1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32 #include <crypto/aead.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/netdevice.h> 36 #include <net/dst.h> 37 #include <net/inet_connection_sock.h> 38 #include <net/tcp.h> 39 #include <net/tls.h> 40 #include <linux/skbuff_ref.h> 41 42 #include "tls.h" 43 #include "trace.h" 44 45 /* device_offload_lock is used to synchronize tls_dev_add 46 * against NETDEV_DOWN notifications. 47 */ 48 static DECLARE_RWSEM(device_offload_lock); 49 50 static struct workqueue_struct *destruct_wq __read_mostly; 51 52 static LIST_HEAD(tls_device_list); 53 static LIST_HEAD(tls_device_down_list); 54 static DEFINE_SPINLOCK(tls_device_lock); 55 56 static struct page *dummy_page; 57 58 static void tls_device_free_ctx(struct tls_context *ctx) 59 { 60 if (ctx->tx_conf == TLS_HW) 61 kfree(tls_offload_ctx_tx(ctx)); 62 63 if (ctx->rx_conf == TLS_HW) 64 kfree(tls_offload_ctx_rx(ctx)); 65 66 tls_ctx_free(NULL, ctx); 67 } 68 69 static void tls_device_tx_del_task(struct work_struct *work) 70 { 71 struct tls_offload_context_tx *offload_ctx = 72 container_of(work, struct tls_offload_context_tx, destruct_work); 73 struct tls_context *ctx = offload_ctx->ctx; 74 struct net_device *netdev; 75 76 /* Safe, because this is the destroy flow, refcount is 0, so 77 * tls_device_down can't store this field in parallel. 78 */ 79 netdev = rcu_dereference_protected(ctx->netdev, 80 !refcount_read(&ctx->refcount)); 81 82 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX); 83 dev_put(netdev); 84 ctx->netdev = NULL; 85 tls_device_free_ctx(ctx); 86 } 87 88 static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 89 { 90 struct net_device *netdev; 91 unsigned long flags; 92 bool async_cleanup; 93 94 spin_lock_irqsave(&tls_device_lock, flags); 95 if (unlikely(!refcount_dec_and_test(&ctx->refcount))) { 96 spin_unlock_irqrestore(&tls_device_lock, flags); 97 return; 98 } 99 100 list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */ 101 102 /* Safe, because this is the destroy flow, refcount is 0, so 103 * tls_device_down can't store this field in parallel. 104 */ 105 netdev = rcu_dereference_protected(ctx->netdev, 106 !refcount_read(&ctx->refcount)); 107 108 async_cleanup = netdev && ctx->tx_conf == TLS_HW; 109 if (async_cleanup) { 110 struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx); 111 112 /* queue_work inside the spinlock 113 * to make sure tls_device_down waits for that work. 114 */ 115 queue_work(destruct_wq, &offload_ctx->destruct_work); 116 } 117 spin_unlock_irqrestore(&tls_device_lock, flags); 118 119 if (!async_cleanup) 120 tls_device_free_ctx(ctx); 121 } 122 123 /* We assume that the socket is already connected */ 124 static struct net_device *get_netdev_for_sock(struct sock *sk) 125 { 126 struct net_device *dev, *lowest_dev = NULL; 127 struct dst_entry *dst; 128 129 rcu_read_lock(); 130 dst = __sk_dst_get(sk); 131 dev = dst ? dst_dev_rcu(dst) : NULL; 132 if (likely(dev)) { 133 lowest_dev = netdev_sk_get_lowest_dev(dev, sk); 134 dev_hold(lowest_dev); 135 } 136 rcu_read_unlock(); 137 138 return lowest_dev; 139 } 140 141 static void destroy_record(struct tls_record_info *record) 142 { 143 int i; 144 145 for (i = 0; i < record->num_frags; i++) 146 __skb_frag_unref(&record->frags[i], false); 147 kfree(record); 148 } 149 150 static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 151 { 152 struct tls_record_info *info, *temp; 153 154 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 155 list_del(&info->list); 156 destroy_record(info); 157 } 158 159 offload_ctx->retransmit_hint = NULL; 160 } 161 162 static void tls_tcp_clean_acked(struct sock *sk, u32 acked_seq) 163 { 164 struct tls_context *tls_ctx = tls_get_ctx(sk); 165 struct tls_record_info *info, *temp; 166 struct tls_offload_context_tx *ctx; 167 u64 deleted_records = 0; 168 unsigned long flags; 169 170 if (!tls_ctx) 171 return; 172 173 ctx = tls_offload_ctx_tx(tls_ctx); 174 175 spin_lock_irqsave(&ctx->lock, flags); 176 info = ctx->retransmit_hint; 177 if (info && !before(acked_seq, info->end_seq)) 178 ctx->retransmit_hint = NULL; 179 180 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 181 if (before(acked_seq, info->end_seq)) 182 break; 183 list_del(&info->list); 184 185 destroy_record(info); 186 deleted_records++; 187 } 188 189 ctx->unacked_record_sn += deleted_records; 190 spin_unlock_irqrestore(&ctx->lock, flags); 191 } 192 193 /* At this point, there should be no references on this 194 * socket and no in-flight SKBs associated with this 195 * socket, so it is safe to free all the resources. 196 */ 197 void tls_device_sk_destruct(struct sock *sk) 198 { 199 struct tls_context *tls_ctx = tls_get_ctx(sk); 200 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 201 202 tls_ctx->sk_destruct(sk); 203 204 if (tls_ctx->tx_conf == TLS_HW) { 205 if (ctx->open_record) 206 destroy_record(ctx->open_record); 207 delete_all_records(ctx); 208 crypto_free_aead(ctx->aead_send); 209 clean_acked_data_disable(tcp_sk(sk)); 210 } 211 212 tls_device_queue_ctx_destruction(tls_ctx); 213 } 214 EXPORT_SYMBOL_GPL(tls_device_sk_destruct); 215 216 void tls_device_free_resources_tx(struct sock *sk) 217 { 218 struct tls_context *tls_ctx = tls_get_ctx(sk); 219 220 tls_free_partial_record(sk, tls_ctx); 221 } 222 223 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) 224 { 225 struct tls_context *tls_ctx = tls_get_ctx(sk); 226 227 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); 228 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 229 } 230 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); 231 232 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, 233 u32 seq) 234 { 235 struct net_device *netdev; 236 int err = 0; 237 u8 *rcd_sn; 238 239 tcp_write_collapse_fence(sk); 240 rcd_sn = tls_ctx->tx.rec_seq; 241 242 trace_tls_device_tx_resync_send(sk, seq, rcd_sn); 243 down_read(&device_offload_lock); 244 netdev = rcu_dereference_protected(tls_ctx->netdev, 245 lockdep_is_held(&device_offload_lock)); 246 if (netdev) 247 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, 248 rcd_sn, 249 TLS_OFFLOAD_CTX_DIR_TX); 250 up_read(&device_offload_lock); 251 if (err) 252 return; 253 254 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 255 } 256 257 static void tls_append_frag(struct tls_record_info *record, 258 struct page_frag *pfrag, 259 int size) 260 { 261 skb_frag_t *frag; 262 263 frag = &record->frags[record->num_frags - 1]; 264 if (skb_frag_page(frag) == pfrag->page && 265 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { 266 skb_frag_size_add(frag, size); 267 } else { 268 ++frag; 269 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset, 270 size); 271 ++record->num_frags; 272 get_page(pfrag->page); 273 } 274 275 pfrag->offset += size; 276 record->len += size; 277 } 278 279 static int tls_push_record(struct sock *sk, 280 struct tls_context *ctx, 281 struct tls_offload_context_tx *offload_ctx, 282 struct tls_record_info *record, 283 int flags) 284 { 285 struct tls_prot_info *prot = &ctx->prot_info; 286 struct tcp_sock *tp = tcp_sk(sk); 287 skb_frag_t *frag; 288 int i; 289 290 record->end_seq = tp->write_seq + record->len; 291 list_add_tail_rcu(&record->list, &offload_ctx->records_list); 292 offload_ctx->open_record = NULL; 293 294 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) 295 tls_device_resync_tx(sk, ctx, tp->write_seq); 296 297 tls_advance_record_sn(sk, prot, &ctx->tx); 298 299 for (i = 0; i < record->num_frags; i++) { 300 frag = &record->frags[i]; 301 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 302 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 303 skb_frag_size(frag), skb_frag_off(frag)); 304 sk_mem_charge(sk, skb_frag_size(frag)); 305 get_page(skb_frag_page(frag)); 306 } 307 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 308 309 /* all ready, send */ 310 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 311 } 312 313 static void tls_device_record_close(struct sock *sk, 314 struct tls_context *ctx, 315 struct tls_record_info *record, 316 struct page_frag *pfrag, 317 unsigned char record_type) 318 { 319 struct tls_prot_info *prot = &ctx->prot_info; 320 struct page_frag dummy_tag_frag; 321 322 /* append tag 323 * device will fill in the tag, we just need to append a placeholder 324 * use socket memory to improve coalescing (re-using a single buffer 325 * increases frag count) 326 * if we can't allocate memory now use the dummy page 327 */ 328 if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) && 329 !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) { 330 dummy_tag_frag.page = dummy_page; 331 dummy_tag_frag.offset = 0; 332 pfrag = &dummy_tag_frag; 333 } 334 tls_append_frag(record, pfrag, prot->tag_size); 335 336 /* fill prepend */ 337 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), 338 record->len - prot->overhead_size, 339 record_type); 340 } 341 342 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 343 struct page_frag *pfrag, 344 size_t prepend_size) 345 { 346 struct tls_record_info *record; 347 skb_frag_t *frag; 348 349 record = kmalloc(sizeof(*record), GFP_KERNEL); 350 if (!record) 351 return -ENOMEM; 352 353 frag = &record->frags[0]; 354 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset, 355 prepend_size); 356 357 get_page(pfrag->page); 358 pfrag->offset += prepend_size; 359 360 record->num_frags = 1; 361 record->len = prepend_size; 362 offload_ctx->open_record = record; 363 return 0; 364 } 365 366 static int tls_do_allocation(struct sock *sk, 367 struct tls_offload_context_tx *offload_ctx, 368 struct page_frag *pfrag, 369 size_t prepend_size) 370 { 371 int ret; 372 373 if (!offload_ctx->open_record) { 374 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 375 sk->sk_allocation))) { 376 if (!sk->sk_bypass_prot_mem) 377 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); 378 sk_stream_moderate_sndbuf(sk); 379 return -ENOMEM; 380 } 381 382 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 383 if (ret) 384 return ret; 385 386 if (pfrag->size > pfrag->offset) 387 return 0; 388 } 389 390 if (!sk_page_frag_refill(sk, pfrag)) 391 return -ENOMEM; 392 393 return 0; 394 } 395 396 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) 397 { 398 size_t pre_copy, nocache; 399 400 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); 401 if (pre_copy) { 402 pre_copy = min(pre_copy, bytes); 403 if (copy_from_iter(addr, pre_copy, i) != pre_copy) 404 return -EFAULT; 405 bytes -= pre_copy; 406 addr += pre_copy; 407 } 408 409 nocache = round_down(bytes, SMP_CACHE_BYTES); 410 if (copy_from_iter_nocache(addr, nocache, i) != nocache) 411 return -EFAULT; 412 bytes -= nocache; 413 addr += nocache; 414 415 if (bytes && copy_from_iter(addr, bytes, i) != bytes) 416 return -EFAULT; 417 418 return 0; 419 } 420 421 static int tls_push_data(struct sock *sk, 422 struct iov_iter *iter, 423 size_t size, int flags, 424 unsigned char record_type) 425 { 426 struct tls_context *tls_ctx = tls_get_ctx(sk); 427 struct tls_prot_info *prot = &tls_ctx->prot_info; 428 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 429 struct tls_record_info *record; 430 int tls_push_record_flags; 431 struct page_frag *pfrag; 432 size_t orig_size = size; 433 u32 max_open_record_len; 434 bool more = false; 435 bool done = false; 436 int copy, rc = 0; 437 long timeo; 438 439 if (flags & 440 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 441 MSG_SPLICE_PAGES | MSG_EOR)) 442 return -EOPNOTSUPP; 443 444 if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR)) 445 return -EINVAL; 446 447 if (unlikely(sk->sk_err)) 448 return -sk->sk_err; 449 450 flags |= MSG_SENDPAGE_DECRYPTED; 451 tls_push_record_flags = flags | MSG_MORE; 452 453 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 454 if (tls_is_partially_sent_record(tls_ctx)) { 455 rc = tls_push_partial_record(sk, tls_ctx, flags); 456 if (rc < 0) 457 return rc; 458 } 459 460 pfrag = sk_page_frag(sk); 461 462 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 463 * we need to leave room for an authentication tag. 464 */ 465 max_open_record_len = tls_ctx->tx_max_payload_len + 466 prot->prepend_size; 467 do { 468 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); 469 if (unlikely(rc)) { 470 rc = sk_stream_wait_memory(sk, &timeo); 471 if (!rc) 472 continue; 473 474 record = ctx->open_record; 475 if (!record) 476 break; 477 handle_error: 478 if (record_type != TLS_RECORD_TYPE_DATA) { 479 /* avoid sending partial 480 * record with type != 481 * application_data 482 */ 483 size = orig_size; 484 destroy_record(record); 485 ctx->open_record = NULL; 486 } else if (record->len > prot->prepend_size) { 487 goto last_record; 488 } 489 490 break; 491 } 492 493 record = ctx->open_record; 494 495 copy = min_t(size_t, size, max_open_record_len - record->len); 496 if (copy && (flags & MSG_SPLICE_PAGES)) { 497 struct page_frag zc_pfrag; 498 struct page **pages = &zc_pfrag.page; 499 size_t off; 500 501 rc = iov_iter_extract_pages(iter, &pages, 502 copy, 1, 0, &off); 503 if (rc <= 0) { 504 if (rc == 0) 505 rc = -EIO; 506 goto handle_error; 507 } 508 copy = rc; 509 510 if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) { 511 iov_iter_revert(iter, copy); 512 rc = -EIO; 513 goto handle_error; 514 } 515 516 zc_pfrag.offset = off; 517 zc_pfrag.size = copy; 518 tls_append_frag(record, &zc_pfrag, copy); 519 } else if (copy) { 520 copy = min_t(size_t, copy, pfrag->size - pfrag->offset); 521 522 rc = tls_device_copy_data(page_address(pfrag->page) + 523 pfrag->offset, copy, 524 iter); 525 if (rc) 526 goto handle_error; 527 tls_append_frag(record, pfrag, copy); 528 } 529 530 size -= copy; 531 if (!size) { 532 last_record: 533 tls_push_record_flags = flags; 534 if (flags & MSG_MORE) { 535 more = true; 536 break; 537 } 538 539 done = true; 540 } 541 542 if (done || record->len >= max_open_record_len || 543 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 544 tls_device_record_close(sk, tls_ctx, record, 545 pfrag, record_type); 546 547 rc = tls_push_record(sk, 548 tls_ctx, 549 ctx, 550 record, 551 tls_push_record_flags); 552 if (rc < 0) 553 break; 554 } 555 } while (!done); 556 557 tls_ctx->pending_open_record_frags = more; 558 559 if (orig_size - size > 0) 560 rc = orig_size - size; 561 562 return rc; 563 } 564 565 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 566 { 567 unsigned char record_type = TLS_RECORD_TYPE_DATA; 568 struct tls_context *tls_ctx = tls_get_ctx(sk); 569 int rc; 570 571 if (!tls_ctx->zerocopy_sendfile) 572 msg->msg_flags &= ~MSG_SPLICE_PAGES; 573 574 mutex_lock(&tls_ctx->tx_lock); 575 lock_sock(sk); 576 577 if (unlikely(msg->msg_controllen)) { 578 rc = tls_process_cmsg(sk, msg, &record_type); 579 if (rc) 580 goto out; 581 } 582 583 rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags, 584 record_type); 585 586 out: 587 release_sock(sk); 588 mutex_unlock(&tls_ctx->tx_lock); 589 return rc; 590 } 591 592 void tls_device_splice_eof(struct socket *sock) 593 { 594 struct sock *sk = sock->sk; 595 struct tls_context *tls_ctx = tls_get_ctx(sk); 596 struct iov_iter iter = {}; 597 598 if (!tls_is_partially_sent_record(tls_ctx)) 599 return; 600 601 mutex_lock(&tls_ctx->tx_lock); 602 lock_sock(sk); 603 604 if (tls_is_partially_sent_record(tls_ctx)) { 605 iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0); 606 tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA); 607 } 608 609 release_sock(sk); 610 mutex_unlock(&tls_ctx->tx_lock); 611 } 612 613 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 614 u32 seq, u64 *p_record_sn) 615 { 616 u64 record_sn = context->hint_record_sn; 617 struct tls_record_info *info, *last; 618 619 info = context->retransmit_hint; 620 if (!info || 621 before(seq, info->end_seq - info->len)) { 622 /* if retransmit_hint is irrelevant start 623 * from the beginning of the list 624 */ 625 info = list_first_entry_or_null(&context->records_list, 626 struct tls_record_info, list); 627 if (!info) 628 return NULL; 629 /* send the start_marker record if seq number is before the 630 * tls offload start marker sequence number. This record is 631 * required to handle TCP packets which are before TLS offload 632 * started. 633 * And if it's not start marker, look if this seq number 634 * belongs to the list. 635 */ 636 if (likely(!tls_record_is_start_marker(info))) { 637 /* we have the first record, get the last record to see 638 * if this seq number belongs to the list. 639 */ 640 last = list_last_entry(&context->records_list, 641 struct tls_record_info, list); 642 643 if (!between(seq, tls_record_start_seq(info), 644 last->end_seq)) 645 return NULL; 646 } 647 record_sn = context->unacked_record_sn; 648 } 649 650 /* We just need the _rcu for the READ_ONCE() */ 651 rcu_read_lock(); 652 list_for_each_entry_from_rcu(info, &context->records_list, list) { 653 if (before(seq, info->end_seq)) { 654 if (!context->retransmit_hint || 655 after(info->end_seq, 656 context->retransmit_hint->end_seq)) { 657 context->hint_record_sn = record_sn; 658 context->retransmit_hint = info; 659 } 660 *p_record_sn = record_sn; 661 goto exit_rcu_unlock; 662 } 663 record_sn++; 664 } 665 info = NULL; 666 667 exit_rcu_unlock: 668 rcu_read_unlock(); 669 return info; 670 } 671 EXPORT_SYMBOL(tls_get_record); 672 673 static int tls_device_push_pending_record(struct sock *sk, int flags) 674 { 675 struct iov_iter iter; 676 677 iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0); 678 return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA); 679 } 680 681 void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 682 { 683 if (tls_is_partially_sent_record(ctx)) { 684 gfp_t sk_allocation = sk->sk_allocation; 685 686 WARN_ON_ONCE(sk->sk_write_pending); 687 688 sk->sk_allocation = GFP_ATOMIC; 689 tls_push_partial_record(sk, ctx, 690 MSG_DONTWAIT | MSG_NOSIGNAL | 691 MSG_SENDPAGE_DECRYPTED); 692 sk->sk_allocation = sk_allocation; 693 } 694 } 695 696 static void tls_device_resync_rx(struct tls_context *tls_ctx, 697 struct sock *sk, u32 seq, u8 *rcd_sn) 698 { 699 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 700 struct net_device *netdev; 701 702 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); 703 rcu_read_lock(); 704 netdev = rcu_dereference(tls_ctx->netdev); 705 if (netdev) 706 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, 707 TLS_OFFLOAD_CTX_DIR_RX); 708 rcu_read_unlock(); 709 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); 710 } 711 712 static bool 713 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, 714 s64 resync_req, u32 *seq, u16 *rcd_delta) 715 { 716 u32 is_async = resync_req & RESYNC_REQ_ASYNC; 717 u32 req_seq = resync_req >> 32; 718 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); 719 u16 i; 720 721 *rcd_delta = 0; 722 723 if (is_async) { 724 /* shouldn't get to wraparound: 725 * too long in async stage, something bad happened 726 */ 727 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) { 728 tls_offload_rx_resync_async_request_cancel(resync_async); 729 return false; 730 } 731 732 /* asynchronous stage: log all headers seq such that 733 * req_seq <= seq <= end_seq, and wait for real resync request 734 */ 735 if (before(*seq, req_seq)) 736 return false; 737 if (!after(*seq, req_end) && 738 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) 739 resync_async->log[resync_async->loglen++] = *seq; 740 741 resync_async->rcd_delta++; 742 743 return false; 744 } 745 746 /* synchronous stage: check against the logged entries and 747 * proceed to check the next entries if no match was found 748 */ 749 for (i = 0; i < resync_async->loglen; i++) 750 if (req_seq == resync_async->log[i] && 751 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { 752 *rcd_delta = resync_async->rcd_delta - i; 753 *seq = req_seq; 754 resync_async->loglen = 0; 755 resync_async->rcd_delta = 0; 756 return true; 757 } 758 759 resync_async->loglen = 0; 760 resync_async->rcd_delta = 0; 761 762 if (req_seq == *seq && 763 atomic64_try_cmpxchg(&resync_async->req, 764 &resync_req, 0)) 765 return true; 766 767 return false; 768 } 769 770 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) 771 { 772 struct tls_context *tls_ctx = tls_get_ctx(sk); 773 struct tls_offload_context_rx *rx_ctx; 774 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 775 u32 sock_data, is_req_pending; 776 struct tls_prot_info *prot; 777 s64 resync_req; 778 u16 rcd_delta; 779 u32 req_seq; 780 781 if (tls_ctx->rx_conf != TLS_HW) 782 return; 783 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) 784 return; 785 786 prot = &tls_ctx->prot_info; 787 rx_ctx = tls_offload_ctx_rx(tls_ctx); 788 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 789 790 switch (rx_ctx->resync_type) { 791 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: 792 resync_req = atomic64_read(&rx_ctx->resync_req); 793 req_seq = resync_req >> 32; 794 seq += TLS_HEADER_SIZE - 1; 795 is_req_pending = resync_req; 796 797 if (likely(!is_req_pending) || req_seq != seq || 798 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 799 return; 800 break; 801 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: 802 if (likely(!rx_ctx->resync_nh_do_now)) 803 return; 804 805 /* head of next rec is already in, note that the sock_inq will 806 * include the currently parsed message when called from parser 807 */ 808 sock_data = tcp_inq(sk); 809 if (sock_data > rcd_len) { 810 trace_tls_device_rx_resync_nh_delay(sk, sock_data, 811 rcd_len); 812 return; 813 } 814 815 rx_ctx->resync_nh_do_now = 0; 816 seq += rcd_len; 817 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 818 break; 819 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: 820 resync_req = atomic64_read(&rx_ctx->resync_async->req); 821 is_req_pending = resync_req; 822 if (likely(!is_req_pending)) 823 return; 824 825 if (!tls_device_rx_resync_async(rx_ctx->resync_async, 826 resync_req, &seq, &rcd_delta)) 827 return; 828 tls_bigint_subtract(rcd_sn, rcd_delta); 829 break; 830 } 831 832 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); 833 } 834 835 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, 836 struct tls_offload_context_rx *ctx, 837 struct sock *sk, struct sk_buff *skb) 838 { 839 struct strp_msg *rxm; 840 841 /* device will request resyncs by itself based on stream scan */ 842 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) 843 return; 844 /* already scheduled */ 845 if (ctx->resync_nh_do_now) 846 return; 847 /* seen decrypted fragments since last fully-failed record */ 848 if (ctx->resync_nh_reset) { 849 ctx->resync_nh_reset = 0; 850 ctx->resync_nh.decrypted_failed = 1; 851 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; 852 return; 853 } 854 855 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) 856 return; 857 858 /* doing resync, bump the next target in case it fails */ 859 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) 860 ctx->resync_nh.decrypted_tgt *= 2; 861 else 862 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; 863 864 rxm = strp_msg(skb); 865 866 /* head of next rec is already in, parser will sync for us */ 867 if (tcp_inq(sk) > rxm->full_len) { 868 trace_tls_device_rx_resync_nh_schedule(sk); 869 ctx->resync_nh_do_now = 1; 870 } else { 871 struct tls_prot_info *prot = &tls_ctx->prot_info; 872 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 873 874 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 875 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 876 877 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, 878 rcd_sn); 879 } 880 } 881 882 static int 883 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx) 884 { 885 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); 886 const struct tls_cipher_desc *cipher_desc; 887 int err, offset, copy, data_len, pos; 888 struct sk_buff *skb, *skb_iter; 889 struct scatterlist sg[1]; 890 struct strp_msg *rxm; 891 char *orig_buf, *buf; 892 893 cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type); 894 DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable); 895 896 rxm = strp_msg(tls_strp_msg(sw_ctx)); 897 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv, 898 sk->sk_allocation); 899 if (!orig_buf) 900 return -ENOMEM; 901 buf = orig_buf; 902 903 err = tls_strp_msg_cow(sw_ctx); 904 if (unlikely(err)) 905 goto free_buf; 906 907 skb = tls_strp_msg(sw_ctx); 908 rxm = strp_msg(skb); 909 offset = rxm->offset; 910 911 sg_init_table(sg, 1); 912 sg_set_buf(&sg[0], buf, 913 rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv); 914 err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv); 915 if (err) 916 goto free_buf; 917 918 /* We are interested only in the decrypted data not the auth */ 919 err = decrypt_skb(sk, sg); 920 if (err != -EBADMSG) 921 goto free_buf; 922 else 923 err = 0; 924 925 data_len = rxm->full_len - cipher_desc->tag; 926 927 if (skb_pagelen(skb) > offset) { 928 copy = min_t(int, skb_pagelen(skb) - offset, data_len); 929 930 if (skb->decrypted) { 931 err = skb_store_bits(skb, offset, buf, copy); 932 if (err) 933 goto free_buf; 934 } 935 936 offset += copy; 937 buf += copy; 938 } 939 940 pos = skb_pagelen(skb); 941 skb_walk_frags(skb, skb_iter) { 942 int frag_pos; 943 944 /* Practically all frags must belong to msg if reencrypt 945 * is needed with current strparser and coalescing logic, 946 * but strparser may "get optimized", so let's be safe. 947 */ 948 if (pos + skb_iter->len <= offset) 949 goto done_with_frag; 950 if (pos >= data_len + rxm->offset) 951 break; 952 953 frag_pos = offset - pos; 954 copy = min_t(int, skb_iter->len - frag_pos, 955 data_len + rxm->offset - offset); 956 957 if (skb_iter->decrypted) { 958 err = skb_store_bits(skb_iter, frag_pos, buf, copy); 959 if (err) 960 goto free_buf; 961 } 962 963 offset += copy; 964 buf += copy; 965 done_with_frag: 966 pos += skb_iter->len; 967 } 968 969 free_buf: 970 kfree(orig_buf); 971 return err; 972 } 973 974 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) 975 { 976 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 977 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); 978 struct sk_buff *skb = tls_strp_msg(sw_ctx); 979 struct strp_msg *rxm = strp_msg(skb); 980 int is_decrypted, is_encrypted; 981 982 if (!tls_strp_msg_mixed_decrypted(sw_ctx)) { 983 is_decrypted = skb->decrypted; 984 is_encrypted = !is_decrypted; 985 } else { 986 is_decrypted = 0; 987 is_encrypted = 0; 988 } 989 990 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, 991 tls_ctx->rx.rec_seq, rxm->full_len, 992 is_encrypted, is_decrypted); 993 994 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) { 995 if (likely(is_encrypted || is_decrypted)) 996 return is_decrypted; 997 998 /* After tls_device_down disables the offload, the next SKB will 999 * likely have initial fragments decrypted, and final ones not 1000 * decrypted. We need to reencrypt that single SKB. 1001 */ 1002 return tls_device_reencrypt(sk, tls_ctx); 1003 } 1004 1005 /* Return immediately if the record is either entirely plaintext or 1006 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 1007 * record. 1008 */ 1009 if (is_decrypted) { 1010 ctx->resync_nh_reset = 1; 1011 return is_decrypted; 1012 } 1013 if (is_encrypted) { 1014 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); 1015 return 0; 1016 } 1017 1018 ctx->resync_nh_reset = 1; 1019 return tls_device_reencrypt(sk, tls_ctx); 1020 } 1021 1022 static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 1023 struct net_device *netdev) 1024 { 1025 if (sk->sk_destruct != tls_device_sk_destruct) { 1026 refcount_set(&ctx->refcount, 1); 1027 dev_hold(netdev); 1028 RCU_INIT_POINTER(ctx->netdev, netdev); 1029 spin_lock_irq(&tls_device_lock); 1030 list_add_tail(&ctx->list, &tls_device_list); 1031 spin_unlock_irq(&tls_device_lock); 1032 1033 ctx->sk_destruct = sk->sk_destruct; 1034 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); 1035 } 1036 } 1037 1038 static struct tls_offload_context_tx *alloc_offload_ctx_tx(struct tls_context *ctx) 1039 { 1040 struct tls_offload_context_tx *offload_ctx; 1041 __be64 rcd_sn; 1042 1043 offload_ctx = kzalloc(sizeof(*offload_ctx), GFP_KERNEL); 1044 if (!offload_ctx) 1045 return NULL; 1046 1047 INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task); 1048 INIT_LIST_HEAD(&offload_ctx->records_list); 1049 spin_lock_init(&offload_ctx->lock); 1050 sg_init_table(offload_ctx->sg_tx_data, 1051 ARRAY_SIZE(offload_ctx->sg_tx_data)); 1052 1053 /* start at rec_seq - 1 to account for the start marker record */ 1054 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 1055 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 1056 1057 offload_ctx->ctx = ctx; 1058 1059 return offload_ctx; 1060 } 1061 1062 int tls_set_device_offload(struct sock *sk) 1063 { 1064 struct tls_record_info *start_marker_record; 1065 struct tls_offload_context_tx *offload_ctx; 1066 const struct tls_cipher_desc *cipher_desc; 1067 struct tls_crypto_info *crypto_info; 1068 struct tls_prot_info *prot; 1069 struct net_device *netdev; 1070 struct tls_context *ctx; 1071 char *iv, *rec_seq; 1072 int rc; 1073 1074 ctx = tls_get_ctx(sk); 1075 prot = &ctx->prot_info; 1076 1077 if (ctx->priv_ctx_tx) 1078 return -EEXIST; 1079 1080 netdev = get_netdev_for_sock(sk); 1081 if (!netdev) { 1082 pr_err_ratelimited("%s: netdev not found\n", __func__); 1083 return -EINVAL; 1084 } 1085 1086 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 1087 rc = -EOPNOTSUPP; 1088 goto release_netdev; 1089 } 1090 1091 crypto_info = &ctx->crypto_send.info; 1092 if (crypto_info->version != TLS_1_2_VERSION) { 1093 rc = -EOPNOTSUPP; 1094 goto release_netdev; 1095 } 1096 1097 cipher_desc = get_cipher_desc(crypto_info->cipher_type); 1098 if (!cipher_desc || !cipher_desc->offloadable) { 1099 rc = -EINVAL; 1100 goto release_netdev; 1101 } 1102 1103 rc = init_prot_info(prot, crypto_info, cipher_desc); 1104 if (rc) 1105 goto release_netdev; 1106 1107 iv = crypto_info_iv(crypto_info, cipher_desc); 1108 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc); 1109 1110 memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv); 1111 memcpy(ctx->tx.rec_seq, rec_seq, cipher_desc->rec_seq); 1112 1113 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 1114 if (!start_marker_record) { 1115 rc = -ENOMEM; 1116 goto release_netdev; 1117 } 1118 1119 offload_ctx = alloc_offload_ctx_tx(ctx); 1120 if (!offload_ctx) { 1121 rc = -ENOMEM; 1122 goto free_marker_record; 1123 } 1124 1125 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 1126 if (rc) 1127 goto free_offload_ctx; 1128 1129 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 1130 start_marker_record->len = 0; 1131 start_marker_record->num_frags = 0; 1132 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 1133 1134 clean_acked_data_enable(tcp_sk(sk), &tls_tcp_clean_acked); 1135 ctx->push_pending_record = tls_device_push_pending_record; 1136 1137 /* TLS offload is greatly simplified if we don't send 1138 * SKBs where only part of the payload needs to be encrypted. 1139 * So mark the last skb in the write queue as end of record. 1140 */ 1141 tcp_write_collapse_fence(sk); 1142 1143 /* Avoid offloading if the device is down 1144 * We don't want to offload new flows after 1145 * the NETDEV_DOWN event 1146 * 1147 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1148 * handler thus protecting from the device going down before 1149 * ctx was added to tls_device_list. 1150 */ 1151 down_read(&device_offload_lock); 1152 if (!(netdev->flags & IFF_UP)) { 1153 rc = -EINVAL; 1154 goto release_lock; 1155 } 1156 1157 ctx->priv_ctx_tx = offload_ctx; 1158 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 1159 &ctx->crypto_send.info, 1160 tcp_sk(sk)->write_seq); 1161 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, 1162 tcp_sk(sk)->write_seq, rec_seq, rc); 1163 if (rc) 1164 goto release_lock; 1165 1166 tls_device_attach(ctx, sk, netdev); 1167 up_read(&device_offload_lock); 1168 1169 /* following this assignment tls_is_skb_tx_device_offloaded 1170 * will return true and the context might be accessed 1171 * by the netdev's xmit function. 1172 */ 1173 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 1174 dev_put(netdev); 1175 1176 return 0; 1177 1178 release_lock: 1179 up_read(&device_offload_lock); 1180 clean_acked_data_disable(tcp_sk(sk)); 1181 crypto_free_aead(offload_ctx->aead_send); 1182 free_offload_ctx: 1183 kfree(offload_ctx); 1184 ctx->priv_ctx_tx = NULL; 1185 free_marker_record: 1186 kfree(start_marker_record); 1187 release_netdev: 1188 dev_put(netdev); 1189 return rc; 1190 } 1191 1192 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 1193 { 1194 struct tls12_crypto_info_aes_gcm_128 *info; 1195 struct tls_offload_context_rx *context; 1196 struct net_device *netdev; 1197 int rc = 0; 1198 1199 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) 1200 return -EOPNOTSUPP; 1201 1202 netdev = get_netdev_for_sock(sk); 1203 if (!netdev) { 1204 pr_err_ratelimited("%s: netdev not found\n", __func__); 1205 return -EINVAL; 1206 } 1207 1208 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 1209 rc = -EOPNOTSUPP; 1210 goto release_netdev; 1211 } 1212 1213 /* Avoid offloading if the device is down 1214 * We don't want to offload new flows after 1215 * the NETDEV_DOWN event 1216 * 1217 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1218 * handler thus protecting from the device going down before 1219 * ctx was added to tls_device_list. 1220 */ 1221 down_read(&device_offload_lock); 1222 if (!(netdev->flags & IFF_UP)) { 1223 rc = -EINVAL; 1224 goto release_lock; 1225 } 1226 1227 context = kzalloc(sizeof(*context), GFP_KERNEL); 1228 if (!context) { 1229 rc = -ENOMEM; 1230 goto release_lock; 1231 } 1232 context->resync_nh_reset = 1; 1233 1234 ctx->priv_ctx_rx = context; 1235 rc = tls_set_sw_offload(sk, 0, NULL); 1236 if (rc) 1237 goto release_ctx; 1238 1239 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 1240 &ctx->crypto_recv.info, 1241 tcp_sk(sk)->copied_seq); 1242 info = (void *)&ctx->crypto_recv.info; 1243 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, 1244 tcp_sk(sk)->copied_seq, info->rec_seq, rc); 1245 if (rc) 1246 goto free_sw_resources; 1247 1248 tls_device_attach(ctx, sk, netdev); 1249 up_read(&device_offload_lock); 1250 1251 dev_put(netdev); 1252 1253 return 0; 1254 1255 free_sw_resources: 1256 up_read(&device_offload_lock); 1257 tls_sw_free_resources_rx(sk); 1258 down_read(&device_offload_lock); 1259 release_ctx: 1260 ctx->priv_ctx_rx = NULL; 1261 release_lock: 1262 up_read(&device_offload_lock); 1263 release_netdev: 1264 dev_put(netdev); 1265 return rc; 1266 } 1267 1268 void tls_device_offload_cleanup_rx(struct sock *sk) 1269 { 1270 struct tls_context *tls_ctx = tls_get_ctx(sk); 1271 struct net_device *netdev; 1272 1273 down_read(&device_offload_lock); 1274 netdev = rcu_dereference_protected(tls_ctx->netdev, 1275 lockdep_is_held(&device_offload_lock)); 1276 if (!netdev) 1277 goto out; 1278 1279 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 1280 TLS_OFFLOAD_CTX_DIR_RX); 1281 1282 if (tls_ctx->tx_conf != TLS_HW) { 1283 dev_put(netdev); 1284 rcu_assign_pointer(tls_ctx->netdev, NULL); 1285 } else { 1286 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); 1287 } 1288 out: 1289 up_read(&device_offload_lock); 1290 tls_sw_release_resources_rx(sk); 1291 } 1292 1293 static int tls_device_down(struct net_device *netdev) 1294 { 1295 struct tls_context *ctx, *tmp; 1296 unsigned long flags; 1297 LIST_HEAD(list); 1298 1299 /* Request a write lock to block new offload attempts */ 1300 down_write(&device_offload_lock); 1301 1302 spin_lock_irqsave(&tls_device_lock, flags); 1303 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 1304 struct net_device *ctx_netdev = 1305 rcu_dereference_protected(ctx->netdev, 1306 lockdep_is_held(&device_offload_lock)); 1307 1308 if (ctx_netdev != netdev || 1309 !refcount_inc_not_zero(&ctx->refcount)) 1310 continue; 1311 1312 list_move(&ctx->list, &list); 1313 } 1314 spin_unlock_irqrestore(&tls_device_lock, flags); 1315 1316 list_for_each_entry_safe(ctx, tmp, &list, list) { 1317 /* Stop offloaded TX and switch to the fallback. 1318 * tls_is_skb_tx_device_offloaded will return false. 1319 */ 1320 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw); 1321 1322 /* Stop the RX and TX resync. 1323 * tls_dev_resync must not be called after tls_dev_del. 1324 */ 1325 rcu_assign_pointer(ctx->netdev, NULL); 1326 1327 /* Start skipping the RX resync logic completely. */ 1328 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags); 1329 1330 /* Sync with inflight packets. After this point: 1331 * TX: no non-encrypted packets will be passed to the driver. 1332 * RX: resync requests from the driver will be ignored. 1333 */ 1334 synchronize_net(); 1335 1336 /* Release the offload context on the driver side. */ 1337 if (ctx->tx_conf == TLS_HW) 1338 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1339 TLS_OFFLOAD_CTX_DIR_TX); 1340 if (ctx->rx_conf == TLS_HW && 1341 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) 1342 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1343 TLS_OFFLOAD_CTX_DIR_RX); 1344 1345 dev_put(netdev); 1346 1347 /* Move the context to a separate list for two reasons: 1348 * 1. When the context is deallocated, list_del is called. 1349 * 2. It's no longer an offloaded context, so we don't want to 1350 * run offload-specific code on this context. 1351 */ 1352 spin_lock_irqsave(&tls_device_lock, flags); 1353 list_move_tail(&ctx->list, &tls_device_down_list); 1354 spin_unlock_irqrestore(&tls_device_lock, flags); 1355 1356 /* Device contexts for RX and TX will be freed in on sk_destruct 1357 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW. 1358 * Now release the ref taken above. 1359 */ 1360 if (refcount_dec_and_test(&ctx->refcount)) { 1361 /* sk_destruct ran after tls_device_down took a ref, and 1362 * it returned early. Complete the destruction here. 1363 */ 1364 list_del(&ctx->list); 1365 tls_device_free_ctx(ctx); 1366 } 1367 } 1368 1369 up_write(&device_offload_lock); 1370 1371 flush_workqueue(destruct_wq); 1372 1373 return NOTIFY_DONE; 1374 } 1375 1376 static int tls_dev_event(struct notifier_block *this, unsigned long event, 1377 void *ptr) 1378 { 1379 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1380 1381 if (!dev->tlsdev_ops && 1382 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 1383 return NOTIFY_DONE; 1384 1385 switch (event) { 1386 case NETDEV_REGISTER: 1387 case NETDEV_FEAT_CHANGE: 1388 if (netif_is_bond_master(dev)) 1389 return NOTIFY_DONE; 1390 if ((dev->features & NETIF_F_HW_TLS_RX) && 1391 !dev->tlsdev_ops->tls_dev_resync) 1392 return NOTIFY_BAD; 1393 1394 if (dev->tlsdev_ops && 1395 dev->tlsdev_ops->tls_dev_add && 1396 dev->tlsdev_ops->tls_dev_del) 1397 return NOTIFY_DONE; 1398 else 1399 return NOTIFY_BAD; 1400 case NETDEV_DOWN: 1401 return tls_device_down(dev); 1402 } 1403 return NOTIFY_DONE; 1404 } 1405 1406 static struct notifier_block tls_dev_notifier = { 1407 .notifier_call = tls_dev_event, 1408 }; 1409 1410 int __init tls_device_init(void) 1411 { 1412 int err; 1413 1414 dummy_page = alloc_page(GFP_KERNEL); 1415 if (!dummy_page) 1416 return -ENOMEM; 1417 1418 destruct_wq = alloc_workqueue("ktls_device_destruct", WQ_PERCPU, 0); 1419 if (!destruct_wq) { 1420 err = -ENOMEM; 1421 goto err_free_dummy; 1422 } 1423 1424 err = register_netdevice_notifier(&tls_dev_notifier); 1425 if (err) 1426 goto err_destroy_wq; 1427 1428 return 0; 1429 1430 err_destroy_wq: 1431 destroy_workqueue(destruct_wq); 1432 err_free_dummy: 1433 put_page(dummy_page); 1434 return err; 1435 } 1436 1437 void __exit tls_device_cleanup(void) 1438 { 1439 unregister_netdevice_notifier(&tls_dev_notifier); 1440 destroy_workqueue(destruct_wq); 1441 clean_acked_data_flush(); 1442 put_page(dummy_page); 1443 } 1444