1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32 #include <crypto/aead.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/netdevice.h> 36 #include <net/dst.h> 37 #include <net/inet_connection_sock.h> 38 #include <net/tcp.h> 39 #include <net/tls.h> 40 #include <linux/skbuff_ref.h> 41 42 #include "tls.h" 43 #include "trace.h" 44 45 /* device_offload_lock is used to synchronize tls_dev_add 46 * against NETDEV_DOWN notifications. 47 */ 48 static DECLARE_RWSEM(device_offload_lock); 49 50 static struct workqueue_struct *destruct_wq __read_mostly; 51 52 static LIST_HEAD(tls_device_list); 53 static LIST_HEAD(tls_device_down_list); 54 static DEFINE_SPINLOCK(tls_device_lock); 55 56 static struct page *dummy_page; 57 58 static void tls_device_free_ctx(struct tls_context *ctx) 59 { 60 if (ctx->tx_conf == TLS_HW) 61 kfree(tls_offload_ctx_tx(ctx)); 62 63 if (ctx->rx_conf == TLS_HW) 64 kfree(tls_offload_ctx_rx(ctx)); 65 66 tls_ctx_free(NULL, ctx); 67 } 68 69 static void tls_device_tx_del_task(struct work_struct *work) 70 { 71 struct tls_offload_context_tx *offload_ctx = 72 container_of(work, struct tls_offload_context_tx, destruct_work); 73 struct tls_context *ctx = offload_ctx->ctx; 74 struct net_device *netdev; 75 76 /* Safe, because this is the destroy flow, refcount is 0, so 77 * tls_device_down can't store this field in parallel. 78 */ 79 netdev = rcu_dereference_protected(ctx->netdev, 80 !refcount_read(&ctx->refcount)); 81 82 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX); 83 dev_put(netdev); 84 ctx->netdev = NULL; 85 tls_device_free_ctx(ctx); 86 } 87 88 static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 89 { 90 struct net_device *netdev; 91 unsigned long flags; 92 bool async_cleanup; 93 94 spin_lock_irqsave(&tls_device_lock, flags); 95 if (unlikely(!refcount_dec_and_test(&ctx->refcount))) { 96 spin_unlock_irqrestore(&tls_device_lock, flags); 97 return; 98 } 99 100 list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */ 101 102 /* Safe, because this is the destroy flow, refcount is 0, so 103 * tls_device_down can't store this field in parallel. 104 */ 105 netdev = rcu_dereference_protected(ctx->netdev, 106 !refcount_read(&ctx->refcount)); 107 108 async_cleanup = netdev && ctx->tx_conf == TLS_HW; 109 if (async_cleanup) { 110 struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx); 111 112 /* queue_work inside the spinlock 113 * to make sure tls_device_down waits for that work. 114 */ 115 queue_work(destruct_wq, &offload_ctx->destruct_work); 116 } 117 spin_unlock_irqrestore(&tls_device_lock, flags); 118 119 if (!async_cleanup) 120 tls_device_free_ctx(ctx); 121 } 122 123 /* We assume that the socket is already connected */ 124 static struct net_device *get_netdev_for_sock(struct sock *sk) 125 { 126 struct dst_entry *dst = sk_dst_get(sk); 127 struct net_device *netdev = NULL; 128 129 if (likely(dst)) { 130 netdev = netdev_sk_get_lowest_dev(dst->dev, sk); 131 dev_hold(netdev); 132 } 133 134 dst_release(dst); 135 136 return netdev; 137 } 138 139 static void destroy_record(struct tls_record_info *record) 140 { 141 int i; 142 143 for (i = 0; i < record->num_frags; i++) 144 __skb_frag_unref(&record->frags[i], false); 145 kfree(record); 146 } 147 148 static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 149 { 150 struct tls_record_info *info, *temp; 151 152 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 153 list_del(&info->list); 154 destroy_record(info); 155 } 156 157 offload_ctx->retransmit_hint = NULL; 158 } 159 160 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) 161 { 162 struct tls_context *tls_ctx = tls_get_ctx(sk); 163 struct tls_record_info *info, *temp; 164 struct tls_offload_context_tx *ctx; 165 u64 deleted_records = 0; 166 unsigned long flags; 167 168 if (!tls_ctx) 169 return; 170 171 ctx = tls_offload_ctx_tx(tls_ctx); 172 173 spin_lock_irqsave(&ctx->lock, flags); 174 info = ctx->retransmit_hint; 175 if (info && !before(acked_seq, info->end_seq)) 176 ctx->retransmit_hint = NULL; 177 178 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 179 if (before(acked_seq, info->end_seq)) 180 break; 181 list_del(&info->list); 182 183 destroy_record(info); 184 deleted_records++; 185 } 186 187 ctx->unacked_record_sn += deleted_records; 188 spin_unlock_irqrestore(&ctx->lock, flags); 189 } 190 191 /* At this point, there should be no references on this 192 * socket and no in-flight SKBs associated with this 193 * socket, so it is safe to free all the resources. 194 */ 195 void tls_device_sk_destruct(struct sock *sk) 196 { 197 struct tls_context *tls_ctx = tls_get_ctx(sk); 198 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 199 200 tls_ctx->sk_destruct(sk); 201 202 if (tls_ctx->tx_conf == TLS_HW) { 203 if (ctx->open_record) 204 destroy_record(ctx->open_record); 205 delete_all_records(ctx); 206 crypto_free_aead(ctx->aead_send); 207 clean_acked_data_disable(inet_csk(sk)); 208 } 209 210 tls_device_queue_ctx_destruction(tls_ctx); 211 } 212 EXPORT_SYMBOL_GPL(tls_device_sk_destruct); 213 214 void tls_device_free_resources_tx(struct sock *sk) 215 { 216 struct tls_context *tls_ctx = tls_get_ctx(sk); 217 218 tls_free_partial_record(sk, tls_ctx); 219 } 220 221 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) 222 { 223 struct tls_context *tls_ctx = tls_get_ctx(sk); 224 225 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); 226 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 227 } 228 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); 229 230 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, 231 u32 seq) 232 { 233 struct net_device *netdev; 234 struct sk_buff *skb; 235 int err = 0; 236 u8 *rcd_sn; 237 238 skb = tcp_write_queue_tail(sk); 239 if (skb) 240 TCP_SKB_CB(skb)->eor = 1; 241 242 rcd_sn = tls_ctx->tx.rec_seq; 243 244 trace_tls_device_tx_resync_send(sk, seq, rcd_sn); 245 down_read(&device_offload_lock); 246 netdev = rcu_dereference_protected(tls_ctx->netdev, 247 lockdep_is_held(&device_offload_lock)); 248 if (netdev) 249 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, 250 rcd_sn, 251 TLS_OFFLOAD_CTX_DIR_TX); 252 up_read(&device_offload_lock); 253 if (err) 254 return; 255 256 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 257 } 258 259 static void tls_append_frag(struct tls_record_info *record, 260 struct page_frag *pfrag, 261 int size) 262 { 263 skb_frag_t *frag; 264 265 frag = &record->frags[record->num_frags - 1]; 266 if (skb_frag_page(frag) == pfrag->page && 267 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { 268 skb_frag_size_add(frag, size); 269 } else { 270 ++frag; 271 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset, 272 size); 273 ++record->num_frags; 274 get_page(pfrag->page); 275 } 276 277 pfrag->offset += size; 278 record->len += size; 279 } 280 281 static int tls_push_record(struct sock *sk, 282 struct tls_context *ctx, 283 struct tls_offload_context_tx *offload_ctx, 284 struct tls_record_info *record, 285 int flags) 286 { 287 struct tls_prot_info *prot = &ctx->prot_info; 288 struct tcp_sock *tp = tcp_sk(sk); 289 skb_frag_t *frag; 290 int i; 291 292 record->end_seq = tp->write_seq + record->len; 293 list_add_tail_rcu(&record->list, &offload_ctx->records_list); 294 offload_ctx->open_record = NULL; 295 296 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) 297 tls_device_resync_tx(sk, ctx, tp->write_seq); 298 299 tls_advance_record_sn(sk, prot, &ctx->tx); 300 301 for (i = 0; i < record->num_frags; i++) { 302 frag = &record->frags[i]; 303 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 304 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 305 skb_frag_size(frag), skb_frag_off(frag)); 306 sk_mem_charge(sk, skb_frag_size(frag)); 307 get_page(skb_frag_page(frag)); 308 } 309 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 310 311 /* all ready, send */ 312 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 313 } 314 315 static void tls_device_record_close(struct sock *sk, 316 struct tls_context *ctx, 317 struct tls_record_info *record, 318 struct page_frag *pfrag, 319 unsigned char record_type) 320 { 321 struct tls_prot_info *prot = &ctx->prot_info; 322 struct page_frag dummy_tag_frag; 323 324 /* append tag 325 * device will fill in the tag, we just need to append a placeholder 326 * use socket memory to improve coalescing (re-using a single buffer 327 * increases frag count) 328 * if we can't allocate memory now use the dummy page 329 */ 330 if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) && 331 !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) { 332 dummy_tag_frag.page = dummy_page; 333 dummy_tag_frag.offset = 0; 334 pfrag = &dummy_tag_frag; 335 } 336 tls_append_frag(record, pfrag, prot->tag_size); 337 338 /* fill prepend */ 339 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), 340 record->len - prot->overhead_size, 341 record_type); 342 } 343 344 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 345 struct page_frag *pfrag, 346 size_t prepend_size) 347 { 348 struct tls_record_info *record; 349 skb_frag_t *frag; 350 351 record = kmalloc(sizeof(*record), GFP_KERNEL); 352 if (!record) 353 return -ENOMEM; 354 355 frag = &record->frags[0]; 356 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset, 357 prepend_size); 358 359 get_page(pfrag->page); 360 pfrag->offset += prepend_size; 361 362 record->num_frags = 1; 363 record->len = prepend_size; 364 offload_ctx->open_record = record; 365 return 0; 366 } 367 368 static int tls_do_allocation(struct sock *sk, 369 struct tls_offload_context_tx *offload_ctx, 370 struct page_frag *pfrag, 371 size_t prepend_size) 372 { 373 int ret; 374 375 if (!offload_ctx->open_record) { 376 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 377 sk->sk_allocation))) { 378 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); 379 sk_stream_moderate_sndbuf(sk); 380 return -ENOMEM; 381 } 382 383 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 384 if (ret) 385 return ret; 386 387 if (pfrag->size > pfrag->offset) 388 return 0; 389 } 390 391 if (!sk_page_frag_refill(sk, pfrag)) 392 return -ENOMEM; 393 394 return 0; 395 } 396 397 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) 398 { 399 size_t pre_copy, nocache; 400 401 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); 402 if (pre_copy) { 403 pre_copy = min(pre_copy, bytes); 404 if (copy_from_iter(addr, pre_copy, i) != pre_copy) 405 return -EFAULT; 406 bytes -= pre_copy; 407 addr += pre_copy; 408 } 409 410 nocache = round_down(bytes, SMP_CACHE_BYTES); 411 if (copy_from_iter_nocache(addr, nocache, i) != nocache) 412 return -EFAULT; 413 bytes -= nocache; 414 addr += nocache; 415 416 if (bytes && copy_from_iter(addr, bytes, i) != bytes) 417 return -EFAULT; 418 419 return 0; 420 } 421 422 static int tls_push_data(struct sock *sk, 423 struct iov_iter *iter, 424 size_t size, int flags, 425 unsigned char record_type) 426 { 427 struct tls_context *tls_ctx = tls_get_ctx(sk); 428 struct tls_prot_info *prot = &tls_ctx->prot_info; 429 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 430 struct tls_record_info *record; 431 int tls_push_record_flags; 432 struct page_frag *pfrag; 433 size_t orig_size = size; 434 u32 max_open_record_len; 435 bool more = false; 436 bool done = false; 437 int copy, rc = 0; 438 long timeo; 439 440 if (flags & 441 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 442 MSG_SPLICE_PAGES | MSG_EOR)) 443 return -EOPNOTSUPP; 444 445 if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR)) 446 return -EINVAL; 447 448 if (unlikely(sk->sk_err)) 449 return -sk->sk_err; 450 451 flags |= MSG_SENDPAGE_DECRYPTED; 452 tls_push_record_flags = flags | MSG_MORE; 453 454 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 455 if (tls_is_partially_sent_record(tls_ctx)) { 456 rc = tls_push_partial_record(sk, tls_ctx, flags); 457 if (rc < 0) 458 return rc; 459 } 460 461 pfrag = sk_page_frag(sk); 462 463 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 464 * we need to leave room for an authentication tag. 465 */ 466 max_open_record_len = TLS_MAX_PAYLOAD_SIZE + 467 prot->prepend_size; 468 do { 469 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); 470 if (unlikely(rc)) { 471 rc = sk_stream_wait_memory(sk, &timeo); 472 if (!rc) 473 continue; 474 475 record = ctx->open_record; 476 if (!record) 477 break; 478 handle_error: 479 if (record_type != TLS_RECORD_TYPE_DATA) { 480 /* avoid sending partial 481 * record with type != 482 * application_data 483 */ 484 size = orig_size; 485 destroy_record(record); 486 ctx->open_record = NULL; 487 } else if (record->len > prot->prepend_size) { 488 goto last_record; 489 } 490 491 break; 492 } 493 494 record = ctx->open_record; 495 496 copy = min_t(size_t, size, max_open_record_len - record->len); 497 if (copy && (flags & MSG_SPLICE_PAGES)) { 498 struct page_frag zc_pfrag; 499 struct page **pages = &zc_pfrag.page; 500 size_t off; 501 502 rc = iov_iter_extract_pages(iter, &pages, 503 copy, 1, 0, &off); 504 if (rc <= 0) { 505 if (rc == 0) 506 rc = -EIO; 507 goto handle_error; 508 } 509 copy = rc; 510 511 if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) { 512 iov_iter_revert(iter, copy); 513 rc = -EIO; 514 goto handle_error; 515 } 516 517 zc_pfrag.offset = off; 518 zc_pfrag.size = copy; 519 tls_append_frag(record, &zc_pfrag, copy); 520 } else if (copy) { 521 copy = min_t(size_t, copy, pfrag->size - pfrag->offset); 522 523 rc = tls_device_copy_data(page_address(pfrag->page) + 524 pfrag->offset, copy, 525 iter); 526 if (rc) 527 goto handle_error; 528 tls_append_frag(record, pfrag, copy); 529 } 530 531 size -= copy; 532 if (!size) { 533 last_record: 534 tls_push_record_flags = flags; 535 if (flags & MSG_MORE) { 536 more = true; 537 break; 538 } 539 540 done = true; 541 } 542 543 if (done || record->len >= max_open_record_len || 544 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 545 tls_device_record_close(sk, tls_ctx, record, 546 pfrag, record_type); 547 548 rc = tls_push_record(sk, 549 tls_ctx, 550 ctx, 551 record, 552 tls_push_record_flags); 553 if (rc < 0) 554 break; 555 } 556 } while (!done); 557 558 tls_ctx->pending_open_record_frags = more; 559 560 if (orig_size - size > 0) 561 rc = orig_size - size; 562 563 return rc; 564 } 565 566 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 567 { 568 unsigned char record_type = TLS_RECORD_TYPE_DATA; 569 struct tls_context *tls_ctx = tls_get_ctx(sk); 570 int rc; 571 572 if (!tls_ctx->zerocopy_sendfile) 573 msg->msg_flags &= ~MSG_SPLICE_PAGES; 574 575 mutex_lock(&tls_ctx->tx_lock); 576 lock_sock(sk); 577 578 if (unlikely(msg->msg_controllen)) { 579 rc = tls_process_cmsg(sk, msg, &record_type); 580 if (rc) 581 goto out; 582 } 583 584 rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags, 585 record_type); 586 587 out: 588 release_sock(sk); 589 mutex_unlock(&tls_ctx->tx_lock); 590 return rc; 591 } 592 593 void tls_device_splice_eof(struct socket *sock) 594 { 595 struct sock *sk = sock->sk; 596 struct tls_context *tls_ctx = tls_get_ctx(sk); 597 struct iov_iter iter = {}; 598 599 if (!tls_is_partially_sent_record(tls_ctx)) 600 return; 601 602 mutex_lock(&tls_ctx->tx_lock); 603 lock_sock(sk); 604 605 if (tls_is_partially_sent_record(tls_ctx)) { 606 iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0); 607 tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA); 608 } 609 610 release_sock(sk); 611 mutex_unlock(&tls_ctx->tx_lock); 612 } 613 614 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 615 u32 seq, u64 *p_record_sn) 616 { 617 u64 record_sn = context->hint_record_sn; 618 struct tls_record_info *info, *last; 619 620 info = context->retransmit_hint; 621 if (!info || 622 before(seq, info->end_seq - info->len)) { 623 /* if retransmit_hint is irrelevant start 624 * from the beginning of the list 625 */ 626 info = list_first_entry_or_null(&context->records_list, 627 struct tls_record_info, list); 628 if (!info) 629 return NULL; 630 /* send the start_marker record if seq number is before the 631 * tls offload start marker sequence number. This record is 632 * required to handle TCP packets which are before TLS offload 633 * started. 634 * And if it's not start marker, look if this seq number 635 * belongs to the list. 636 */ 637 if (likely(!tls_record_is_start_marker(info))) { 638 /* we have the first record, get the last record to see 639 * if this seq number belongs to the list. 640 */ 641 last = list_last_entry(&context->records_list, 642 struct tls_record_info, list); 643 644 if (!between(seq, tls_record_start_seq(info), 645 last->end_seq)) 646 return NULL; 647 } 648 record_sn = context->unacked_record_sn; 649 } 650 651 /* We just need the _rcu for the READ_ONCE() */ 652 rcu_read_lock(); 653 list_for_each_entry_from_rcu(info, &context->records_list, list) { 654 if (before(seq, info->end_seq)) { 655 if (!context->retransmit_hint || 656 after(info->end_seq, 657 context->retransmit_hint->end_seq)) { 658 context->hint_record_sn = record_sn; 659 context->retransmit_hint = info; 660 } 661 *p_record_sn = record_sn; 662 goto exit_rcu_unlock; 663 } 664 record_sn++; 665 } 666 info = NULL; 667 668 exit_rcu_unlock: 669 rcu_read_unlock(); 670 return info; 671 } 672 EXPORT_SYMBOL(tls_get_record); 673 674 static int tls_device_push_pending_record(struct sock *sk, int flags) 675 { 676 struct iov_iter iter; 677 678 iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0); 679 return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA); 680 } 681 682 void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 683 { 684 if (tls_is_partially_sent_record(ctx)) { 685 gfp_t sk_allocation = sk->sk_allocation; 686 687 WARN_ON_ONCE(sk->sk_write_pending); 688 689 sk->sk_allocation = GFP_ATOMIC; 690 tls_push_partial_record(sk, ctx, 691 MSG_DONTWAIT | MSG_NOSIGNAL | 692 MSG_SENDPAGE_DECRYPTED); 693 sk->sk_allocation = sk_allocation; 694 } 695 } 696 697 static void tls_device_resync_rx(struct tls_context *tls_ctx, 698 struct sock *sk, u32 seq, u8 *rcd_sn) 699 { 700 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 701 struct net_device *netdev; 702 703 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); 704 rcu_read_lock(); 705 netdev = rcu_dereference(tls_ctx->netdev); 706 if (netdev) 707 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, 708 TLS_OFFLOAD_CTX_DIR_RX); 709 rcu_read_unlock(); 710 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); 711 } 712 713 static bool 714 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, 715 s64 resync_req, u32 *seq, u16 *rcd_delta) 716 { 717 u32 is_async = resync_req & RESYNC_REQ_ASYNC; 718 u32 req_seq = resync_req >> 32; 719 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); 720 u16 i; 721 722 *rcd_delta = 0; 723 724 if (is_async) { 725 /* shouldn't get to wraparound: 726 * too long in async stage, something bad happened 727 */ 728 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) 729 return false; 730 731 /* asynchronous stage: log all headers seq such that 732 * req_seq <= seq <= end_seq, and wait for real resync request 733 */ 734 if (before(*seq, req_seq)) 735 return false; 736 if (!after(*seq, req_end) && 737 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) 738 resync_async->log[resync_async->loglen++] = *seq; 739 740 resync_async->rcd_delta++; 741 742 return false; 743 } 744 745 /* synchronous stage: check against the logged entries and 746 * proceed to check the next entries if no match was found 747 */ 748 for (i = 0; i < resync_async->loglen; i++) 749 if (req_seq == resync_async->log[i] && 750 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { 751 *rcd_delta = resync_async->rcd_delta - i; 752 *seq = req_seq; 753 resync_async->loglen = 0; 754 resync_async->rcd_delta = 0; 755 return true; 756 } 757 758 resync_async->loglen = 0; 759 resync_async->rcd_delta = 0; 760 761 if (req_seq == *seq && 762 atomic64_try_cmpxchg(&resync_async->req, 763 &resync_req, 0)) 764 return true; 765 766 return false; 767 } 768 769 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) 770 { 771 struct tls_context *tls_ctx = tls_get_ctx(sk); 772 struct tls_offload_context_rx *rx_ctx; 773 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 774 u32 sock_data, is_req_pending; 775 struct tls_prot_info *prot; 776 s64 resync_req; 777 u16 rcd_delta; 778 u32 req_seq; 779 780 if (tls_ctx->rx_conf != TLS_HW) 781 return; 782 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) 783 return; 784 785 prot = &tls_ctx->prot_info; 786 rx_ctx = tls_offload_ctx_rx(tls_ctx); 787 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 788 789 switch (rx_ctx->resync_type) { 790 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: 791 resync_req = atomic64_read(&rx_ctx->resync_req); 792 req_seq = resync_req >> 32; 793 seq += TLS_HEADER_SIZE - 1; 794 is_req_pending = resync_req; 795 796 if (likely(!is_req_pending) || req_seq != seq || 797 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 798 return; 799 break; 800 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: 801 if (likely(!rx_ctx->resync_nh_do_now)) 802 return; 803 804 /* head of next rec is already in, note that the sock_inq will 805 * include the currently parsed message when called from parser 806 */ 807 sock_data = tcp_inq(sk); 808 if (sock_data > rcd_len) { 809 trace_tls_device_rx_resync_nh_delay(sk, sock_data, 810 rcd_len); 811 return; 812 } 813 814 rx_ctx->resync_nh_do_now = 0; 815 seq += rcd_len; 816 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 817 break; 818 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: 819 resync_req = atomic64_read(&rx_ctx->resync_async->req); 820 is_req_pending = resync_req; 821 if (likely(!is_req_pending)) 822 return; 823 824 if (!tls_device_rx_resync_async(rx_ctx->resync_async, 825 resync_req, &seq, &rcd_delta)) 826 return; 827 tls_bigint_subtract(rcd_sn, rcd_delta); 828 break; 829 } 830 831 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); 832 } 833 834 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, 835 struct tls_offload_context_rx *ctx, 836 struct sock *sk, struct sk_buff *skb) 837 { 838 struct strp_msg *rxm; 839 840 /* device will request resyncs by itself based on stream scan */ 841 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) 842 return; 843 /* already scheduled */ 844 if (ctx->resync_nh_do_now) 845 return; 846 /* seen decrypted fragments since last fully-failed record */ 847 if (ctx->resync_nh_reset) { 848 ctx->resync_nh_reset = 0; 849 ctx->resync_nh.decrypted_failed = 1; 850 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; 851 return; 852 } 853 854 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) 855 return; 856 857 /* doing resync, bump the next target in case it fails */ 858 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) 859 ctx->resync_nh.decrypted_tgt *= 2; 860 else 861 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; 862 863 rxm = strp_msg(skb); 864 865 /* head of next rec is already in, parser will sync for us */ 866 if (tcp_inq(sk) > rxm->full_len) { 867 trace_tls_device_rx_resync_nh_schedule(sk); 868 ctx->resync_nh_do_now = 1; 869 } else { 870 struct tls_prot_info *prot = &tls_ctx->prot_info; 871 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 872 873 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 874 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 875 876 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, 877 rcd_sn); 878 } 879 } 880 881 static int 882 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx) 883 { 884 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); 885 const struct tls_cipher_desc *cipher_desc; 886 int err, offset, copy, data_len, pos; 887 struct sk_buff *skb, *skb_iter; 888 struct scatterlist sg[1]; 889 struct strp_msg *rxm; 890 char *orig_buf, *buf; 891 892 cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type); 893 DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable); 894 895 rxm = strp_msg(tls_strp_msg(sw_ctx)); 896 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv, 897 sk->sk_allocation); 898 if (!orig_buf) 899 return -ENOMEM; 900 buf = orig_buf; 901 902 err = tls_strp_msg_cow(sw_ctx); 903 if (unlikely(err)) 904 goto free_buf; 905 906 skb = tls_strp_msg(sw_ctx); 907 rxm = strp_msg(skb); 908 offset = rxm->offset; 909 910 sg_init_table(sg, 1); 911 sg_set_buf(&sg[0], buf, 912 rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv); 913 err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv); 914 if (err) 915 goto free_buf; 916 917 /* We are interested only in the decrypted data not the auth */ 918 err = decrypt_skb(sk, sg); 919 if (err != -EBADMSG) 920 goto free_buf; 921 else 922 err = 0; 923 924 data_len = rxm->full_len - cipher_desc->tag; 925 926 if (skb_pagelen(skb) > offset) { 927 copy = min_t(int, skb_pagelen(skb) - offset, data_len); 928 929 if (skb->decrypted) { 930 err = skb_store_bits(skb, offset, buf, copy); 931 if (err) 932 goto free_buf; 933 } 934 935 offset += copy; 936 buf += copy; 937 } 938 939 pos = skb_pagelen(skb); 940 skb_walk_frags(skb, skb_iter) { 941 int frag_pos; 942 943 /* Practically all frags must belong to msg if reencrypt 944 * is needed with current strparser and coalescing logic, 945 * but strparser may "get optimized", so let's be safe. 946 */ 947 if (pos + skb_iter->len <= offset) 948 goto done_with_frag; 949 if (pos >= data_len + rxm->offset) 950 break; 951 952 frag_pos = offset - pos; 953 copy = min_t(int, skb_iter->len - frag_pos, 954 data_len + rxm->offset - offset); 955 956 if (skb_iter->decrypted) { 957 err = skb_store_bits(skb_iter, frag_pos, buf, copy); 958 if (err) 959 goto free_buf; 960 } 961 962 offset += copy; 963 buf += copy; 964 done_with_frag: 965 pos += skb_iter->len; 966 } 967 968 free_buf: 969 kfree(orig_buf); 970 return err; 971 } 972 973 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) 974 { 975 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 976 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); 977 struct sk_buff *skb = tls_strp_msg(sw_ctx); 978 struct strp_msg *rxm = strp_msg(skb); 979 int is_decrypted, is_encrypted; 980 981 if (!tls_strp_msg_mixed_decrypted(sw_ctx)) { 982 is_decrypted = skb->decrypted; 983 is_encrypted = !is_decrypted; 984 } else { 985 is_decrypted = 0; 986 is_encrypted = 0; 987 } 988 989 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, 990 tls_ctx->rx.rec_seq, rxm->full_len, 991 is_encrypted, is_decrypted); 992 993 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) { 994 if (likely(is_encrypted || is_decrypted)) 995 return is_decrypted; 996 997 /* After tls_device_down disables the offload, the next SKB will 998 * likely have initial fragments decrypted, and final ones not 999 * decrypted. We need to reencrypt that single SKB. 1000 */ 1001 return tls_device_reencrypt(sk, tls_ctx); 1002 } 1003 1004 /* Return immediately if the record is either entirely plaintext or 1005 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 1006 * record. 1007 */ 1008 if (is_decrypted) { 1009 ctx->resync_nh_reset = 1; 1010 return is_decrypted; 1011 } 1012 if (is_encrypted) { 1013 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); 1014 return 0; 1015 } 1016 1017 ctx->resync_nh_reset = 1; 1018 return tls_device_reencrypt(sk, tls_ctx); 1019 } 1020 1021 static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 1022 struct net_device *netdev) 1023 { 1024 if (sk->sk_destruct != tls_device_sk_destruct) { 1025 refcount_set(&ctx->refcount, 1); 1026 dev_hold(netdev); 1027 RCU_INIT_POINTER(ctx->netdev, netdev); 1028 spin_lock_irq(&tls_device_lock); 1029 list_add_tail(&ctx->list, &tls_device_list); 1030 spin_unlock_irq(&tls_device_lock); 1031 1032 ctx->sk_destruct = sk->sk_destruct; 1033 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); 1034 } 1035 } 1036 1037 static struct tls_offload_context_tx *alloc_offload_ctx_tx(struct tls_context *ctx) 1038 { 1039 struct tls_offload_context_tx *offload_ctx; 1040 __be64 rcd_sn; 1041 1042 offload_ctx = kzalloc(sizeof(*offload_ctx), GFP_KERNEL); 1043 if (!offload_ctx) 1044 return NULL; 1045 1046 INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task); 1047 INIT_LIST_HEAD(&offload_ctx->records_list); 1048 spin_lock_init(&offload_ctx->lock); 1049 sg_init_table(offload_ctx->sg_tx_data, 1050 ARRAY_SIZE(offload_ctx->sg_tx_data)); 1051 1052 /* start at rec_seq - 1 to account for the start marker record */ 1053 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 1054 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 1055 1056 offload_ctx->ctx = ctx; 1057 1058 return offload_ctx; 1059 } 1060 1061 int tls_set_device_offload(struct sock *sk) 1062 { 1063 struct tls_record_info *start_marker_record; 1064 struct tls_offload_context_tx *offload_ctx; 1065 const struct tls_cipher_desc *cipher_desc; 1066 struct tls_crypto_info *crypto_info; 1067 struct tls_prot_info *prot; 1068 struct net_device *netdev; 1069 struct tls_context *ctx; 1070 struct sk_buff *skb; 1071 char *iv, *rec_seq; 1072 int rc; 1073 1074 ctx = tls_get_ctx(sk); 1075 prot = &ctx->prot_info; 1076 1077 if (ctx->priv_ctx_tx) 1078 return -EEXIST; 1079 1080 netdev = get_netdev_for_sock(sk); 1081 if (!netdev) { 1082 pr_err_ratelimited("%s: netdev not found\n", __func__); 1083 return -EINVAL; 1084 } 1085 1086 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 1087 rc = -EOPNOTSUPP; 1088 goto release_netdev; 1089 } 1090 1091 crypto_info = &ctx->crypto_send.info; 1092 if (crypto_info->version != TLS_1_2_VERSION) { 1093 rc = -EOPNOTSUPP; 1094 goto release_netdev; 1095 } 1096 1097 cipher_desc = get_cipher_desc(crypto_info->cipher_type); 1098 if (!cipher_desc || !cipher_desc->offloadable) { 1099 rc = -EINVAL; 1100 goto release_netdev; 1101 } 1102 1103 rc = init_prot_info(prot, crypto_info, cipher_desc); 1104 if (rc) 1105 goto release_netdev; 1106 1107 iv = crypto_info_iv(crypto_info, cipher_desc); 1108 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc); 1109 1110 memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv); 1111 memcpy(ctx->tx.rec_seq, rec_seq, cipher_desc->rec_seq); 1112 1113 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 1114 if (!start_marker_record) { 1115 rc = -ENOMEM; 1116 goto release_netdev; 1117 } 1118 1119 offload_ctx = alloc_offload_ctx_tx(ctx); 1120 if (!offload_ctx) { 1121 rc = -ENOMEM; 1122 goto free_marker_record; 1123 } 1124 1125 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 1126 if (rc) 1127 goto free_offload_ctx; 1128 1129 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 1130 start_marker_record->len = 0; 1131 start_marker_record->num_frags = 0; 1132 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 1133 1134 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); 1135 ctx->push_pending_record = tls_device_push_pending_record; 1136 1137 /* TLS offload is greatly simplified if we don't send 1138 * SKBs where only part of the payload needs to be encrypted. 1139 * So mark the last skb in the write queue as end of record. 1140 */ 1141 skb = tcp_write_queue_tail(sk); 1142 if (skb) 1143 TCP_SKB_CB(skb)->eor = 1; 1144 1145 /* Avoid offloading if the device is down 1146 * We don't want to offload new flows after 1147 * the NETDEV_DOWN event 1148 * 1149 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1150 * handler thus protecting from the device going down before 1151 * ctx was added to tls_device_list. 1152 */ 1153 down_read(&device_offload_lock); 1154 if (!(netdev->flags & IFF_UP)) { 1155 rc = -EINVAL; 1156 goto release_lock; 1157 } 1158 1159 ctx->priv_ctx_tx = offload_ctx; 1160 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 1161 &ctx->crypto_send.info, 1162 tcp_sk(sk)->write_seq); 1163 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, 1164 tcp_sk(sk)->write_seq, rec_seq, rc); 1165 if (rc) 1166 goto release_lock; 1167 1168 tls_device_attach(ctx, sk, netdev); 1169 up_read(&device_offload_lock); 1170 1171 /* following this assignment tls_is_skb_tx_device_offloaded 1172 * will return true and the context might be accessed 1173 * by the netdev's xmit function. 1174 */ 1175 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 1176 dev_put(netdev); 1177 1178 return 0; 1179 1180 release_lock: 1181 up_read(&device_offload_lock); 1182 clean_acked_data_disable(inet_csk(sk)); 1183 crypto_free_aead(offload_ctx->aead_send); 1184 free_offload_ctx: 1185 kfree(offload_ctx); 1186 ctx->priv_ctx_tx = NULL; 1187 free_marker_record: 1188 kfree(start_marker_record); 1189 release_netdev: 1190 dev_put(netdev); 1191 return rc; 1192 } 1193 1194 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 1195 { 1196 struct tls12_crypto_info_aes_gcm_128 *info; 1197 struct tls_offload_context_rx *context; 1198 struct net_device *netdev; 1199 int rc = 0; 1200 1201 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) 1202 return -EOPNOTSUPP; 1203 1204 netdev = get_netdev_for_sock(sk); 1205 if (!netdev) { 1206 pr_err_ratelimited("%s: netdev not found\n", __func__); 1207 return -EINVAL; 1208 } 1209 1210 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 1211 rc = -EOPNOTSUPP; 1212 goto release_netdev; 1213 } 1214 1215 /* Avoid offloading if the device is down 1216 * We don't want to offload new flows after 1217 * the NETDEV_DOWN event 1218 * 1219 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1220 * handler thus protecting from the device going down before 1221 * ctx was added to tls_device_list. 1222 */ 1223 down_read(&device_offload_lock); 1224 if (!(netdev->flags & IFF_UP)) { 1225 rc = -EINVAL; 1226 goto release_lock; 1227 } 1228 1229 context = kzalloc(sizeof(*context), GFP_KERNEL); 1230 if (!context) { 1231 rc = -ENOMEM; 1232 goto release_lock; 1233 } 1234 context->resync_nh_reset = 1; 1235 1236 ctx->priv_ctx_rx = context; 1237 rc = tls_set_sw_offload(sk, 0); 1238 if (rc) 1239 goto release_ctx; 1240 1241 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 1242 &ctx->crypto_recv.info, 1243 tcp_sk(sk)->copied_seq); 1244 info = (void *)&ctx->crypto_recv.info; 1245 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, 1246 tcp_sk(sk)->copied_seq, info->rec_seq, rc); 1247 if (rc) 1248 goto free_sw_resources; 1249 1250 tls_device_attach(ctx, sk, netdev); 1251 up_read(&device_offload_lock); 1252 1253 dev_put(netdev); 1254 1255 return 0; 1256 1257 free_sw_resources: 1258 up_read(&device_offload_lock); 1259 tls_sw_free_resources_rx(sk); 1260 down_read(&device_offload_lock); 1261 release_ctx: 1262 ctx->priv_ctx_rx = NULL; 1263 release_lock: 1264 up_read(&device_offload_lock); 1265 release_netdev: 1266 dev_put(netdev); 1267 return rc; 1268 } 1269 1270 void tls_device_offload_cleanup_rx(struct sock *sk) 1271 { 1272 struct tls_context *tls_ctx = tls_get_ctx(sk); 1273 struct net_device *netdev; 1274 1275 down_read(&device_offload_lock); 1276 netdev = rcu_dereference_protected(tls_ctx->netdev, 1277 lockdep_is_held(&device_offload_lock)); 1278 if (!netdev) 1279 goto out; 1280 1281 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 1282 TLS_OFFLOAD_CTX_DIR_RX); 1283 1284 if (tls_ctx->tx_conf != TLS_HW) { 1285 dev_put(netdev); 1286 rcu_assign_pointer(tls_ctx->netdev, NULL); 1287 } else { 1288 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); 1289 } 1290 out: 1291 up_read(&device_offload_lock); 1292 tls_sw_release_resources_rx(sk); 1293 } 1294 1295 static int tls_device_down(struct net_device *netdev) 1296 { 1297 struct tls_context *ctx, *tmp; 1298 unsigned long flags; 1299 LIST_HEAD(list); 1300 1301 /* Request a write lock to block new offload attempts */ 1302 down_write(&device_offload_lock); 1303 1304 spin_lock_irqsave(&tls_device_lock, flags); 1305 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 1306 struct net_device *ctx_netdev = 1307 rcu_dereference_protected(ctx->netdev, 1308 lockdep_is_held(&device_offload_lock)); 1309 1310 if (ctx_netdev != netdev || 1311 !refcount_inc_not_zero(&ctx->refcount)) 1312 continue; 1313 1314 list_move(&ctx->list, &list); 1315 } 1316 spin_unlock_irqrestore(&tls_device_lock, flags); 1317 1318 list_for_each_entry_safe(ctx, tmp, &list, list) { 1319 /* Stop offloaded TX and switch to the fallback. 1320 * tls_is_skb_tx_device_offloaded will return false. 1321 */ 1322 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw); 1323 1324 /* Stop the RX and TX resync. 1325 * tls_dev_resync must not be called after tls_dev_del. 1326 */ 1327 rcu_assign_pointer(ctx->netdev, NULL); 1328 1329 /* Start skipping the RX resync logic completely. */ 1330 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags); 1331 1332 /* Sync with inflight packets. After this point: 1333 * TX: no non-encrypted packets will be passed to the driver. 1334 * RX: resync requests from the driver will be ignored. 1335 */ 1336 synchronize_net(); 1337 1338 /* Release the offload context on the driver side. */ 1339 if (ctx->tx_conf == TLS_HW) 1340 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1341 TLS_OFFLOAD_CTX_DIR_TX); 1342 if (ctx->rx_conf == TLS_HW && 1343 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) 1344 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1345 TLS_OFFLOAD_CTX_DIR_RX); 1346 1347 dev_put(netdev); 1348 1349 /* Move the context to a separate list for two reasons: 1350 * 1. When the context is deallocated, list_del is called. 1351 * 2. It's no longer an offloaded context, so we don't want to 1352 * run offload-specific code on this context. 1353 */ 1354 spin_lock_irqsave(&tls_device_lock, flags); 1355 list_move_tail(&ctx->list, &tls_device_down_list); 1356 spin_unlock_irqrestore(&tls_device_lock, flags); 1357 1358 /* Device contexts for RX and TX will be freed in on sk_destruct 1359 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW. 1360 * Now release the ref taken above. 1361 */ 1362 if (refcount_dec_and_test(&ctx->refcount)) { 1363 /* sk_destruct ran after tls_device_down took a ref, and 1364 * it returned early. Complete the destruction here. 1365 */ 1366 list_del(&ctx->list); 1367 tls_device_free_ctx(ctx); 1368 } 1369 } 1370 1371 up_write(&device_offload_lock); 1372 1373 flush_workqueue(destruct_wq); 1374 1375 return NOTIFY_DONE; 1376 } 1377 1378 static int tls_dev_event(struct notifier_block *this, unsigned long event, 1379 void *ptr) 1380 { 1381 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1382 1383 if (!dev->tlsdev_ops && 1384 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 1385 return NOTIFY_DONE; 1386 1387 switch (event) { 1388 case NETDEV_REGISTER: 1389 case NETDEV_FEAT_CHANGE: 1390 if (netif_is_bond_master(dev)) 1391 return NOTIFY_DONE; 1392 if ((dev->features & NETIF_F_HW_TLS_RX) && 1393 !dev->tlsdev_ops->tls_dev_resync) 1394 return NOTIFY_BAD; 1395 1396 if (dev->tlsdev_ops && 1397 dev->tlsdev_ops->tls_dev_add && 1398 dev->tlsdev_ops->tls_dev_del) 1399 return NOTIFY_DONE; 1400 else 1401 return NOTIFY_BAD; 1402 case NETDEV_DOWN: 1403 return tls_device_down(dev); 1404 } 1405 return NOTIFY_DONE; 1406 } 1407 1408 static struct notifier_block tls_dev_notifier = { 1409 .notifier_call = tls_dev_event, 1410 }; 1411 1412 int __init tls_device_init(void) 1413 { 1414 int err; 1415 1416 dummy_page = alloc_page(GFP_KERNEL); 1417 if (!dummy_page) 1418 return -ENOMEM; 1419 1420 destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0); 1421 if (!destruct_wq) { 1422 err = -ENOMEM; 1423 goto err_free_dummy; 1424 } 1425 1426 err = register_netdevice_notifier(&tls_dev_notifier); 1427 if (err) 1428 goto err_destroy_wq; 1429 1430 return 0; 1431 1432 err_destroy_wq: 1433 destroy_workqueue(destruct_wq); 1434 err_free_dummy: 1435 put_page(dummy_page); 1436 return err; 1437 } 1438 1439 void __exit tls_device_cleanup(void) 1440 { 1441 unregister_netdevice_notifier(&tls_dev_notifier); 1442 destroy_workqueue(destruct_wq); 1443 clean_acked_data_flush(); 1444 put_page(dummy_page); 1445 } 1446