1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32 #include <crypto/aead.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/netdevice.h> 36 #include <net/dst.h> 37 #include <net/inet_connection_sock.h> 38 #include <net/tcp.h> 39 #include <net/tls.h> 40 41 #include "trace.h" 42 43 /* device_offload_lock is used to synchronize tls_dev_add 44 * against NETDEV_DOWN notifications. 45 */ 46 static DECLARE_RWSEM(device_offload_lock); 47 48 static void tls_device_gc_task(struct work_struct *work); 49 50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task); 51 static LIST_HEAD(tls_device_gc_list); 52 static LIST_HEAD(tls_device_list); 53 static DEFINE_SPINLOCK(tls_device_lock); 54 55 static void tls_device_free_ctx(struct tls_context *ctx) 56 { 57 if (ctx->tx_conf == TLS_HW) { 58 kfree(tls_offload_ctx_tx(ctx)); 59 kfree(ctx->tx.rec_seq); 60 kfree(ctx->tx.iv); 61 } 62 63 if (ctx->rx_conf == TLS_HW) 64 kfree(tls_offload_ctx_rx(ctx)); 65 66 tls_ctx_free(NULL, ctx); 67 } 68 69 static void tls_device_gc_task(struct work_struct *work) 70 { 71 struct tls_context *ctx, *tmp; 72 unsigned long flags; 73 LIST_HEAD(gc_list); 74 75 spin_lock_irqsave(&tls_device_lock, flags); 76 list_splice_init(&tls_device_gc_list, &gc_list); 77 spin_unlock_irqrestore(&tls_device_lock, flags); 78 79 list_for_each_entry_safe(ctx, tmp, &gc_list, list) { 80 struct net_device *netdev = ctx->netdev; 81 82 if (netdev && ctx->tx_conf == TLS_HW) { 83 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 84 TLS_OFFLOAD_CTX_DIR_TX); 85 dev_put(netdev); 86 ctx->netdev = NULL; 87 } 88 89 list_del(&ctx->list); 90 tls_device_free_ctx(ctx); 91 } 92 } 93 94 static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 95 { 96 unsigned long flags; 97 98 spin_lock_irqsave(&tls_device_lock, flags); 99 list_move_tail(&ctx->list, &tls_device_gc_list); 100 101 /* schedule_work inside the spinlock 102 * to make sure tls_device_down waits for that work. 103 */ 104 schedule_work(&tls_device_gc_work); 105 106 spin_unlock_irqrestore(&tls_device_lock, flags); 107 } 108 109 /* We assume that the socket is already connected */ 110 static struct net_device *get_netdev_for_sock(struct sock *sk) 111 { 112 struct dst_entry *dst = sk_dst_get(sk); 113 struct net_device *netdev = NULL; 114 115 if (likely(dst)) { 116 netdev = dst->dev; 117 dev_hold(netdev); 118 } 119 120 dst_release(dst); 121 122 return netdev; 123 } 124 125 static void destroy_record(struct tls_record_info *record) 126 { 127 int i; 128 129 for (i = 0; i < record->num_frags; i++) 130 __skb_frag_unref(&record->frags[i]); 131 kfree(record); 132 } 133 134 static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 135 { 136 struct tls_record_info *info, *temp; 137 138 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 139 list_del(&info->list); 140 destroy_record(info); 141 } 142 143 offload_ctx->retransmit_hint = NULL; 144 } 145 146 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) 147 { 148 struct tls_context *tls_ctx = tls_get_ctx(sk); 149 struct tls_record_info *info, *temp; 150 struct tls_offload_context_tx *ctx; 151 u64 deleted_records = 0; 152 unsigned long flags; 153 154 if (!tls_ctx) 155 return; 156 157 ctx = tls_offload_ctx_tx(tls_ctx); 158 159 spin_lock_irqsave(&ctx->lock, flags); 160 info = ctx->retransmit_hint; 161 if (info && !before(acked_seq, info->end_seq)) 162 ctx->retransmit_hint = NULL; 163 164 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 165 if (before(acked_seq, info->end_seq)) 166 break; 167 list_del(&info->list); 168 169 destroy_record(info); 170 deleted_records++; 171 } 172 173 ctx->unacked_record_sn += deleted_records; 174 spin_unlock_irqrestore(&ctx->lock, flags); 175 } 176 177 /* At this point, there should be no references on this 178 * socket and no in-flight SKBs associated with this 179 * socket, so it is safe to free all the resources. 180 */ 181 static void tls_device_sk_destruct(struct sock *sk) 182 { 183 struct tls_context *tls_ctx = tls_get_ctx(sk); 184 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 185 186 tls_ctx->sk_destruct(sk); 187 188 if (tls_ctx->tx_conf == TLS_HW) { 189 if (ctx->open_record) 190 destroy_record(ctx->open_record); 191 delete_all_records(ctx); 192 crypto_free_aead(ctx->aead_send); 193 clean_acked_data_disable(inet_csk(sk)); 194 } 195 196 if (refcount_dec_and_test(&tls_ctx->refcount)) 197 tls_device_queue_ctx_destruction(tls_ctx); 198 } 199 200 void tls_device_free_resources_tx(struct sock *sk) 201 { 202 struct tls_context *tls_ctx = tls_get_ctx(sk); 203 204 tls_free_partial_record(sk, tls_ctx); 205 } 206 207 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) 208 { 209 struct tls_context *tls_ctx = tls_get_ctx(sk); 210 211 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); 212 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 213 } 214 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); 215 216 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, 217 u32 seq) 218 { 219 struct net_device *netdev; 220 struct sk_buff *skb; 221 int err = 0; 222 u8 *rcd_sn; 223 224 skb = tcp_write_queue_tail(sk); 225 if (skb) 226 TCP_SKB_CB(skb)->eor = 1; 227 228 rcd_sn = tls_ctx->tx.rec_seq; 229 230 trace_tls_device_tx_resync_send(sk, seq, rcd_sn); 231 down_read(&device_offload_lock); 232 netdev = tls_ctx->netdev; 233 if (netdev) 234 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, 235 rcd_sn, 236 TLS_OFFLOAD_CTX_DIR_TX); 237 up_read(&device_offload_lock); 238 if (err) 239 return; 240 241 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 242 } 243 244 static void tls_append_frag(struct tls_record_info *record, 245 struct page_frag *pfrag, 246 int size) 247 { 248 skb_frag_t *frag; 249 250 frag = &record->frags[record->num_frags - 1]; 251 if (skb_frag_page(frag) == pfrag->page && 252 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { 253 skb_frag_size_add(frag, size); 254 } else { 255 ++frag; 256 __skb_frag_set_page(frag, pfrag->page); 257 skb_frag_off_set(frag, pfrag->offset); 258 skb_frag_size_set(frag, size); 259 ++record->num_frags; 260 get_page(pfrag->page); 261 } 262 263 pfrag->offset += size; 264 record->len += size; 265 } 266 267 static int tls_push_record(struct sock *sk, 268 struct tls_context *ctx, 269 struct tls_offload_context_tx *offload_ctx, 270 struct tls_record_info *record, 271 int flags) 272 { 273 struct tls_prot_info *prot = &ctx->prot_info; 274 struct tcp_sock *tp = tcp_sk(sk); 275 skb_frag_t *frag; 276 int i; 277 278 record->end_seq = tp->write_seq + record->len; 279 list_add_tail_rcu(&record->list, &offload_ctx->records_list); 280 offload_ctx->open_record = NULL; 281 282 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) 283 tls_device_resync_tx(sk, ctx, tp->write_seq); 284 285 tls_advance_record_sn(sk, prot, &ctx->tx); 286 287 for (i = 0; i < record->num_frags; i++) { 288 frag = &record->frags[i]; 289 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 290 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 291 skb_frag_size(frag), skb_frag_off(frag)); 292 sk_mem_charge(sk, skb_frag_size(frag)); 293 get_page(skb_frag_page(frag)); 294 } 295 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 296 297 /* all ready, send */ 298 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 299 } 300 301 static int tls_device_record_close(struct sock *sk, 302 struct tls_context *ctx, 303 struct tls_record_info *record, 304 struct page_frag *pfrag, 305 unsigned char record_type) 306 { 307 struct tls_prot_info *prot = &ctx->prot_info; 308 int ret; 309 310 /* append tag 311 * device will fill in the tag, we just need to append a placeholder 312 * use socket memory to improve coalescing (re-using a single buffer 313 * increases frag count) 314 * if we can't allocate memory now, steal some back from data 315 */ 316 if (likely(skb_page_frag_refill(prot->tag_size, pfrag, 317 sk->sk_allocation))) { 318 ret = 0; 319 tls_append_frag(record, pfrag, prot->tag_size); 320 } else { 321 ret = prot->tag_size; 322 if (record->len <= prot->overhead_size) 323 return -ENOMEM; 324 } 325 326 /* fill prepend */ 327 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), 328 record->len - prot->overhead_size, 329 record_type, prot->version); 330 return ret; 331 } 332 333 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 334 struct page_frag *pfrag, 335 size_t prepend_size) 336 { 337 struct tls_record_info *record; 338 skb_frag_t *frag; 339 340 record = kmalloc(sizeof(*record), GFP_KERNEL); 341 if (!record) 342 return -ENOMEM; 343 344 frag = &record->frags[0]; 345 __skb_frag_set_page(frag, pfrag->page); 346 skb_frag_off_set(frag, pfrag->offset); 347 skb_frag_size_set(frag, prepend_size); 348 349 get_page(pfrag->page); 350 pfrag->offset += prepend_size; 351 352 record->num_frags = 1; 353 record->len = prepend_size; 354 offload_ctx->open_record = record; 355 return 0; 356 } 357 358 static int tls_do_allocation(struct sock *sk, 359 struct tls_offload_context_tx *offload_ctx, 360 struct page_frag *pfrag, 361 size_t prepend_size) 362 { 363 int ret; 364 365 if (!offload_ctx->open_record) { 366 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 367 sk->sk_allocation))) { 368 sk->sk_prot->enter_memory_pressure(sk); 369 sk_stream_moderate_sndbuf(sk); 370 return -ENOMEM; 371 } 372 373 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 374 if (ret) 375 return ret; 376 377 if (pfrag->size > pfrag->offset) 378 return 0; 379 } 380 381 if (!sk_page_frag_refill(sk, pfrag)) 382 return -ENOMEM; 383 384 return 0; 385 } 386 387 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) 388 { 389 size_t pre_copy, nocache; 390 391 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); 392 if (pre_copy) { 393 pre_copy = min(pre_copy, bytes); 394 if (copy_from_iter(addr, pre_copy, i) != pre_copy) 395 return -EFAULT; 396 bytes -= pre_copy; 397 addr += pre_copy; 398 } 399 400 nocache = round_down(bytes, SMP_CACHE_BYTES); 401 if (copy_from_iter_nocache(addr, nocache, i) != nocache) 402 return -EFAULT; 403 bytes -= nocache; 404 addr += nocache; 405 406 if (bytes && copy_from_iter(addr, bytes, i) != bytes) 407 return -EFAULT; 408 409 return 0; 410 } 411 412 static int tls_push_data(struct sock *sk, 413 struct iov_iter *msg_iter, 414 size_t size, int flags, 415 unsigned char record_type) 416 { 417 struct tls_context *tls_ctx = tls_get_ctx(sk); 418 struct tls_prot_info *prot = &tls_ctx->prot_info; 419 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 420 int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE); 421 struct tls_record_info *record = ctx->open_record; 422 int tls_push_record_flags; 423 struct page_frag *pfrag; 424 size_t orig_size = size; 425 u32 max_open_record_len; 426 int copy, rc = 0; 427 bool done = false; 428 long timeo; 429 430 if (flags & 431 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) 432 return -ENOTSUPP; 433 434 if (unlikely(sk->sk_err)) 435 return -sk->sk_err; 436 437 flags |= MSG_SENDPAGE_DECRYPTED; 438 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST; 439 440 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 441 if (tls_is_partially_sent_record(tls_ctx)) { 442 rc = tls_push_partial_record(sk, tls_ctx, flags); 443 if (rc < 0) 444 return rc; 445 } 446 447 pfrag = sk_page_frag(sk); 448 449 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 450 * we need to leave room for an authentication tag. 451 */ 452 max_open_record_len = TLS_MAX_PAYLOAD_SIZE + 453 prot->prepend_size; 454 do { 455 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); 456 if (unlikely(rc)) { 457 rc = sk_stream_wait_memory(sk, &timeo); 458 if (!rc) 459 continue; 460 461 record = ctx->open_record; 462 if (!record) 463 break; 464 handle_error: 465 if (record_type != TLS_RECORD_TYPE_DATA) { 466 /* avoid sending partial 467 * record with type != 468 * application_data 469 */ 470 size = orig_size; 471 destroy_record(record); 472 ctx->open_record = NULL; 473 } else if (record->len > prot->prepend_size) { 474 goto last_record; 475 } 476 477 break; 478 } 479 480 record = ctx->open_record; 481 copy = min_t(size_t, size, (pfrag->size - pfrag->offset)); 482 copy = min_t(size_t, copy, (max_open_record_len - record->len)); 483 484 rc = tls_device_copy_data(page_address(pfrag->page) + 485 pfrag->offset, copy, msg_iter); 486 if (rc) 487 goto handle_error; 488 tls_append_frag(record, pfrag, copy); 489 490 size -= copy; 491 if (!size) { 492 last_record: 493 tls_push_record_flags = flags; 494 if (more) { 495 tls_ctx->pending_open_record_frags = 496 !!record->num_frags; 497 break; 498 } 499 500 done = true; 501 } 502 503 if (done || record->len >= max_open_record_len || 504 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 505 rc = tls_device_record_close(sk, tls_ctx, record, 506 pfrag, record_type); 507 if (rc) { 508 if (rc > 0) { 509 size += rc; 510 } else { 511 size = orig_size; 512 destroy_record(record); 513 ctx->open_record = NULL; 514 break; 515 } 516 } 517 518 rc = tls_push_record(sk, 519 tls_ctx, 520 ctx, 521 record, 522 tls_push_record_flags); 523 if (rc < 0) 524 break; 525 } 526 } while (!done); 527 528 if (orig_size - size > 0) 529 rc = orig_size - size; 530 531 return rc; 532 } 533 534 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 535 { 536 unsigned char record_type = TLS_RECORD_TYPE_DATA; 537 int rc; 538 539 lock_sock(sk); 540 541 if (unlikely(msg->msg_controllen)) { 542 rc = tls_proccess_cmsg(sk, msg, &record_type); 543 if (rc) 544 goto out; 545 } 546 547 rc = tls_push_data(sk, &msg->msg_iter, size, 548 msg->msg_flags, record_type); 549 550 out: 551 release_sock(sk); 552 return rc; 553 } 554 555 int tls_device_sendpage(struct sock *sk, struct page *page, 556 int offset, size_t size, int flags) 557 { 558 struct iov_iter msg_iter; 559 char *kaddr = kmap(page); 560 struct kvec iov; 561 int rc; 562 563 if (flags & MSG_SENDPAGE_NOTLAST) 564 flags |= MSG_MORE; 565 566 lock_sock(sk); 567 568 if (flags & MSG_OOB) { 569 rc = -ENOTSUPP; 570 goto out; 571 } 572 573 iov.iov_base = kaddr + offset; 574 iov.iov_len = size; 575 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size); 576 rc = tls_push_data(sk, &msg_iter, size, 577 flags, TLS_RECORD_TYPE_DATA); 578 kunmap(page); 579 580 out: 581 release_sock(sk); 582 return rc; 583 } 584 585 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 586 u32 seq, u64 *p_record_sn) 587 { 588 u64 record_sn = context->hint_record_sn; 589 struct tls_record_info *info; 590 591 info = context->retransmit_hint; 592 if (!info || 593 before(seq, info->end_seq - info->len)) { 594 /* if retransmit_hint is irrelevant start 595 * from the beggining of the list 596 */ 597 info = list_first_entry_or_null(&context->records_list, 598 struct tls_record_info, list); 599 if (!info) 600 return NULL; 601 record_sn = context->unacked_record_sn; 602 } 603 604 /* We just need the _rcu for the READ_ONCE() */ 605 rcu_read_lock(); 606 list_for_each_entry_from_rcu(info, &context->records_list, list) { 607 if (before(seq, info->end_seq)) { 608 if (!context->retransmit_hint || 609 after(info->end_seq, 610 context->retransmit_hint->end_seq)) { 611 context->hint_record_sn = record_sn; 612 context->retransmit_hint = info; 613 } 614 *p_record_sn = record_sn; 615 goto exit_rcu_unlock; 616 } 617 record_sn++; 618 } 619 info = NULL; 620 621 exit_rcu_unlock: 622 rcu_read_unlock(); 623 return info; 624 } 625 EXPORT_SYMBOL(tls_get_record); 626 627 static int tls_device_push_pending_record(struct sock *sk, int flags) 628 { 629 struct iov_iter msg_iter; 630 631 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0); 632 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA); 633 } 634 635 void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 636 { 637 if (!sk->sk_write_pending && tls_is_partially_sent_record(ctx)) { 638 gfp_t sk_allocation = sk->sk_allocation; 639 640 sk->sk_allocation = GFP_ATOMIC; 641 tls_push_partial_record(sk, ctx, 642 MSG_DONTWAIT | MSG_NOSIGNAL | 643 MSG_SENDPAGE_DECRYPTED); 644 sk->sk_allocation = sk_allocation; 645 } 646 } 647 648 static void tls_device_resync_rx(struct tls_context *tls_ctx, 649 struct sock *sk, u32 seq, u8 *rcd_sn) 650 { 651 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 652 struct net_device *netdev; 653 654 if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags))) 655 return; 656 657 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); 658 netdev = READ_ONCE(tls_ctx->netdev); 659 if (netdev) 660 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, 661 TLS_OFFLOAD_CTX_DIR_RX); 662 clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags); 663 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); 664 } 665 666 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) 667 { 668 struct tls_context *tls_ctx = tls_get_ctx(sk); 669 struct tls_offload_context_rx *rx_ctx; 670 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 671 u32 sock_data, is_req_pending; 672 struct tls_prot_info *prot; 673 s64 resync_req; 674 u32 req_seq; 675 676 if (tls_ctx->rx_conf != TLS_HW) 677 return; 678 679 prot = &tls_ctx->prot_info; 680 rx_ctx = tls_offload_ctx_rx(tls_ctx); 681 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 682 683 switch (rx_ctx->resync_type) { 684 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: 685 resync_req = atomic64_read(&rx_ctx->resync_req); 686 req_seq = resync_req >> 32; 687 seq += TLS_HEADER_SIZE - 1; 688 is_req_pending = resync_req; 689 690 if (likely(!is_req_pending) || req_seq != seq || 691 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 692 return; 693 break; 694 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: 695 if (likely(!rx_ctx->resync_nh_do_now)) 696 return; 697 698 /* head of next rec is already in, note that the sock_inq will 699 * include the currently parsed message when called from parser 700 */ 701 sock_data = tcp_inq(sk); 702 if (sock_data > rcd_len) { 703 trace_tls_device_rx_resync_nh_delay(sk, sock_data, 704 rcd_len); 705 return; 706 } 707 708 rx_ctx->resync_nh_do_now = 0; 709 seq += rcd_len; 710 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 711 break; 712 } 713 714 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); 715 } 716 717 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, 718 struct tls_offload_context_rx *ctx, 719 struct sock *sk, struct sk_buff *skb) 720 { 721 struct strp_msg *rxm; 722 723 /* device will request resyncs by itself based on stream scan */ 724 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) 725 return; 726 /* already scheduled */ 727 if (ctx->resync_nh_do_now) 728 return; 729 /* seen decrypted fragments since last fully-failed record */ 730 if (ctx->resync_nh_reset) { 731 ctx->resync_nh_reset = 0; 732 ctx->resync_nh.decrypted_failed = 1; 733 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; 734 return; 735 } 736 737 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) 738 return; 739 740 /* doing resync, bump the next target in case it fails */ 741 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) 742 ctx->resync_nh.decrypted_tgt *= 2; 743 else 744 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; 745 746 rxm = strp_msg(skb); 747 748 /* head of next rec is already in, parser will sync for us */ 749 if (tcp_inq(sk) > rxm->full_len) { 750 trace_tls_device_rx_resync_nh_schedule(sk); 751 ctx->resync_nh_do_now = 1; 752 } else { 753 struct tls_prot_info *prot = &tls_ctx->prot_info; 754 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 755 756 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 757 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 758 759 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, 760 rcd_sn); 761 } 762 } 763 764 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb) 765 { 766 struct strp_msg *rxm = strp_msg(skb); 767 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos; 768 struct sk_buff *skb_iter, *unused; 769 struct scatterlist sg[1]; 770 char *orig_buf, *buf; 771 772 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + 773 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation); 774 if (!orig_buf) 775 return -ENOMEM; 776 buf = orig_buf; 777 778 nsg = skb_cow_data(skb, 0, &unused); 779 if (unlikely(nsg < 0)) { 780 err = nsg; 781 goto free_buf; 782 } 783 784 sg_init_table(sg, 1); 785 sg_set_buf(&sg[0], buf, 786 rxm->full_len + TLS_HEADER_SIZE + 787 TLS_CIPHER_AES_GCM_128_IV_SIZE); 788 err = skb_copy_bits(skb, offset, buf, 789 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); 790 if (err) 791 goto free_buf; 792 793 /* We are interested only in the decrypted data not the auth */ 794 err = decrypt_skb(sk, skb, sg); 795 if (err != -EBADMSG) 796 goto free_buf; 797 else 798 err = 0; 799 800 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE; 801 802 if (skb_pagelen(skb) > offset) { 803 copy = min_t(int, skb_pagelen(skb) - offset, data_len); 804 805 if (skb->decrypted) { 806 err = skb_store_bits(skb, offset, buf, copy); 807 if (err) 808 goto free_buf; 809 } 810 811 offset += copy; 812 buf += copy; 813 } 814 815 pos = skb_pagelen(skb); 816 skb_walk_frags(skb, skb_iter) { 817 int frag_pos; 818 819 /* Practically all frags must belong to msg if reencrypt 820 * is needed with current strparser and coalescing logic, 821 * but strparser may "get optimized", so let's be safe. 822 */ 823 if (pos + skb_iter->len <= offset) 824 goto done_with_frag; 825 if (pos >= data_len + rxm->offset) 826 break; 827 828 frag_pos = offset - pos; 829 copy = min_t(int, skb_iter->len - frag_pos, 830 data_len + rxm->offset - offset); 831 832 if (skb_iter->decrypted) { 833 err = skb_store_bits(skb_iter, frag_pos, buf, copy); 834 if (err) 835 goto free_buf; 836 } 837 838 offset += copy; 839 buf += copy; 840 done_with_frag: 841 pos += skb_iter->len; 842 } 843 844 free_buf: 845 kfree(orig_buf); 846 return err; 847 } 848 849 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 850 struct sk_buff *skb, struct strp_msg *rxm) 851 { 852 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 853 int is_decrypted = skb->decrypted; 854 int is_encrypted = !is_decrypted; 855 struct sk_buff *skb_iter; 856 857 /* Check if all the data is decrypted already */ 858 skb_walk_frags(skb, skb_iter) { 859 is_decrypted &= skb_iter->decrypted; 860 is_encrypted &= !skb_iter->decrypted; 861 } 862 863 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, 864 tls_ctx->rx.rec_seq, rxm->full_len, 865 is_encrypted, is_decrypted); 866 867 ctx->sw.decrypted |= is_decrypted; 868 869 /* Return immediately if the record is either entirely plaintext or 870 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 871 * record. 872 */ 873 if (is_decrypted) { 874 ctx->resync_nh_reset = 1; 875 return 0; 876 } 877 if (is_encrypted) { 878 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); 879 return 0; 880 } 881 882 ctx->resync_nh_reset = 1; 883 return tls_device_reencrypt(sk, skb); 884 } 885 886 static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 887 struct net_device *netdev) 888 { 889 if (sk->sk_destruct != tls_device_sk_destruct) { 890 refcount_set(&ctx->refcount, 1); 891 dev_hold(netdev); 892 ctx->netdev = netdev; 893 spin_lock_irq(&tls_device_lock); 894 list_add_tail(&ctx->list, &tls_device_list); 895 spin_unlock_irq(&tls_device_lock); 896 897 ctx->sk_destruct = sk->sk_destruct; 898 sk->sk_destruct = tls_device_sk_destruct; 899 } 900 } 901 902 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 903 { 904 u16 nonce_size, tag_size, iv_size, rec_seq_size; 905 struct tls_context *tls_ctx = tls_get_ctx(sk); 906 struct tls_prot_info *prot = &tls_ctx->prot_info; 907 struct tls_record_info *start_marker_record; 908 struct tls_offload_context_tx *offload_ctx; 909 struct tls_crypto_info *crypto_info; 910 struct net_device *netdev; 911 char *iv, *rec_seq; 912 struct sk_buff *skb; 913 __be64 rcd_sn; 914 int rc; 915 916 if (!ctx) 917 return -EINVAL; 918 919 if (ctx->priv_ctx_tx) 920 return -EEXIST; 921 922 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 923 if (!start_marker_record) 924 return -ENOMEM; 925 926 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); 927 if (!offload_ctx) { 928 rc = -ENOMEM; 929 goto free_marker_record; 930 } 931 932 crypto_info = &ctx->crypto_send.info; 933 if (crypto_info->version != TLS_1_2_VERSION) { 934 rc = -EOPNOTSUPP; 935 goto free_offload_ctx; 936 } 937 938 switch (crypto_info->cipher_type) { 939 case TLS_CIPHER_AES_GCM_128: 940 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 941 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 942 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 943 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 944 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 945 rec_seq = 946 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 947 break; 948 default: 949 rc = -EINVAL; 950 goto free_offload_ctx; 951 } 952 953 /* Sanity-check the rec_seq_size for stack allocations */ 954 if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 955 rc = -EINVAL; 956 goto free_offload_ctx; 957 } 958 959 prot->version = crypto_info->version; 960 prot->cipher_type = crypto_info->cipher_type; 961 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 962 prot->tag_size = tag_size; 963 prot->overhead_size = prot->prepend_size + prot->tag_size; 964 prot->iv_size = iv_size; 965 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 966 GFP_KERNEL); 967 if (!ctx->tx.iv) { 968 rc = -ENOMEM; 969 goto free_offload_ctx; 970 } 971 972 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 973 974 prot->rec_seq_size = rec_seq_size; 975 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 976 if (!ctx->tx.rec_seq) { 977 rc = -ENOMEM; 978 goto free_iv; 979 } 980 981 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 982 if (rc) 983 goto free_rec_seq; 984 985 /* start at rec_seq - 1 to account for the start marker record */ 986 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 987 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 988 989 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 990 start_marker_record->len = 0; 991 start_marker_record->num_frags = 0; 992 993 INIT_LIST_HEAD(&offload_ctx->records_list); 994 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 995 spin_lock_init(&offload_ctx->lock); 996 sg_init_table(offload_ctx->sg_tx_data, 997 ARRAY_SIZE(offload_ctx->sg_tx_data)); 998 999 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); 1000 ctx->push_pending_record = tls_device_push_pending_record; 1001 1002 /* TLS offload is greatly simplified if we don't send 1003 * SKBs where only part of the payload needs to be encrypted. 1004 * So mark the last skb in the write queue as end of record. 1005 */ 1006 skb = tcp_write_queue_tail(sk); 1007 if (skb) 1008 TCP_SKB_CB(skb)->eor = 1; 1009 1010 netdev = get_netdev_for_sock(sk); 1011 if (!netdev) { 1012 pr_err_ratelimited("%s: netdev not found\n", __func__); 1013 rc = -EINVAL; 1014 goto disable_cad; 1015 } 1016 1017 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 1018 rc = -ENOTSUPP; 1019 goto release_netdev; 1020 } 1021 1022 /* Avoid offloading if the device is down 1023 * We don't want to offload new flows after 1024 * the NETDEV_DOWN event 1025 * 1026 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1027 * handler thus protecting from the device going down before 1028 * ctx was added to tls_device_list. 1029 */ 1030 down_read(&device_offload_lock); 1031 if (!(netdev->flags & IFF_UP)) { 1032 rc = -EINVAL; 1033 goto release_lock; 1034 } 1035 1036 ctx->priv_ctx_tx = offload_ctx; 1037 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 1038 &ctx->crypto_send.info, 1039 tcp_sk(sk)->write_seq); 1040 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, 1041 tcp_sk(sk)->write_seq, rec_seq, rc); 1042 if (rc) 1043 goto release_lock; 1044 1045 tls_device_attach(ctx, sk, netdev); 1046 up_read(&device_offload_lock); 1047 1048 /* following this assignment tls_is_sk_tx_device_offloaded 1049 * will return true and the context might be accessed 1050 * by the netdev's xmit function. 1051 */ 1052 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 1053 dev_put(netdev); 1054 1055 return 0; 1056 1057 release_lock: 1058 up_read(&device_offload_lock); 1059 release_netdev: 1060 dev_put(netdev); 1061 disable_cad: 1062 clean_acked_data_disable(inet_csk(sk)); 1063 crypto_free_aead(offload_ctx->aead_send); 1064 free_rec_seq: 1065 kfree(ctx->tx.rec_seq); 1066 free_iv: 1067 kfree(ctx->tx.iv); 1068 free_offload_ctx: 1069 kfree(offload_ctx); 1070 ctx->priv_ctx_tx = NULL; 1071 free_marker_record: 1072 kfree(start_marker_record); 1073 return rc; 1074 } 1075 1076 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 1077 { 1078 struct tls12_crypto_info_aes_gcm_128 *info; 1079 struct tls_offload_context_rx *context; 1080 struct net_device *netdev; 1081 int rc = 0; 1082 1083 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) 1084 return -EOPNOTSUPP; 1085 1086 netdev = get_netdev_for_sock(sk); 1087 if (!netdev) { 1088 pr_err_ratelimited("%s: netdev not found\n", __func__); 1089 return -EINVAL; 1090 } 1091 1092 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 1093 rc = -ENOTSUPP; 1094 goto release_netdev; 1095 } 1096 1097 /* Avoid offloading if the device is down 1098 * We don't want to offload new flows after 1099 * the NETDEV_DOWN event 1100 * 1101 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1102 * handler thus protecting from the device going down before 1103 * ctx was added to tls_device_list. 1104 */ 1105 down_read(&device_offload_lock); 1106 if (!(netdev->flags & IFF_UP)) { 1107 rc = -EINVAL; 1108 goto release_lock; 1109 } 1110 1111 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); 1112 if (!context) { 1113 rc = -ENOMEM; 1114 goto release_lock; 1115 } 1116 context->resync_nh_reset = 1; 1117 1118 ctx->priv_ctx_rx = context; 1119 rc = tls_set_sw_offload(sk, ctx, 0); 1120 if (rc) 1121 goto release_ctx; 1122 1123 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 1124 &ctx->crypto_recv.info, 1125 tcp_sk(sk)->copied_seq); 1126 info = (void *)&ctx->crypto_recv.info; 1127 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, 1128 tcp_sk(sk)->copied_seq, info->rec_seq, rc); 1129 if (rc) 1130 goto free_sw_resources; 1131 1132 tls_device_attach(ctx, sk, netdev); 1133 up_read(&device_offload_lock); 1134 1135 dev_put(netdev); 1136 1137 return 0; 1138 1139 free_sw_resources: 1140 up_read(&device_offload_lock); 1141 tls_sw_free_resources_rx(sk); 1142 down_read(&device_offload_lock); 1143 release_ctx: 1144 ctx->priv_ctx_rx = NULL; 1145 release_lock: 1146 up_read(&device_offload_lock); 1147 release_netdev: 1148 dev_put(netdev); 1149 return rc; 1150 } 1151 1152 void tls_device_offload_cleanup_rx(struct sock *sk) 1153 { 1154 struct tls_context *tls_ctx = tls_get_ctx(sk); 1155 struct net_device *netdev; 1156 1157 down_read(&device_offload_lock); 1158 netdev = tls_ctx->netdev; 1159 if (!netdev) 1160 goto out; 1161 1162 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 1163 TLS_OFFLOAD_CTX_DIR_RX); 1164 1165 if (tls_ctx->tx_conf != TLS_HW) { 1166 dev_put(netdev); 1167 tls_ctx->netdev = NULL; 1168 } 1169 out: 1170 up_read(&device_offload_lock); 1171 tls_sw_release_resources_rx(sk); 1172 } 1173 1174 static int tls_device_down(struct net_device *netdev) 1175 { 1176 struct tls_context *ctx, *tmp; 1177 unsigned long flags; 1178 LIST_HEAD(list); 1179 1180 /* Request a write lock to block new offload attempts */ 1181 down_write(&device_offload_lock); 1182 1183 spin_lock_irqsave(&tls_device_lock, flags); 1184 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 1185 if (ctx->netdev != netdev || 1186 !refcount_inc_not_zero(&ctx->refcount)) 1187 continue; 1188 1189 list_move(&ctx->list, &list); 1190 } 1191 spin_unlock_irqrestore(&tls_device_lock, flags); 1192 1193 list_for_each_entry_safe(ctx, tmp, &list, list) { 1194 if (ctx->tx_conf == TLS_HW) 1195 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1196 TLS_OFFLOAD_CTX_DIR_TX); 1197 if (ctx->rx_conf == TLS_HW) 1198 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1199 TLS_OFFLOAD_CTX_DIR_RX); 1200 WRITE_ONCE(ctx->netdev, NULL); 1201 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */ 1202 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags)) 1203 usleep_range(10, 200); 1204 dev_put(netdev); 1205 list_del_init(&ctx->list); 1206 1207 if (refcount_dec_and_test(&ctx->refcount)) 1208 tls_device_free_ctx(ctx); 1209 } 1210 1211 up_write(&device_offload_lock); 1212 1213 flush_work(&tls_device_gc_work); 1214 1215 return NOTIFY_DONE; 1216 } 1217 1218 static int tls_dev_event(struct notifier_block *this, unsigned long event, 1219 void *ptr) 1220 { 1221 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1222 1223 if (!dev->tlsdev_ops && 1224 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 1225 return NOTIFY_DONE; 1226 1227 switch (event) { 1228 case NETDEV_REGISTER: 1229 case NETDEV_FEAT_CHANGE: 1230 if ((dev->features & NETIF_F_HW_TLS_RX) && 1231 !dev->tlsdev_ops->tls_dev_resync) 1232 return NOTIFY_BAD; 1233 1234 if (dev->tlsdev_ops && 1235 dev->tlsdev_ops->tls_dev_add && 1236 dev->tlsdev_ops->tls_dev_del) 1237 return NOTIFY_DONE; 1238 else 1239 return NOTIFY_BAD; 1240 case NETDEV_DOWN: 1241 return tls_device_down(dev); 1242 } 1243 return NOTIFY_DONE; 1244 } 1245 1246 static struct notifier_block tls_dev_notifier = { 1247 .notifier_call = tls_dev_event, 1248 }; 1249 1250 void __init tls_device_init(void) 1251 { 1252 register_netdevice_notifier(&tls_dev_notifier); 1253 } 1254 1255 void __exit tls_device_cleanup(void) 1256 { 1257 unregister_netdevice_notifier(&tls_dev_notifier); 1258 flush_work(&tls_device_gc_work); 1259 clean_acked_data_flush(); 1260 } 1261