_record_info *record; 422 int tls_push_record_flags; 423 struct page_frag *pfrag; 424 size_t orig_size = size; 425 u32 max_open_record_len; 426 bool more = false; 427 bool done = false; 428 int copy, rc = 0; 429 long timeo; 430 431 if (flags & 432 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) 433 return -EOPNOTSUPP; 434 435 if (unlikely(sk->sk_err)) 436 return -sk->sk_err; 437 438 flags |= MSG_SENDPAGE_DECRYPTED; 439 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST; 440 441 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 442 if (tls_is_partially_sent_record(tls_ctx)) { 443 rc = tls_push_partial_record(sk, tls_ctx, flags); 444 if (rc < 0) 445 return rc; 446 } 447 448 pfrag = sk_page_frag(sk); 449 450 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 451 * we need to leave room for an authentication tag. 452 */ 453 max_open_record_len = TLS_MAX_PAYLOAD_SIZE + 454 prot->prepend_size; 455 do { 456 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); 457 if (unlikely(rc)) { 458 rc = sk_stream_wait_memory(sk, &timeo); 459 if (!rc) 460 continue; 461 462 record = ctx->open_record; 463 if (!record) 464 break; 465 handle_error: 466 if (record_type != TLS_RECORD_TYPE_DATA) { 467 /* avoid sending partial 468 * record with type != 469 * application_data 470 */ 471 size = orig_size; 472 destroy_record(record); 473 ctx->open_record = NULL; 474 } else if (record->len > prot->prepend_size) { 475 goto last_record; 476 } 477 478 break; 479 } 480 481 record = ctx->open_record; 482 copy = min_t(size_t, size, (pfrag->size - pfrag->offset)); 483 copy = min_t(size_t, copy, (max_open_record_len - record->len)); 484 485 rc = tls_device_copy_data(page_address(pfrag->page) + 486 pfrag->offset, copy, msg_iter); 487 if (rc) 488 goto handle_error; 489 tls_append_frag(record, pfrag, copy); 490 491 size -= copy; 492 if (!size) { 493 last_record: 494 tls_push_record_flags = flags; 495 if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) { 496 more = true; 497 break; 498 } 499 500 done = true; 501 } 502 503 if (done || record->len >= max_open_record_len || 504 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 505 rc = tls_device_record_close(sk, tls_ctx, record, 506 pfrag, record_type); 507 if (rc) { 508 if (rc > 0) { 509 size += rc; 510 } else { 511 size = orig_size; 512 destroy_record(record); 513 ctx->open_record = NULL; 514 break; 515 } 516 } 517 518 rc = tls_push_record(sk, 519 tls_ctx, 520 ctx, 521 record, 522 tls_push_record_flags); 523 if (rc < 0) 524 break; 525 } 526 } while (!done); 527 528 tls_ctx->pending_open_record_frags = more; 529 530 if (orig_size - size > 0) 531 rc = orig_size - size; 532 533 return rc; 534 } 535 536 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 537 { 538 unsigned char record_type = TLS_RECORD_TYPE_DATA; 539 struct tls_context *tls_ctx = tls_get_ctx(sk); 540 int rc; 541 542 mutex_lock(&tls_ctx->tx_lock); 543 lock_sock(sk); 544 545 if (unlikely(msg->msg_controllen)) { 546 rc = tls_proccess_cmsg(sk, msg, &record_type); 547 if (rc) 548 goto out; 549 } 550 551 rc = tls_push_data(sk, &msg->msg_iter, size, 552 msg->msg_flags, record_type); 553 554 out: 555 release_sock(sk); 556 mutex_unlock(&tls_ctx->tx_lock); 557 return rc; 558 } 559 560 int tls_device_sendpage(struct sock *sk, struct page *page, 561 int offset, size_t size, int flags) 562 { 563 struct tls_context *tls_ctx = tls_get_ctx(sk); 564 struct iov_iter msg_iter; 565 char *kaddr; 566 struct kvec iov; 567 int rc; 568 569 if (flags & MSG_SENDPAGE_NOTLAST) 570 flags |= MSG_MORE; 571 572 mutex_lock(&tls_ctx->tx_lock); 573 lock_sock(sk); 574 575 if (flags & MSG_OOB) { 576 rc = -EOPNOTSUPP; 577 goto out; 578 } 579 580 kaddr = kmap(page); 581 iov.iov_base = kaddr + offset; 582 iov.iov_len = size; 583 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size); 584 rc = tls_push_data(sk, &msg_iter, size, 585 flags, TLS_RECORD_TYPE_DATA); 586 kunmap(page); 587 588 out: 589 release_sock(sk); 590 mutex_unlock(&tls_ctx->tx_lock); 591 return rc; 592 } 593 594 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 595 u32 seq, u64 *p_record_sn) 596 { 597 u64 record_sn = context->hint_record_sn; 598 struct tls_record_info *info, *last; 599 600 info = context->retransmit_hint; 601 if (!info || 602 before(seq, info->end_seq - info->len)) { 603 /* if retransmit_hint is irrelevant start 604 * from the beginning of the list 605 */ 606 info = list_first_entry_or_null(&context->records_list, 607 struct tls_record_info, list); 608 if (!info) 609 return NULL; 610 /* send the start_marker record if seq number is before the 611 * tls offload start marker sequence number. This record is 612 * required to handle TCP packets which are before TLS offload 613 * started. 614 * And if it's not start marker, look if this seq number 615 * belongs to the list. 616 */ 617 if (likely(!tls_record_is_start_marker(info))) { 618 /* we have the first record, get the last record to see 619 * if this seq number belongs to the list. 620 */ 621 last = list_last_entry(&context->records_list, 622 struct tls_record_info, list); 623 624 if (!between(seq, tls_record_start_seq(info), 625 last->end_seq)) 626 return NULL; 627 } 628 record_sn = context->unacked_record_sn; 629 } 630 631 /* We just need the _rcu for the READ_ONCE() */ 632 rcu_read_lock(); 633 list_for_each_entry_from_rcu(info, &context->records_list, list) { 634 if (before(seq, info->end_seq)) { 635 if (!context->retransmit_hint || 636 after(info->end_seq, 637 context->retransmit_hint->end_seq)) { 638 context->hint_record_sn = record_sn; 639 context->retransmit_hint = info; 640 } 641 *p_record_sn = record_sn; 642 goto exit_rcu_unlock; 643 } 644 record_sn++; 645 } 646 info = NULL; 647 648 exit_rcu_unlock: 649 rcu_read_unlock(); 650 return info; 651 } 652 EXPORT_SYMBOL(tls_get_record); 653 654 static int tls_device_push_pending_record(struct sock *sk, int flags) 655 { 656 struct iov_iter msg_iter; 657 658 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0); 659 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA); 660 } 661 662 void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 663 { 664 if (tls_is_partially_sent_record(ctx)) { 665 gfp_t sk_allocation = sk->sk_allocation; 666 667 WARN_ON_ONCE(sk->sk_write_pending); 668 669 sk->sk_allocation = GFP_ATOMIC; 670 tls_push_partial_record(sk, ctx, 671 MSG_DONTWAIT | MSG_NOSIGNAL | 672 MSG_SENDPAGE_DECRYPTED); 673 sk->sk_allocation = sk_allocation; 674 } 675 } 676 677 static void tls_device_resync_rx(struct tls_context *tls_ctx, 678 struct sock *sk, u32 seq, u8 *rcd_sn) 679 { 680 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 681 struct net_device *netdev; 682 683 if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags))) 684 return; 685 686 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); 687 netdev = READ_ONCE(tls_ctx->netdev); 688 if (netdev) 689 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, 690 TLS_OFFLOAD_CTX_DIR_RX); 691 clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags); 692 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); 693 } 694 695 static bool 696 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, 697 s64 resync_req, u32 *seq, u16 *rcd_delta) 698 { 699 u32 is_async = resync_req & RESYNC_REQ_ASYNC; 700 u32 req_seq = resync_req >> 32; 701 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); 702 u16 i; 703 704 *rcd_delta = 0; 705 706 if (is_async) { 707 /* shouldn't get to wraparound: 708 * too long in async stage, something bad happened 709 */ 710 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) 711 return false; 712 713 /* asynchronous stage: log all headers seq such that 714 * req_seq <= seq <= end_seq, and wait for real resync request 715 */ 716 if (before(*seq, req_seq)) 717 return false; 718 if (!after(*seq, req_end) && 719 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) 720 resync_async->log[resync_async->loglen++] = *seq; 721 722 resync_async->rcd_delta++; 723 724 return false; 725 } 726 727 /* synchronous stage: check against the logged entries and 728 * proceed to check the next entries if no match was found 729 */ 730 for (i = 0; i < resync_async->loglen; i++) 731 if (req_seq == resync_async->log[i] && 732 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { 733 *rcd_delta = resync_async->rcd_delta - i; 734 *seq = req_seq; 735 resync_async->loglen = 0; 736 resync_async->rcd_delta = 0; 737 return true; 738 } 739 740 resync_async->loglen = 0; 741 resync_async->rcd_delta = 0; 742 743 if (req_seq == *seq && 744 atomic64_try_cmpxchg(&resync_async->req, 745 &resync_req, 0)) 746 return true; 747 748 return false; 749 } 750 751 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) 752 { 753 struct tls_context *tls_ctx = tls_get_ctx(sk); 754 struct tls_offload_context_rx *rx_ctx; 755 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 756 u32 sock_data, is_req_pending; 757 struct tls_prot_info *prot; 758 s64 resync_req; 759 u16 rcd_delta; 760 u32 req_seq; 761 762 if (tls_ctx->rx_conf != TLS_HW) 763 return; 764 765 prot = &tls_ctx->prot_info; 766 rx_ctx = tls_offload_ctx_rx(tls_ctx); 767 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 768 769 switch (rx_ctx->resync_type) { 770 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: 771 resync_req = atomic64_read(&rx_ctx->resync_req); 772 req_seq = resync_req >> 32; 773 seq += TLS_HEADER_SIZE - 1; 774 is_req_pending = resync_req; 775 776 if (likely(!is_req_pending) || req_seq != seq || 777 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 778 return; 779 break; 780 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: 781 if (likely(!rx_ctx->resync_nh_do_now)) 782 return; 783 784 /* head of next rec is already in, note that the sock_inq will 785 * include the currently parsed message when called from parser 786 */ 787 sock_data = tcp_inq(sk); 788 if (sock_data > rcd_len) { 789 trace_tls_device_rx_resync_nh_delay(sk, sock_data, 790 rcd_len); 791 return; 792 } 793 794 rx_ctx->resync_nh_do_now = 0; 795 seq += rcd_len; 796 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 797 break; 798 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: 799 resync_req = atomic64_read(&rx_ctx->resync_async->req); 800 is_req_pending = resync_req; 801 if (likely(!is_req_pending)) 802 return; 803 804 if (!tls_device_rx_resync_async(rx_ctx->resync_async, 805 resync_req, &seq, &rcd_delta)) 806 return; 807 tls_bigint_subtract(rcd_sn, rcd_delta); 808 break; 809 } 810 811 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); 812 } 813 814 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, 815 struct tls_offload_context_rx *ctx, 816 struct sock *sk, struct sk_buff *skb) 817 { 818 struct strp_msg *rxm; 819 820 /* device will request resyncs by itself based on stream scan */ 821 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) 822 return; 823 /* already scheduled */ 824 if (ctx->resync_nh_do_now) 825 return; 826 /* seen decrypted fragments since last fully-failed record */ 827 if (ctx->resync_nh_reset) { 828 ctx->resync_nh_reset = 0; 829 ctx->resync_nh.decrypted_failed = 1; 830 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; 831 return; 832 } 833 834 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) 835 return; 836 837 /* doing resync, bump the next target in case it fails */ 838 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) 839 ctx->resync_nh.decrypted_tgt *= 2; 840 else 841 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; 842 843 rxm = strp_msg(skb); 844 845 /* head of next rec is already in, parser will sync for us */ 846 if (tcp_inq(sk) > rxm->full_len) { 847 trace_tls_device_rx_resync_nh_schedule(sk); 848 ctx->resync_nh_do_now = 1; 849 } else { 850 struct tls_prot_info *prot = &tls_ctx->prot_info; 851 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 852 853 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 854 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 855 856 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, 857 rcd_sn); 858 } 859 } 860 861 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb) 862 { 863 struct strp_msg *rxm = strp_msg(skb); 864 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos; 865 struct sk_buff *skb_iter, *unused; 866 struct scatterlist sg[1]; 867 char *orig_buf, *buf; 868 869 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + 870 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation); 871 if (!orig_buf) 872 return -ENOMEM; 873 buf = orig_buf; 874 875 nsg = skb_cow_data(skb, 0, &unused); 876 if (unlikely(nsg < 0)) { 877 err = nsg; 878 goto free_buf; 879 } 880 881 sg_init_table(sg, 1); 882 sg_set_buf(&sg[0], buf, 883 rxm->full_len + TLS_HEADER_SIZE + 884 TLS_CIPHER_AES_GCM_128_IV_SIZE); 885 err = skb_copy_bits(skb, offset, buf, 886 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); 887 if (err) 888 goto free_buf; 889 890 /* We are interested only in the decrypted data not the auth */ 891 err = decrypt_skb(sk, skb, sg); 892 if (err != -EBADMSG) 893 goto free_buf; 894 else 895 err = 0; 896 897 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE; 898 899 if (skb_pagelen(skb) > offset) { 900 copy = min_t(int, skb_pagelen(skb) - offset, data_len); 901 902 if (skb->decrypted) { 903 err = skb_store_bits(skb, offset, buf, copy); 904 if (err) 905 goto free_buf; 906 } 907 908 offset += copy; 909 buf += copy; 910 } 911 912 pos = skb_pagelen(skb); 913 skb_walk_frags(skb, skb_iter) { 914 int frag_pos; 915 916 /* Practically all frags must belong to msg if reencrypt 917 * is needed with current strparser and coalescing logic, 918 * but strparser may "get optimized", so let's be safe. 919 */ 920 if (pos + skb_iter->len <= offset) 921 goto done_with_frag; 922 if (pos >= data_len + rxm->offset) 923 break; 924 925 frag_pos = offset - pos; 926 copy = min_t(int, skb_iter->len - frag_pos, 927 data_len + rxm->offset - offset); 928 929 if (skb_iter->decrypted) { 930 err = skb_store_bits(skb_iter, frag_pos, buf, copy); 931 if (err) 932 goto free_buf; 933 } 934 935 offset += copy; 936 buf += copy; 937 done_with_frag: 938 pos += skb_iter->len; 939 } 940 941 free_buf: 942 kfree(orig_buf); 943 return err; 944 } 945 946 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 947 struct sk_buff *skb, struct strp_msg *rxm) 948 { 949 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 950 int is_decrypted = skb->decrypted; 951 int is_encrypted = !is_decrypted; 952 struct sk_buff *skb_iter; 953 954 /* Check if all the data is decrypted already */ 955 skb_walk_frags(skb, skb_iter) { 956 is_decrypted &= skb_iter->decrypted; 957 is_encrypted &= !skb_iter->decrypted; 958 } 959 960 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, 961 tls_ctx->rx.rec_seq, rxm->full_len, 962 is_encrypted, is_decrypted); 963 964 ctx->sw.decrypted |= is_decrypted; 965 966 /* Return immediately if the record is either entirely plaintext or 967 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 968 * record. 969 */ 970 if (is_decrypted) { 971 ctx->resync_nh_reset = 1; 972 return 0; 973 } 974 if (is_encrypted) { 975 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); 976 return 0; 977 } 978 979 ctx->resync_nh_reset = 1; 980 return tls_device_reencrypt(sk, skb); 981 } 982 983 static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 984 struct net_device *netdev) 985 { 986 if (sk->sk_destruct != tls_device_sk_destruct) { 987 refcount_set(&ctx->refcount, 1); 988 dev_hold(netdev); 989 ctx->netdev = netdev; 990 spin_lock_irq(&tls_device_lock); 991 list_add_tail(&ctx->list, &tls_device_list); 992 spin_unlock_irq(&tls_device_lock); 993 994 ctx->sk_destruct = sk->sk_destruct; 995 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); 996 } 997 } 998 999 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 1000 { 1001 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 1002 struct tls_context *tls_ctx = tls_get_ctx(sk); 1003 struct tls_prot_info *prot = &tls_ctx->prot_info; 1004 struct tls_record_info *start_marker_record; 1005 struct tls_offload_context_tx *offload_ctx; 1006 struct tls_crypto_info *crypto_info; 1007 struct net_device *netdev; 1008 char *iv, *rec_seq; 1009 struct sk_buff *skb; 1010 __be64 rcd_sn; 1011 int rc; 1012 1013 if (!ctx) 1014 return -EINVAL; 1015 1016 if (ctx->priv_ctx_tx) 1017 return -EEXIST; 1018 1019 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 1020 if (!start_marker_record) 1021 return -ENOMEM; 1022 1023 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); 1024 if (!offload_ctx) { 1025 rc = -ENOMEM; 1026 goto free_marker_record; 1027 } 1028 1029 crypto_info = &ctx->crypto_send.info; 1030 if (crypto_info->version != TLS_1_2_VERSION) { 1031 rc = -EOPNOTSUPP; 1032 goto free_offload_ctx; 1033 } 1034 1035 switch (crypto_info->cipher_type) { 1036 case TLS_CIPHER_AES_GCM_128: 1037 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1038 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 1039 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1040 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 1041 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 1042 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 1043 rec_seq = 1044 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 1045 break; 1046 default: 1047 rc = -EINVAL; 1048 goto free_offload_ctx; 1049 } 1050 1051 /* Sanity-check the rec_seq_size for stack allocations */ 1052 if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 1053 rc = -EINVAL; 1054 goto free_offload_ctx; 1055 } 1056 1057 prot->version = crypto_info->version; 1058 prot->cipher_type = crypto_info->cipher_type; 1059 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 1060 prot->tag_size = tag_size; 1061 prot->overhead_size = prot->prepend_size + prot->tag_size; 1062 prot->iv_size = iv_size; 1063 prot->salt_size = salt_size; 1064 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 1065 GFP_KERNEL); 1066 if (!ctx->tx.iv) { 1067 rc = -ENOMEM; 1068 goto free_offload_ctx; 1069 } 1070 1071 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 1072 1073 prot->rec_seq_size = rec_seq_size; 1074 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 1075 if (!ctx->tx.rec_seq) { 1076 rc = -ENOMEM; 1077 goto free_iv; 1078 } 1079 1080 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 1081 if (rc) 1082 goto free_rec_seq; 1083 1084 /* start at rec_seq - 1 to account for the start marker record */ 1085 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 1086 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 1087 1088 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 1089 start_marker_record->len = 0; 1090 start_marker_record->num_frags = 0; 1091 1092 INIT_LIST_HEAD(&offload_ctx->records_list); 1093 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 1094 spin_lock_init(&offload_ctx->lock); 1095 sg_init_table(offload_ctx->sg_tx_data, 1096 ARRAY_SIZE(offload_ctx->sg_tx_data)); 1097 1098 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); 1099 ctx->push_pending_record = tls_device_push_pending_record; 1100 1101 /* TLS offload is greatly simplified if we don't send 1102 * SKBs where only part of the payload needs to be encrypted. 1103 * So mark the last skb in the write queue as end of record. 1104 */ 1105 skb = tcp_write_queue_tail(sk); 1106 if (skb) 1107 TCP_SKB_CB(skb)->eor = 1; 1108 1109 netdev = get_netdev_for_sock(sk); 1110 if (!netdev) { 1111 pr_err_ratelimited("%s: netdev not found\n", __func__); 1112 rc = -EINVAL; 1113 goto disable_cad; 1114 } 1115 1116 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 1117 rc = -EOPNOTSUPP; 1118 goto release_netdev; 1119 } 1120 1121 /* Avoid offloading if the device is down 1122 * We don't want to offload new flows after 1123 * the NETDEV_DOWN event 1124 * 1125 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1126 * handler thus protecting from the device going down before 1127 * ctx was added to tls_device_list. 1128 */ 1129 down_read(&device_offload_lock); 1130 if (!(netdev->flags & IFF_UP)) { 1131 rc = -EINVAL; 1132 goto release_lock; 1133 } 1134 1135 ctx->priv_ctx_tx = offload_ctx; 1136 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 1137 &ctx->crypto_send.info, 1138 tcp_sk(sk)->write_seq); 1139 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, 1140 tcp_sk(sk)->write_seq, rec_seq, rc); 1141 if (rc) 1142 goto release_lock; 1143 1144 tls_device_attach(ctx, sk, netdev); 1145 up_read(&device_offload_lock); 1146 1147 /* following this assignment tls_is_sk_tx_device_offloaded 1148 * will return true and the context might be accessed 1149 * by the netdev's xmit function. 1150 */ 1151 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 1152 dev_put(netdev); 1153 1154 return 0; 1155 1156 release_lock: 1157 up_read(&device_offload_lock); 1158 release_netdev: 1159 dev_put(netdev); 1160 disable_cad: 1161 clean_acked_data_disable(inet_csk(sk)); 1162 crypto_free_aead(offload_ctx->aead_send); 1163 free_rec_seq: 1164 kfree(ctx->tx.rec_seq); 1165 free_iv: 1166 kfree(ctx->tx.iv); 1167 free_offload_ctx: 1168 kfree(offload_ctx); 1169 ctx->priv_ctx_tx = NULL; 1170 free_marker_record: 1171 kfree(start_marker_record); 1172 return rc; 1173 } 1174 1175 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 1176 { 1177 struct tls12_crypto_info_aes_gcm_128 *info; 1178 struct tls_offload_context_rx *context; 1179 struct net_device *netdev; 1180 int rc = 0; 1181 1182 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) 1183 return -EOPNOTSUPP; 1184 1185 netdev = get_netdev_for_sock(sk); 1186 if (!netdev) { 1187 pr_err_ratelimited("%s: netdev not found\n", __func__); 1188 return -EINVAL; 1189 } 1190 1191 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 1192 rc = -EOPNOTSUPP; 1193 goto release_netdev; 1194 } 1195 1196 /* Avoid offloading if the device is down 1197 * We don't want to offload new flows after 1198 * the NETDEV_DOWN event 1199 * 1200 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1201 * handler thus protecting from the device going down before 1202 * ctx was added to tls_device_list. 1203 */ 1204 down_read(&device_offload_lock); 1205 if (!(netdev->flags & IFF_UP)) { 1206 rc = -EINVAL; 1207 goto release_lock; 1208 } 1209 1210 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); 1211 if (!context) { 1212 rc = -ENOMEM; 1213 goto release_lock; 1214 } 1215 context->resync_nh_reset = 1; 1216 1217 ctx->priv_ctx_rx = context; 1218 rc = tls_set_sw_offload(sk, ctx, 0); 1219 if (rc) 1220 goto release_ctx; 1221 1222 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 1223 &ctx->crypto_recv.info, 1224 tcp_sk(sk)->copied_seq); 1225 info = (void *)&ctx->crypto_recv.info; 1226 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, 1227 tcp_sk(sk)->copied_seq, info->rec_seq, rc); 1228 if (rc) 1229 goto free_sw_resources; 1230 1231 tls_device_attach(ctx, sk, netdev); 1232 up_read(&device_offload_lock); 1233 1234 dev_put(netdev); 1235 1236 return 0; 1237 1238 free_sw_resources: 1239 up_read(&device_offload_lock); 1240 tls_sw_free_resources_rx(sk); 1241 down_read(&device_offload_lock); 1242 release_ctx: 1243 ctx->priv_ctx_rx = NULL; 1244 release_lock: 1245 up_read(&device_offload_lock); 1246 release_netdev: 1247 dev_put(netdev); 1248 return rc; 1249 } 1250 1251 void tls_device_offload_cleanup_rx(struct sock *sk) 1252 { 1253 struct tls_context *tls_ctx = tls_get_ctx(sk); 1254 struct net_device *netdev; 1255 1256 down_read(&device_offload_lock); 1257 netdev = tls_ctx->netdev; 1258 if (!netdev) 1259 goto out; 1260 1261 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 1262 TLS_OFFLOAD_CTX_DIR_RX); 1263 1264 if (tls_ctx->tx_conf != TLS_HW) { 1265 dev_put(netdev); 1266 tls_ctx->netdev = NULL; 1267 } else { 1268 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); 1269 } 1270 out: 1271 up_read(&device_offload_lock); 1272 tls_sw_release_resources_rx(sk); 1273 } 1274 1275 static int tls_device_down(struct net_device *netdev) 1276 { 1277 struct tls_context *ctx, *tmp; 1278 unsigned long flags; 1279 LIST_HEAD(list); 1280 1281 /* Request a write lock to block new offload attempts */ 1282 down_write(&device_offload_lock); 1283 1284 spin_lock_irqsave(&tls_device_lock, flags); 1285 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 1286 if (ctx->netdev != netdev || 1287 !refcount_inc_not_zero(&ctx->refcount)) 1288 continue; 1289 1290 list_move(&ctx->list, &list); 1291 } 1292 spin_unlock_irqrestore(&tls_device_lock, flags); 1293 1294 list_for_each_entry_safe(ctx, tmp, &list, list) { 1295 if (ctx->tx_conf == TLS_HW) 1296 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1297 TLS_OFFLOAD_CTX_DIR_TX); 1298 if (ctx->rx_conf == TLS_HW && 1299 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) 1300 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1301 TLS_OFFLOAD_CTX_DIR_RX); 1302 WRITE_ONCE(ctx->netdev, NULL); 1303 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */ 1304 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags)) 1305 usleep_range(10, 200); 1306 dev_put(netdev); 1307 list_del_init(&ctx->list); 1308 1309 if (refcount_dec_and_test(&ctx->refcount)) 1310 tls_device_free_ctx(ctx); 1311 } 1312 1313 up_write(&device_offload_lock); 1314 1315 flush_work(&tls_device_gc_work); 1316 1317 return NOTIFY_DONE; 1318 } 1319 1320 static int tls_dev_event(struct notifier_block *this, unsigned long event, 1321 void *ptr) 1322 { 1323 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1324 1325 if (!dev->tlsdev_ops && 1326 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 1327 return NOTIFY_DONE; 1328 1329 switch (event) { 1330 case NETDEV_REGISTER: 1331 case NETDEV_FEAT_CHANGE: 1332 if (netif_is_bond_master(dev)) 1333 return NOTIFY_DONE; 1334 if ((dev->features & NETIF_F_HW_TLS_RX) && 1335 !dev->tlsdev_ops->tls_dev_resync) 1336 return NOTIFY_BAD; 1337 1338 if (dev->tlsdev_ops && 1339 dev->tlsdev_ops->tls_dev_add && 1340 dev->tlsdev_ops->tls_dev_del) 1341 return NOTIFY_DONE; 1342 else 1343 return NOTIFY_BAD; 1344 case NETDEV_DOWN: 1345 return tls_device_down(dev); 1346 } 1347 return NOTIFY_DONE; 1348 } 1349 1350 static struct notifier_block tls_dev_notifier = { 1351 .notifier_call = tls_dev_event, 1352 }; 1353 1354 void __init tls_device_init(void) 1355 { 1356 register_netdevice_notifier(&tls_dev_notifier); 1357 } 1358 1359 void __exit tls_device_cleanup(void) 1360 { 1361 unregister_netdevice_notifier(&tls_dev_notifier); 1362 flush_work(&tls_device_gc_work); 1363 clean_acked_data_flush(); 1364 } 1365