1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32 #include <crypto/aead.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/netdevice.h> 36 #include <net/dst.h> 37 #include <net/inet_connection_sock.h> 38 #include <net/tcp.h> 39 #include <net/tls.h> 40 41 #include "trace.h" 42 43 /* device_offload_lock is used to synchronize tls_dev_add 44 * against NETDEV_DOWN notifications. 45 */ 46 static DECLARE_RWSEM(device_offload_lock); 47 48 static void tls_device_gc_task(struct work_struct *work); 49 50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task); 51 static LIST_HEAD(tls_device_gc_list); 52 static LIST_HEAD(tls_device_list); 53 static DEFINE_SPINLOCK(tls_device_lock); 54 55 static void tls_device_free_ctx(struct tls_context *ctx) 56 { 57 if (ctx->tx_conf == TLS_HW) { 58 kfree(tls_offload_ctx_tx(ctx)); 59 kfree(ctx->tx.rec_seq); 60 kfree(ctx->tx.iv); 61 } 62 63 if (ctx->rx_conf == TLS_HW) 64 kfree(tls_offload_ctx_rx(ctx)); 65 66 tls_ctx_free(NULL, ctx); 67 } 68 69 static void tls_device_gc_task(struct work_struct *work) 70 { 71 struct tls_context *ctx, *tmp; 72 unsigned long flags; 73 LIST_HEAD(gc_list); 74 75 spin_lock_irqsave(&tls_device_lock, flags); 76 list_splice_init(&tls_device_gc_list, &gc_list); 77 spin_unlock_irqrestore(&tls_device_lock, flags); 78 79 list_for_each_entry_safe(ctx, tmp, &gc_list, list) { 80 struct net_device *netdev = ctx->netdev; 81 82 if (netdev && ctx->tx_conf == TLS_HW) { 83 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 84 TLS_OFFLOAD_CTX_DIR_TX); 85 dev_put(netdev); 86 ctx->netdev = NULL; 87 } 88 89 list_del(&ctx->list); 90 tls_device_free_ctx(ctx); 91 } 92 } 93 94 static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 95 { 96 unsigned long flags; 97 98 spin_lock_irqsave(&tls_device_lock, flags); 99 list_move_tail(&ctx->list, &tls_device_gc_list); 100 101 /* schedule_work inside the spinlock 102 * to make sure tls_device_down waits for that work. 103 */ 104 schedule_work(&tls_device_gc_work); 105 106 spin_unlock_irqrestore(&tls_device_lock, flags); 107 } 108 109 /* We assume that the socket is already connected */ 110 static struct net_device *get_netdev_for_sock(struct sock *sk) 111 { 112 struct dst_entry *dst = sk_dst_get(sk); 113 struct net_device *netdev = NULL; 114 115 if (likely(dst)) { 116 netdev = dst->dev; 117 dev_hold(netdev); 118 } 119 120 dst_release(dst); 121 122 return netdev; 123 } 124 125 static void destroy_record(struct tls_record_info *record) 126 { 127 int i; 128 129 for (i = 0; i < record->num_frags; i++) 130 __skb_frag_unref(&record->frags[i]); 131 kfree(record); 132 } 133 134 static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 135 { 136 struct tls_record_info *info, *temp; 137 138 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 139 list_del(&info->list); 140 destroy_record(info); 141 } 142 143 offload_ctx->retransmit_hint = NULL; 144 } 145 146 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) 147 { 148 struct tls_context *tls_ctx = tls_get_ctx(sk); 149 struct tls_record_info *info, *temp; 150 struct tls_offload_context_tx *ctx; 151 u64 deleted_records = 0; 152 unsigned long flags; 153 154 if (!tls_ctx) 155 return; 156 157 ctx = tls_offload_ctx_tx(tls_ctx); 158 159 spin_lock_irqsave(&ctx->lock, flags); 160 info = ctx->retransmit_hint; 161 if (info && !before(acked_seq, info->end_seq)) 162 ctx->retransmit_hint = NULL; 163 164 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 165 if (before(acked_seq, info->end_seq)) 166 break; 167 list_del(&info->list); 168 169 destroy_record(info); 170 deleted_records++; 171 } 172 173 ctx->unacked_record_sn += deleted_records; 174 spin_unlock_irqrestore(&ctx->lock, flags); 175 } 176 177 /* At this point, there should be no references on this 178 * socket and no in-flight SKBs associated with this 179 * socket, so it is safe to free all the resources. 180 */ 181 void tls_device_sk_destruct(struct sock *sk) 182 { 183 struct tls_context *tls_ctx = tls_get_ctx(sk); 184 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 185 186 tls_ctx->sk_destruct(sk); 187 188 if (tls_ctx->tx_conf == TLS_HW) { 189 if (ctx->open_record) 190 destroy_record(ctx->open_record); 191 delete_all_records(ctx); 192 crypto_free_aead(ctx->aead_send); 193 clean_acked_data_disable(inet_csk(sk)); 194 } 195 196 if (refcount_dec_and_test(&tls_ctx->refcount)) 197 tls_device_queue_ctx_destruction(tls_ctx); 198 } 199 EXPORT_SYMBOL_GPL(tls_device_sk_destruct); 200 201 void tls_device_free_resources_tx(struct sock *sk) 202 { 203 struct tls_context *tls_ctx = tls_get_ctx(sk); 204 205 tls_free_partial_record(sk, tls_ctx); 206 } 207 208 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) 209 { 210 struct tls_context *tls_ctx = tls_get_ctx(sk); 211 212 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); 213 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 214 } 215 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); 216 217 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, 218 u32 seq) 219 { 220 struct net_device *netdev; 221 struct sk_buff *skb; 222 int err = 0; 223 u8 *rcd_sn; 224 225 skb = tcp_write_queue_tail(sk); 226 if (skb) 227 TCP_SKB_CB(skb)->eor = 1; 228 229 rcd_sn = tls_ctx->tx.rec_seq; 230 231 trace_tls_device_tx_resync_send(sk, seq, rcd_sn); 232 down_read(&device_offload_lock); 233 netdev = tls_ctx->netdev; 234 if (netdev) 235 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, 236 rcd_sn, 237 TLS_OFFLOAD_CTX_DIR_TX); 238 up_read(&device_offload_lock); 239 if (err) 240 return; 241 242 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 243 } 244 245 static void tls_append_frag(struct tls_record_info *record, 246 struct page_frag *pfrag, 247 int size) 248 { 249 skb_frag_t *frag; 250 251 frag = &record->frags[record->num_frags - 1]; 252 if (skb_frag_page(frag) == pfrag->page && 253 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { 254 skb_frag_size_add(frag, size); 255 } else { 256 ++frag; 257 __skb_frag_set_page(frag, pfrag->page); 258 skb_frag_off_set(frag, pfrag->offset); 259 skb_frag_size_set(frag, size); 260 ++record->num_frags; 261 get_page(pfrag->page); 262 } 263 264 pfrag->offset += size; 265 record->len += size; 266 } 267 268 static int tls_push_record(struct sock *sk, 269 struct tls_context *ctx, 270 struct tls_offload_context_tx *offload_ctx, 271 struct tls_record_info *record, 272 int flags) 273 { 274 struct tls_prot_info *prot = &ctx->prot_info; 275 struct tcp_sock *tp = tcp_sk(sk); 276 skb_frag_t *frag; 277 int i; 278 279 record->end_seq = tp->write_seq + record->len; 280 list_add_tail_rcu(&record->list, &offload_ctx->records_list); 281 offload_ctx->open_record = NULL; 282 283 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) 284 tls_device_resync_tx(sk, ctx, tp->write_seq); 285 286 tls_advance_record_sn(sk, prot, &ctx->tx); 287 288 for (i = 0; i < record->num_frags; i++) { 289 frag = &record->frags[i]; 290 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 291 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 292 skb_frag_size(frag), skb_frag_off(frag)); 293 sk_mem_charge(sk, skb_frag_size(frag)); 294 get_page(skb_frag_page(frag)); 295 } 296 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 297 298 /* all ready, send */ 299 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 300 } 301 302 static int tls_device_record_close(struct sock *sk, 303 struct tls_context *ctx, 304 struct tls_record_info *record, 305 struct page_frag *pfrag, 306 unsigned char record_type) 307 { 308 struct tls_prot_info *prot = &ctx->prot_info; 309 int ret; 310 311 /* append tag 312 * device will fill in the tag, we just need to append a placeholder 313 * use socket memory to improve coalescing (re-using a single buffer 314 * increases frag count) 315 * if we can't allocate memory now, steal some back from data 316 */ 317 if (likely(skb_page_frag_refill(prot->tag_size, pfrag, 318 sk->sk_allocation))) { 319 ret = 0; 320 tls_append_frag(record, pfrag, prot->tag_size); 321 } else { 322 ret = prot->tag_size; 323 if (record->len <= prot->overhead_size) 324 return -ENOMEM; 325 } 326 327 /* fill prepend */ 328 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), 329 record->len - prot->overhead_size, 330 record_type, prot->version); 331 return ret; 332 } 333 334 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 335 struct page_frag *pfrag, 336 size_t prepend_size) 337 { 338 struct tls_record_info *record; 339 skb_frag_t *frag; 340 341 record = kmalloc(sizeof(*record), GFP_KERNEL); 342 if (!record) 343 return -ENOMEM; 344 345 frag = &record->frags[0]; 346 __skb_frag_set_page(frag, pfrag->page); 347 skb_frag_off_set(frag, pfrag->offset); 348 skb_frag_size_set(frag, prepend_size); 349 350 get_page(pfrag->page); 351 pfrag->offset += prepend_size; 352 353 record->num_frags = 1; 354 record->len = prepend_size; 355 offload_ctx->open_record = record; 356 return 0; 357 } 358 359 static int tls_do_allocation(struct sock *sk, 360 struct tls_offload_context_tx *offload_ctx, 361 struct page_frag *pfrag, 362 size_t prepend_size) 363 { 364 int ret; 365 366 if (!offload_ctx->open_record) { 367 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 368 sk->sk_allocation))) { 369 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); 370 sk_stream_moderate_sndbuf(sk); 371 return -ENOMEM; 372 } 373 374 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 375 if (ret) 376 return ret; 377 378 if (pfrag->size > pfrag->offset) 379 return 0; 380 } 381 382 if (!sk_page_frag_refill(sk, pfrag)) 383 return -ENOMEM; 384 385 return 0; 386 } 387 388 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) 389 { 390 size_t pre_copy, nocache; 391 392 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); 393 if (pre_copy) { 394 pre_copy = min(pre_copy, bytes); 395 if (copy_from_iter(addr, pre_copy, i) != pre_copy) 396 return -EFAULT; 397 bytes -= pre_copy; 398 addr += pre_copy; 399 } 400 401 nocache = round_down(bytes, SMP_CACHE_BYTES); 402 if (copy_from_iter_nocache(addr, nocache, i) != nocache) 403 return -EFAULT; 404 bytes -= nocache; 405 addr += nocache; 406 407 if (bytes && copy_from_iter(addr, bytes, i) != bytes) 408 return -EFAULT; 409 410 return 0; 411 } 412 413 static int tls_push_data(struct sock *sk, 414 struct iov_iter *msg_iter, 415 size_t size, int flags, 416 unsigned char record_type) 417 { 418 struct tls_context *tls_ctx = tls_get_ctx(sk); 419 struct tls_prot_info *prot = &tls_ctx->prot_info; 420 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 421 int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE); 422 struct tls_record_info *record = ctx->open_record; 423 int tls_push_record_flags; 424 struct page_frag *pfrag; 425 size_t orig_size = size; 426 u32 max_open_record_len; 427 int copy, rc = 0; 428 bool done = false; 429 long timeo; 430 431 if (flags & 432 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) 433 return -EOPNOTSUPP; 434 435 if (unlikely(sk->sk_err)) 436 return -sk->sk_err; 437 438 flags |= MSG_SENDPAGE_DECRYPTED; 439 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST; 440 441 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 442 if (tls_is_partially_sent_record(tls_ctx)) { 443 rc = tls_push_partial_record(sk, tls_ctx, flags); 444 if (rc < 0) 445 return rc; 446 } 447 448 pfrag = sk_page_frag(sk); 449 450 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 451 * we need to leave room for an authentication tag. 452 */ 453 max_open_record_len = TLS_MAX_PAYLOAD_SIZE + 454 prot->prepend_size; 455 do { 456 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); 457 if (unlikely(rc)) { 458 rc = sk_stream_wait_memory(sk, &timeo); 459 if (!rc) 460 continue; 461 462 record = ctx->open_record; 463 if (!record) 464 break; 465 handle_error: 466 if (record_type != TLS_RECORD_TYPE_DATA) { 467 /* avoid sending partial 468 * record with type != 469 * application_data 470 */ 471 size = orig_size; 472 destroy_record(record); 473 ctx->open_record = NULL; 474 } else if (record->len > prot->prepend_size) { 475 goto last_record; 476 } 477 478 break; 479 } 480 481 record = ctx->open_record; 482 copy = min_t(size_t, size, (pfrag->size - pfrag->offset)); 483 copy = min_t(size_t, copy, (max_open_record_len - record->len)); 484 485 rc = tls_device_copy_data(page_address(pfrag->page) + 486 pfrag->offset, copy, msg_iter); 487 if (rc) 488 goto handle_error; 489 tls_append_frag(record, pfrag, copy); 490 491 size -= copy; 492 if (!size) { 493 last_record: 494 tls_push_record_flags = flags; 495 if (more) { 496 tls_ctx->pending_open_record_frags = 497 !!record->num_frags; 498 break; 499 } 500 501 done = true; 502 } 503 504 if (done || record->len >= max_open_record_len || 505 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 506 rc = tls_device_record_close(sk, tls_ctx, record, 507 pfrag, record_type); 508 if (rc) { 509 if (rc > 0) { 510 size += rc; 511 } else { 512 size = orig_size; 513 destroy_record(record); 514 ctx->open_record = NULL; 515 break; 516 } 517 } 518 519 rc = tls_push_record(sk, 520 tls_ctx, 521 ctx, 522 record, 523 tls_push_record_flags); 524 if (rc < 0) 525 break; 526 } 527 } while (!done); 528 529 if (orig_size - size > 0) 530 rc = orig_size - size; 531 532 return rc; 533 } 534 535 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 536 { 537 unsigned char record_type = TLS_RECORD_TYPE_DATA; 538 struct tls_context *tls_ctx = tls_get_ctx(sk); 539 int rc; 540 541 mutex_lock(&tls_ctx->tx_lock); 542 lock_sock(sk); 543 544 if (unlikely(msg->msg_controllen)) { 545 rc = tls_proccess_cmsg(sk, msg, &record_type); 546 if (rc) 547 goto out; 548 } 549 550 rc = tls_push_data(sk, &msg->msg_iter, size, 551 msg->msg_flags, record_type); 552 553 out: 554 release_sock(sk); 555 mutex_unlock(&tls_ctx->tx_lock); 556 return rc; 557 } 558 559 int tls_device_sendpage(struct sock *sk, struct page *page, 560 int offset, size_t size, int flags) 561 { 562 struct tls_context *tls_ctx = tls_get_ctx(sk); 563 struct iov_iter msg_iter; 564 char *kaddr; 565 struct kvec iov; 566 int rc; 567 568 if (flags & MSG_SENDPAGE_NOTLAST) 569 flags |= MSG_MORE; 570 571 mutex_lock(&tls_ctx->tx_lock); 572 lock_sock(sk); 573 574 if (flags & MSG_OOB) { 575 rc = -EOPNOTSUPP; 576 goto out; 577 } 578 579 kaddr = kmap(page); 580 iov.iov_base = kaddr + offset; 581 iov.iov_len = size; 582 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size); 583 rc = tls_push_data(sk, &msg_iter, size, 584 flags, TLS_RECORD_TYPE_DATA); 585 kunmap(page); 586 587 out: 588 release_sock(sk); 589 mutex_unlock(&tls_ctx->tx_lock); 590 return rc; 591 } 592 593 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 594 u32 seq, u64 *p_record_sn) 595 { 596 u64 record_sn = context->hint_record_sn; 597 struct tls_record_info *info, *last; 598 599 info = context->retransmit_hint; 600 if (!info || 601 before(seq, info->end_seq - info->len)) { 602 /* if retransmit_hint is irrelevant start 603 * from the beggining of the list 604 */ 605 info = list_first_entry_or_null(&context->records_list, 606 struct tls_record_info, list); 607 if (!info) 608 return NULL; 609 /* send the start_marker record if seq number is before the 610 * tls offload start marker sequence number. This record is 611 * required to handle TCP packets which are before TLS offload 612 * started. 613 * And if it's not start marker, look if this seq number 614 * belongs to the list. 615 */ 616 if (likely(!tls_record_is_start_marker(info))) { 617 /* we have the first record, get the last record to see 618 * if this seq number belongs to the list. 619 */ 620 last = list_last_entry(&context->records_list, 621 struct tls_record_info, list); 622 623 if (!between(seq, tls_record_start_seq(info), 624 last->end_seq)) 625 return NULL; 626 } 627 record_sn = context->unacked_record_sn; 628 } 629 630 /* We just need the _rcu for the READ_ONCE() */ 631 rcu_read_lock(); 632 list_for_each_entry_from_rcu(info, &context->records_list, list) { 633 if (before(seq, info->end_seq)) { 634 if (!context->retransmit_hint || 635 after(info->end_seq, 636 context->retransmit_hint->end_seq)) { 637 context->hint_record_sn = record_sn; 638 context->retransmit_hint = info; 639 } 640 *p_record_sn = record_sn; 641 goto exit_rcu_unlock; 642 } 643 record_sn++; 644 } 645 info = NULL; 646 647 exit_rcu_unlock: 648 rcu_read_unlock(); 649 return info; 650 } 651 EXPORT_SYMBOL(tls_get_record); 652 653 static int tls_device_push_pending_record(struct sock *sk, int flags) 654 { 655 struct iov_iter msg_iter; 656 657 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0); 658 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA); 659 } 660 661 void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 662 { 663 if (tls_is_partially_sent_record(ctx)) { 664 gfp_t sk_allocation = sk->sk_allocation; 665 666 WARN_ON_ONCE(sk->sk_write_pending); 667 668 sk->sk_allocation = GFP_ATOMIC; 669 tls_push_partial_record(sk, ctx, 670 MSG_DONTWAIT | MSG_NOSIGNAL | 671 MSG_SENDPAGE_DECRYPTED); 672 sk->sk_allocation = sk_allocation; 673 } 674 } 675 676 static void tls_device_resync_rx(struct tls_context *tls_ctx, 677 struct sock *sk, u32 seq, u8 *rcd_sn) 678 { 679 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 680 struct net_device *netdev; 681 682 if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags))) 683 return; 684 685 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); 686 netdev = READ_ONCE(tls_ctx->netdev); 687 if (netdev) 688 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, 689 TLS_OFFLOAD_CTX_DIR_RX); 690 clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags); 691 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); 692 } 693 694 static bool 695 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, 696 s64 resync_req, u32 *seq) 697 { 698 u32 is_async = resync_req & RESYNC_REQ_ASYNC; 699 u32 req_seq = resync_req >> 32; 700 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); 701 702 if (is_async) { 703 /* asynchronous stage: log all headers seq such that 704 * req_seq <= seq <= end_seq, and wait for real resync request 705 */ 706 if (between(*seq, req_seq, req_end) && 707 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) 708 resync_async->log[resync_async->loglen++] = *seq; 709 710 return false; 711 } 712 713 /* synchronous stage: check against the logged entries and 714 * proceed to check the next entries if no match was found 715 */ 716 while (resync_async->loglen) { 717 if (req_seq == resync_async->log[resync_async->loglen - 1] && 718 atomic64_try_cmpxchg(&resync_async->req, 719 &resync_req, 0)) { 720 resync_async->loglen = 0; 721 *seq = req_seq; 722 return true; 723 } 724 resync_async->loglen--; 725 } 726 727 if (req_seq == *seq && 728 atomic64_try_cmpxchg(&resync_async->req, 729 &resync_req, 0)) 730 return true; 731 732 return false; 733 } 734 735 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) 736 { 737 struct tls_context *tls_ctx = tls_get_ctx(sk); 738 struct tls_offload_context_rx *rx_ctx; 739 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 740 u32 sock_data, is_req_pending; 741 struct tls_prot_info *prot; 742 s64 resync_req; 743 u32 req_seq; 744 745 if (tls_ctx->rx_conf != TLS_HW) 746 return; 747 748 prot = &tls_ctx->prot_info; 749 rx_ctx = tls_offload_ctx_rx(tls_ctx); 750 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 751 752 switch (rx_ctx->resync_type) { 753 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: 754 resync_req = atomic64_read(&rx_ctx->resync_req); 755 req_seq = resync_req >> 32; 756 seq += TLS_HEADER_SIZE - 1; 757 is_req_pending = resync_req; 758 759 if (likely(!is_req_pending) || req_seq != seq || 760 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 761 return; 762 break; 763 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: 764 if (likely(!rx_ctx->resync_nh_do_now)) 765 return; 766 767 /* head of next rec is already in, note that the sock_inq will 768 * include the currently parsed message when called from parser 769 */ 770 sock_data = tcp_inq(sk); 771 if (sock_data > rcd_len) { 772 trace_tls_device_rx_resync_nh_delay(sk, sock_data, 773 rcd_len); 774 return; 775 } 776 777 rx_ctx->resync_nh_do_now = 0; 778 seq += rcd_len; 779 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 780 break; 781 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: 782 resync_req = atomic64_read(&rx_ctx->resync_async->req); 783 is_req_pending = resync_req; 784 if (likely(!is_req_pending)) 785 return; 786 787 if (!tls_device_rx_resync_async(rx_ctx->resync_async, 788 resync_req, &seq)) 789 return; 790 break; 791 } 792 793 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); 794 } 795 796 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, 797 struct tls_offload_context_rx *ctx, 798 struct sock *sk, struct sk_buff *skb) 799 { 800 struct strp_msg *rxm; 801 802 /* device will request resyncs by itself based on stream scan */ 803 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) 804 return; 805 /* already scheduled */ 806 if (ctx->resync_nh_do_now) 807 return; 808 /* seen decrypted fragments since last fully-failed record */ 809 if (ctx->resync_nh_reset) { 810 ctx->resync_nh_reset = 0; 811 ctx->resync_nh.decrypted_failed = 1; 812 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; 813 return; 814 } 815 816 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) 817 return; 818 819 /* doing resync, bump the next target in case it fails */ 820 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) 821 ctx->resync_nh.decrypted_tgt *= 2; 822 else 823 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; 824 825 rxm = strp_msg(skb); 826 827 /* head of next rec is already in, parser will sync for us */ 828 if (tcp_inq(sk) > rxm->full_len) { 829 trace_tls_device_rx_resync_nh_schedule(sk); 830 ctx->resync_nh_do_now = 1; 831 } else { 832 struct tls_prot_info *prot = &tls_ctx->prot_info; 833 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 834 835 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 836 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 837 838 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, 839 rcd_sn); 840 } 841 } 842 843 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb) 844 { 845 struct strp_msg *rxm = strp_msg(skb); 846 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos; 847 struct sk_buff *skb_iter, *unused; 848 struct scatterlist sg[1]; 849 char *orig_buf, *buf; 850 851 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + 852 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation); 853 if (!orig_buf) 854 return -ENOMEM; 855 buf = orig_buf; 856 857 nsg = skb_cow_data(skb, 0, &unused); 858 if (unlikely(nsg < 0)) { 859 err = nsg; 860 goto free_buf; 861 } 862 863 sg_init_table(sg, 1); 864 sg_set_buf(&sg[0], buf, 865 rxm->full_len + TLS_HEADER_SIZE + 866 TLS_CIPHER_AES_GCM_128_IV_SIZE); 867 err = skb_copy_bits(skb, offset, buf, 868 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); 869 if (err) 870 goto free_buf; 871 872 /* We are interested only in the decrypted data not the auth */ 873 err = decrypt_skb(sk, skb, sg); 874 if (err != -EBADMSG) 875 goto free_buf; 876 else 877 err = 0; 878 879 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE; 880 881 if (skb_pagelen(skb) > offset) { 882 copy = min_t(int, skb_pagelen(skb) - offset, data_len); 883 884 if (skb->decrypted) { 885 err = skb_store_bits(skb, offset, buf, copy); 886 if (err) 887 goto free_buf; 888 } 889 890 offset += copy; 891 buf += copy; 892 } 893 894 pos = skb_pagelen(skb); 895 skb_walk_frags(skb, skb_iter) { 896 int frag_pos; 897 898 /* Practically all frags must belong to msg if reencrypt 899 * is needed with current strparser and coalescing logic, 900 * but strparser may "get optimized", so let's be safe. 901 */ 902 if (pos + skb_iter->len <= offset) 903 goto done_with_frag; 904 if (pos >= data_len + rxm->offset) 905 break; 906 907 frag_pos = offset - pos; 908 copy = min_t(int, skb_iter->len - frag_pos, 909 data_len + rxm->offset - offset); 910 911 if (skb_iter->decrypted) { 912 err = skb_store_bits(skb_iter, frag_pos, buf, copy); 913 if (err) 914 goto free_buf; 915 } 916 917 offset += copy; 918 buf += copy; 919 done_with_frag: 920 pos += skb_iter->len; 921 } 922 923 free_buf: 924 kfree(orig_buf); 925 return err; 926 } 927 928 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 929 struct sk_buff *skb, struct strp_msg *rxm) 930 { 931 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 932 int is_decrypted = skb->decrypted; 933 int is_encrypted = !is_decrypted; 934 struct sk_buff *skb_iter; 935 936 /* Check if all the data is decrypted already */ 937 skb_walk_frags(skb, skb_iter) { 938 is_decrypted &= skb_iter->decrypted; 939 is_encrypted &= !skb_iter->decrypted; 940 } 941 942 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, 943 tls_ctx->rx.rec_seq, rxm->full_len, 944 is_encrypted, is_decrypted); 945 946 ctx->sw.decrypted |= is_decrypted; 947 948 /* Return immediately if the record is either entirely plaintext or 949 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 950 * record. 951 */ 952 if (is_decrypted) { 953 ctx->resync_nh_reset = 1; 954 return 0; 955 } 956 if (is_encrypted) { 957 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); 958 return 0; 959 } 960 961 ctx->resync_nh_reset = 1; 962 return tls_device_reencrypt(sk, skb); 963 } 964 965 static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 966 struct net_device *netdev) 967 { 968 if (sk->sk_destruct != tls_device_sk_destruct) { 969 refcount_set(&ctx->refcount, 1); 970 dev_hold(netdev); 971 ctx->netdev = netdev; 972 spin_lock_irq(&tls_device_lock); 973 list_add_tail(&ctx->list, &tls_device_list); 974 spin_unlock_irq(&tls_device_lock); 975 976 ctx->sk_destruct = sk->sk_destruct; 977 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); 978 } 979 } 980 981 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 982 { 983 u16 nonce_size, tag_size, iv_size, rec_seq_size; 984 struct tls_context *tls_ctx = tls_get_ctx(sk); 985 struct tls_prot_info *prot = &tls_ctx->prot_info; 986 struct tls_record_info *start_marker_record; 987 struct tls_offload_context_tx *offload_ctx; 988 struct tls_crypto_info *crypto_info; 989 struct net_device *netdev; 990 char *iv, *rec_seq; 991 struct sk_buff *skb; 992 __be64 rcd_sn; 993 int rc; 994 995 if (!ctx) 996 return -EINVAL; 997 998 if (ctx->priv_ctx_tx) 999 return -EEXIST; 1000 1001 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 1002 if (!start_marker_record) 1003 return -ENOMEM; 1004 1005 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); 1006 if (!offload_ctx) { 1007 rc = -ENOMEM; 1008 goto free_marker_record; 1009 } 1010 1011 crypto_info = &ctx->crypto_send.info; 1012 if (crypto_info->version != TLS_1_2_VERSION) { 1013 rc = -EOPNOTSUPP; 1014 goto free_offload_ctx; 1015 } 1016 1017 switch (crypto_info->cipher_type) { 1018 case TLS_CIPHER_AES_GCM_128: 1019 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1020 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 1021 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1022 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 1023 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 1024 rec_seq = 1025 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 1026 break; 1027 default: 1028 rc = -EINVAL; 1029 goto free_offload_ctx; 1030 } 1031 1032 /* Sanity-check the rec_seq_size for stack allocations */ 1033 if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 1034 rc = -EINVAL; 1035 goto free_offload_ctx; 1036 } 1037 1038 prot->version = crypto_info->version; 1039 prot->cipher_type = crypto_info->cipher_type; 1040 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 1041 prot->tag_size = tag_size; 1042 prot->overhead_size = prot->prepend_size + prot->tag_size; 1043 prot->iv_size = iv_size; 1044 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 1045 GFP_KERNEL); 1046 if (!ctx->tx.iv) { 1047 rc = -ENOMEM; 1048 goto free_offload_ctx; 1049 } 1050 1051 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 1052 1053 prot->rec_seq_size = rec_seq_size; 1054 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 1055 if (!ctx->tx.rec_seq) { 1056 rc = -ENOMEM; 1057 goto free_iv; 1058 } 1059 1060 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 1061 if (rc) 1062 goto free_rec_seq; 1063 1064 /* start at rec_seq - 1 to account for the start marker record */ 1065 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 1066 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 1067 1068 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 1069 start_marker_record->len = 0; 1070 start_marker_record->num_frags = 0; 1071 1072 INIT_LIST_HEAD(&offload_ctx->records_list); 1073 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 1074 spin_lock_init(&offload_ctx->lock); 1075 sg_init_table(offload_ctx->sg_tx_data, 1076 ARRAY_SIZE(offload_ctx->sg_tx_data)); 1077 1078 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); 1079 ctx->push_pending_record = tls_device_push_pending_record; 1080 1081 /* TLS offload is greatly simplified if we don't send 1082 * SKBs where only part of the payload needs to be encrypted. 1083 * So mark the last skb in the write queue as end of record. 1084 */ 1085 skb = tcp_write_queue_tail(sk); 1086 if (skb) 1087 TCP_SKB_CB(skb)->eor = 1; 1088 1089 netdev = get_netdev_for_sock(sk); 1090 if (!netdev) { 1091 pr_err_ratelimited("%s: netdev not found\n", __func__); 1092 rc = -EINVAL; 1093 goto disable_cad; 1094 } 1095 1096 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 1097 rc = -EOPNOTSUPP; 1098 goto release_netdev; 1099 } 1100 1101 /* Avoid offloading if the device is down 1102 * We don't want to offload new flows after 1103 * the NETDEV_DOWN event 1104 * 1105 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1106 * handler thus protecting from the device going down before 1107 * ctx was added to tls_device_list. 1108 */ 1109 down_read(&device_offload_lock); 1110 if (!(netdev->flags & IFF_UP)) { 1111 rc = -EINVAL; 1112 goto release_lock; 1113 } 1114 1115 ctx->priv_ctx_tx = offload_ctx; 1116 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 1117 &ctx->crypto_send.info, 1118 tcp_sk(sk)->write_seq); 1119 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, 1120 tcp_sk(sk)->write_seq, rec_seq, rc); 1121 if (rc) 1122 goto release_lock; 1123 1124 tls_device_attach(ctx, sk, netdev); 1125 up_read(&device_offload_lock); 1126 1127 /* following this assignment tls_is_sk_tx_device_offloaded 1128 * will return true and the context might be accessed 1129 * by the netdev's xmit function. 1130 */ 1131 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 1132 dev_put(netdev); 1133 1134 return 0; 1135 1136 release_lock: 1137 up_read(&device_offload_lock); 1138 release_netdev: 1139 dev_put(netdev); 1140 disable_cad: 1141 clean_acked_data_disable(inet_csk(sk)); 1142 crypto_free_aead(offload_ctx->aead_send); 1143 free_rec_seq: 1144 kfree(ctx->tx.rec_seq); 1145 free_iv: 1146 kfree(ctx->tx.iv); 1147 free_offload_ctx: 1148 kfree(offload_ctx); 1149 ctx->priv_ctx_tx = NULL; 1150 free_marker_record: 1151 kfree(start_marker_record); 1152 return rc; 1153 } 1154 1155 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 1156 { 1157 struct tls12_crypto_info_aes_gcm_128 *info; 1158 struct tls_offload_context_rx *context; 1159 struct net_device *netdev; 1160 int rc = 0; 1161 1162 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) 1163 return -EOPNOTSUPP; 1164 1165 netdev = get_netdev_for_sock(sk); 1166 if (!netdev) { 1167 pr_err_ratelimited("%s: netdev not found\n", __func__); 1168 return -EINVAL; 1169 } 1170 1171 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 1172 rc = -EOPNOTSUPP; 1173 goto release_netdev; 1174 } 1175 1176 /* Avoid offloading if the device is down 1177 * We don't want to offload new flows after 1178 * the NETDEV_DOWN event 1179 * 1180 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1181 * handler thus protecting from the device going down before 1182 * ctx was added to tls_device_list. 1183 */ 1184 down_read(&device_offload_lock); 1185 if (!(netdev->flags & IFF_UP)) { 1186 rc = -EINVAL; 1187 goto release_lock; 1188 } 1189 1190 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); 1191 if (!context) { 1192 rc = -ENOMEM; 1193 goto release_lock; 1194 } 1195 context->resync_nh_reset = 1; 1196 1197 ctx->priv_ctx_rx = context; 1198 rc = tls_set_sw_offload(sk, ctx, 0); 1199 if (rc) 1200 goto release_ctx; 1201 1202 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 1203 &ctx->crypto_recv.info, 1204 tcp_sk(sk)->copied_seq); 1205 info = (void *)&ctx->crypto_recv.info; 1206 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, 1207 tcp_sk(sk)->copied_seq, info->rec_seq, rc); 1208 if (rc) 1209 goto free_sw_resources; 1210 1211 tls_device_attach(ctx, sk, netdev); 1212 up_read(&device_offload_lock); 1213 1214 dev_put(netdev); 1215 1216 return 0; 1217 1218 free_sw_resources: 1219 up_read(&device_offload_lock); 1220 tls_sw_free_resources_rx(sk); 1221 down_read(&device_offload_lock); 1222 release_ctx: 1223 ctx->priv_ctx_rx = NULL; 1224 release_lock: 1225 up_read(&device_offload_lock); 1226 release_netdev: 1227 dev_put(netdev); 1228 return rc; 1229 } 1230 1231 void tls_device_offload_cleanup_rx(struct sock *sk) 1232 { 1233 struct tls_context *tls_ctx = tls_get_ctx(sk); 1234 struct net_device *netdev; 1235 1236 down_read(&device_offload_lock); 1237 netdev = tls_ctx->netdev; 1238 if (!netdev) 1239 goto out; 1240 1241 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 1242 TLS_OFFLOAD_CTX_DIR_RX); 1243 1244 if (tls_ctx->tx_conf != TLS_HW) { 1245 dev_put(netdev); 1246 tls_ctx->netdev = NULL; 1247 } 1248 out: 1249 up_read(&device_offload_lock); 1250 tls_sw_release_resources_rx(sk); 1251 } 1252 1253 static int tls_device_down(struct net_device *netdev) 1254 { 1255 struct tls_context *ctx, *tmp; 1256 unsigned long flags; 1257 LIST_HEAD(list); 1258 1259 /* Request a write lock to block new offload attempts */ 1260 down_write(&device_offload_lock); 1261 1262 spin_lock_irqsave(&tls_device_lock, flags); 1263 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 1264 if (ctx->netdev != netdev || 1265 !refcount_inc_not_zero(&ctx->refcount)) 1266 continue; 1267 1268 list_move(&ctx->list, &list); 1269 } 1270 spin_unlock_irqrestore(&tls_device_lock, flags); 1271 1272 list_for_each_entry_safe(ctx, tmp, &list, list) { 1273 if (ctx->tx_conf == TLS_HW) 1274 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1275 TLS_OFFLOAD_CTX_DIR_TX); 1276 if (ctx->rx_conf == TLS_HW) 1277 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1278 TLS_OFFLOAD_CTX_DIR_RX); 1279 WRITE_ONCE(ctx->netdev, NULL); 1280 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */ 1281 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags)) 1282 usleep_range(10, 200); 1283 dev_put(netdev); 1284 list_del_init(&ctx->list); 1285 1286 if (refcount_dec_and_test(&ctx->refcount)) 1287 tls_device_free_ctx(ctx); 1288 } 1289 1290 up_write(&device_offload_lock); 1291 1292 flush_work(&tls_device_gc_work); 1293 1294 return NOTIFY_DONE; 1295 } 1296 1297 static int tls_dev_event(struct notifier_block *this, unsigned long event, 1298 void *ptr) 1299 { 1300 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1301 1302 if (!dev->tlsdev_ops && 1303 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 1304 return NOTIFY_DONE; 1305 1306 switch (event) { 1307 case NETDEV_REGISTER: 1308 case NETDEV_FEAT_CHANGE: 1309 if ((dev->features & NETIF_F_HW_TLS_RX) && 1310 !dev->tlsdev_ops->tls_dev_resync) 1311 return NOTIFY_BAD; 1312 1313 if (dev->tlsdev_ops && 1314 dev->tlsdev_ops->tls_dev_add && 1315 dev->tlsdev_ops->tls_dev_del) 1316 return NOTIFY_DONE; 1317 else 1318 return NOTIFY_BAD; 1319 case NETDEV_DOWN: 1320 return tls_device_down(dev); 1321 } 1322 return NOTIFY_DONE; 1323 } 1324 1325 static struct notifier_block tls_dev_notifier = { 1326 .notifier_call = tls_dev_event, 1327 }; 1328 1329 void __init tls_device_init(void) 1330 { 1331 register_netdevice_notifier(&tls_dev_notifier); 1332 } 1333 1334 void __exit tls_device_cleanup(void) 1335 { 1336 unregister_netdevice_notifier(&tls_dev_notifier); 1337 flush_work(&tls_device_gc_work); 1338 clean_acked_data_flush(); 1339 } 1340