xref: /linux/net/tls/tls_device.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40 
41 /* device_offload_lock is used to synchronize tls_dev_add
42  * against NETDEV_DOWN notifications.
43  */
44 static DECLARE_RWSEM(device_offload_lock);
45 
46 static void tls_device_gc_task(struct work_struct *work);
47 
48 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
49 static LIST_HEAD(tls_device_gc_list);
50 static LIST_HEAD(tls_device_list);
51 static DEFINE_SPINLOCK(tls_device_lock);
52 
53 static void tls_device_free_ctx(struct tls_context *ctx)
54 {
55 	if (ctx->tx_conf == TLS_HW)
56 		kfree(tls_offload_ctx_tx(ctx));
57 
58 	if (ctx->rx_conf == TLS_HW)
59 		kfree(tls_offload_ctx_rx(ctx));
60 
61 	kfree(ctx);
62 }
63 
64 static void tls_device_gc_task(struct work_struct *work)
65 {
66 	struct tls_context *ctx, *tmp;
67 	unsigned long flags;
68 	LIST_HEAD(gc_list);
69 
70 	spin_lock_irqsave(&tls_device_lock, flags);
71 	list_splice_init(&tls_device_gc_list, &gc_list);
72 	spin_unlock_irqrestore(&tls_device_lock, flags);
73 
74 	list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
75 		struct net_device *netdev = ctx->netdev;
76 
77 		if (netdev && ctx->tx_conf == TLS_HW) {
78 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
79 							TLS_OFFLOAD_CTX_DIR_TX);
80 			dev_put(netdev);
81 			ctx->netdev = NULL;
82 		}
83 
84 		list_del(&ctx->list);
85 		tls_device_free_ctx(ctx);
86 	}
87 }
88 
89 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
90 			      struct net_device *netdev)
91 {
92 	if (sk->sk_destruct != tls_device_sk_destruct) {
93 		refcount_set(&ctx->refcount, 1);
94 		dev_hold(netdev);
95 		ctx->netdev = netdev;
96 		spin_lock_irq(&tls_device_lock);
97 		list_add_tail(&ctx->list, &tls_device_list);
98 		spin_unlock_irq(&tls_device_lock);
99 
100 		ctx->sk_destruct = sk->sk_destruct;
101 		sk->sk_destruct = tls_device_sk_destruct;
102 	}
103 }
104 
105 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
106 {
107 	unsigned long flags;
108 
109 	spin_lock_irqsave(&tls_device_lock, flags);
110 	list_move_tail(&ctx->list, &tls_device_gc_list);
111 
112 	/* schedule_work inside the spinlock
113 	 * to make sure tls_device_down waits for that work.
114 	 */
115 	schedule_work(&tls_device_gc_work);
116 
117 	spin_unlock_irqrestore(&tls_device_lock, flags);
118 }
119 
120 /* We assume that the socket is already connected */
121 static struct net_device *get_netdev_for_sock(struct sock *sk)
122 {
123 	struct dst_entry *dst = sk_dst_get(sk);
124 	struct net_device *netdev = NULL;
125 
126 	if (likely(dst)) {
127 		netdev = dst->dev;
128 		dev_hold(netdev);
129 	}
130 
131 	dst_release(dst);
132 
133 	return netdev;
134 }
135 
136 static void destroy_record(struct tls_record_info *record)
137 {
138 	int nr_frags = record->num_frags;
139 	skb_frag_t *frag;
140 
141 	while (nr_frags-- > 0) {
142 		frag = &record->frags[nr_frags];
143 		__skb_frag_unref(frag);
144 	}
145 	kfree(record);
146 }
147 
148 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
149 {
150 	struct tls_record_info *info, *temp;
151 
152 	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
153 		list_del(&info->list);
154 		destroy_record(info);
155 	}
156 
157 	offload_ctx->retransmit_hint = NULL;
158 }
159 
160 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
161 {
162 	struct tls_context *tls_ctx = tls_get_ctx(sk);
163 	struct tls_record_info *info, *temp;
164 	struct tls_offload_context_tx *ctx;
165 	u64 deleted_records = 0;
166 	unsigned long flags;
167 
168 	if (!tls_ctx)
169 		return;
170 
171 	ctx = tls_offload_ctx_tx(tls_ctx);
172 
173 	spin_lock_irqsave(&ctx->lock, flags);
174 	info = ctx->retransmit_hint;
175 	if (info && !before(acked_seq, info->end_seq)) {
176 		ctx->retransmit_hint = NULL;
177 		list_del(&info->list);
178 		destroy_record(info);
179 		deleted_records++;
180 	}
181 
182 	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
183 		if (before(acked_seq, info->end_seq))
184 			break;
185 		list_del(&info->list);
186 
187 		destroy_record(info);
188 		deleted_records++;
189 	}
190 
191 	ctx->unacked_record_sn += deleted_records;
192 	spin_unlock_irqrestore(&ctx->lock, flags);
193 }
194 
195 /* At this point, there should be no references on this
196  * socket and no in-flight SKBs associated with this
197  * socket, so it is safe to free all the resources.
198  */
199 void tls_device_sk_destruct(struct sock *sk)
200 {
201 	struct tls_context *tls_ctx = tls_get_ctx(sk);
202 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
203 
204 	tls_ctx->sk_destruct(sk);
205 
206 	if (tls_ctx->tx_conf == TLS_HW) {
207 		if (ctx->open_record)
208 			destroy_record(ctx->open_record);
209 		delete_all_records(ctx);
210 		crypto_free_aead(ctx->aead_send);
211 		clean_acked_data_disable(inet_csk(sk));
212 	}
213 
214 	if (refcount_dec_and_test(&tls_ctx->refcount))
215 		tls_device_queue_ctx_destruction(tls_ctx);
216 }
217 EXPORT_SYMBOL(tls_device_sk_destruct);
218 
219 static void tls_append_frag(struct tls_record_info *record,
220 			    struct page_frag *pfrag,
221 			    int size)
222 {
223 	skb_frag_t *frag;
224 
225 	frag = &record->frags[record->num_frags - 1];
226 	if (frag->page.p == pfrag->page &&
227 	    frag->page_offset + frag->size == pfrag->offset) {
228 		frag->size += size;
229 	} else {
230 		++frag;
231 		frag->page.p = pfrag->page;
232 		frag->page_offset = pfrag->offset;
233 		frag->size = size;
234 		++record->num_frags;
235 		get_page(pfrag->page);
236 	}
237 
238 	pfrag->offset += size;
239 	record->len += size;
240 }
241 
242 static int tls_push_record(struct sock *sk,
243 			   struct tls_context *ctx,
244 			   struct tls_offload_context_tx *offload_ctx,
245 			   struct tls_record_info *record,
246 			   struct page_frag *pfrag,
247 			   int flags,
248 			   unsigned char record_type)
249 {
250 	struct tls_prot_info *prot = &ctx->prot_info;
251 	struct tcp_sock *tp = tcp_sk(sk);
252 	struct page_frag dummy_tag_frag;
253 	skb_frag_t *frag;
254 	int i;
255 
256 	/* fill prepend */
257 	frag = &record->frags[0];
258 	tls_fill_prepend(ctx,
259 			 skb_frag_address(frag),
260 			 record->len - prot->prepend_size,
261 			 record_type,
262 			 ctx->crypto_send.info.version);
263 
264 	/* HW doesn't care about the data in the tag, because it fills it. */
265 	dummy_tag_frag.page = skb_frag_page(frag);
266 	dummy_tag_frag.offset = 0;
267 
268 	tls_append_frag(record, &dummy_tag_frag, prot->tag_size);
269 	record->end_seq = tp->write_seq + record->len;
270 	spin_lock_irq(&offload_ctx->lock);
271 	list_add_tail(&record->list, &offload_ctx->records_list);
272 	spin_unlock_irq(&offload_ctx->lock);
273 	offload_ctx->open_record = NULL;
274 	tls_advance_record_sn(sk, &ctx->tx, ctx->crypto_send.info.version);
275 
276 	for (i = 0; i < record->num_frags; i++) {
277 		frag = &record->frags[i];
278 		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
279 		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
280 			    frag->size, frag->page_offset);
281 		sk_mem_charge(sk, frag->size);
282 		get_page(skb_frag_page(frag));
283 	}
284 	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
285 
286 	/* all ready, send */
287 	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
288 }
289 
290 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
291 				 struct page_frag *pfrag,
292 				 size_t prepend_size)
293 {
294 	struct tls_record_info *record;
295 	skb_frag_t *frag;
296 
297 	record = kmalloc(sizeof(*record), GFP_KERNEL);
298 	if (!record)
299 		return -ENOMEM;
300 
301 	frag = &record->frags[0];
302 	__skb_frag_set_page(frag, pfrag->page);
303 	frag->page_offset = pfrag->offset;
304 	skb_frag_size_set(frag, prepend_size);
305 
306 	get_page(pfrag->page);
307 	pfrag->offset += prepend_size;
308 
309 	record->num_frags = 1;
310 	record->len = prepend_size;
311 	offload_ctx->open_record = record;
312 	return 0;
313 }
314 
315 static int tls_do_allocation(struct sock *sk,
316 			     struct tls_offload_context_tx *offload_ctx,
317 			     struct page_frag *pfrag,
318 			     size_t prepend_size)
319 {
320 	int ret;
321 
322 	if (!offload_ctx->open_record) {
323 		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
324 						   sk->sk_allocation))) {
325 			sk->sk_prot->enter_memory_pressure(sk);
326 			sk_stream_moderate_sndbuf(sk);
327 			return -ENOMEM;
328 		}
329 
330 		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
331 		if (ret)
332 			return ret;
333 
334 		if (pfrag->size > pfrag->offset)
335 			return 0;
336 	}
337 
338 	if (!sk_page_frag_refill(sk, pfrag))
339 		return -ENOMEM;
340 
341 	return 0;
342 }
343 
344 static int tls_push_data(struct sock *sk,
345 			 struct iov_iter *msg_iter,
346 			 size_t size, int flags,
347 			 unsigned char record_type)
348 {
349 	struct tls_context *tls_ctx = tls_get_ctx(sk);
350 	struct tls_prot_info *prot = &tls_ctx->prot_info;
351 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
352 	int tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
353 	int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
354 	struct tls_record_info *record = ctx->open_record;
355 	struct page_frag *pfrag;
356 	size_t orig_size = size;
357 	u32 max_open_record_len;
358 	int copy, rc = 0;
359 	bool done = false;
360 	long timeo;
361 
362 	if (flags &
363 	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
364 		return -ENOTSUPP;
365 
366 	if (sk->sk_err)
367 		return -sk->sk_err;
368 
369 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
370 	if (tls_is_partially_sent_record(tls_ctx)) {
371 		rc = tls_push_partial_record(sk, tls_ctx, flags);
372 		if (rc < 0)
373 			return rc;
374 	}
375 
376 	pfrag = sk_page_frag(sk);
377 
378 	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
379 	 * we need to leave room for an authentication tag.
380 	 */
381 	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
382 			      prot->prepend_size;
383 	do {
384 		rc = tls_do_allocation(sk, ctx, pfrag,
385 				       prot->prepend_size);
386 		if (rc) {
387 			rc = sk_stream_wait_memory(sk, &timeo);
388 			if (!rc)
389 				continue;
390 
391 			record = ctx->open_record;
392 			if (!record)
393 				break;
394 handle_error:
395 			if (record_type != TLS_RECORD_TYPE_DATA) {
396 				/* avoid sending partial
397 				 * record with type !=
398 				 * application_data
399 				 */
400 				size = orig_size;
401 				destroy_record(record);
402 				ctx->open_record = NULL;
403 			} else if (record->len > prot->prepend_size) {
404 				goto last_record;
405 			}
406 
407 			break;
408 		}
409 
410 		record = ctx->open_record;
411 		copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
412 		copy = min_t(size_t, copy, (max_open_record_len - record->len));
413 
414 		if (copy_from_iter_nocache(page_address(pfrag->page) +
415 					       pfrag->offset,
416 					   copy, msg_iter) != copy) {
417 			rc = -EFAULT;
418 			goto handle_error;
419 		}
420 		tls_append_frag(record, pfrag, copy);
421 
422 		size -= copy;
423 		if (!size) {
424 last_record:
425 			tls_push_record_flags = flags;
426 			if (more) {
427 				tls_ctx->pending_open_record_frags =
428 						!!record->num_frags;
429 				break;
430 			}
431 
432 			done = true;
433 		}
434 
435 		if (done || record->len >= max_open_record_len ||
436 		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
437 			rc = tls_push_record(sk,
438 					     tls_ctx,
439 					     ctx,
440 					     record,
441 					     pfrag,
442 					     tls_push_record_flags,
443 					     record_type);
444 			if (rc < 0)
445 				break;
446 		}
447 	} while (!done);
448 
449 	if (orig_size - size > 0)
450 		rc = orig_size - size;
451 
452 	return rc;
453 }
454 
455 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
456 {
457 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
458 	int rc;
459 
460 	lock_sock(sk);
461 
462 	if (unlikely(msg->msg_controllen)) {
463 		rc = tls_proccess_cmsg(sk, msg, &record_type);
464 		if (rc)
465 			goto out;
466 	}
467 
468 	rc = tls_push_data(sk, &msg->msg_iter, size,
469 			   msg->msg_flags, record_type);
470 
471 out:
472 	release_sock(sk);
473 	return rc;
474 }
475 
476 int tls_device_sendpage(struct sock *sk, struct page *page,
477 			int offset, size_t size, int flags)
478 {
479 	struct iov_iter	msg_iter;
480 	char *kaddr = kmap(page);
481 	struct kvec iov;
482 	int rc;
483 
484 	if (flags & MSG_SENDPAGE_NOTLAST)
485 		flags |= MSG_MORE;
486 
487 	lock_sock(sk);
488 
489 	if (flags & MSG_OOB) {
490 		rc = -ENOTSUPP;
491 		goto out;
492 	}
493 
494 	iov.iov_base = kaddr + offset;
495 	iov.iov_len = size;
496 	iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
497 	rc = tls_push_data(sk, &msg_iter, size,
498 			   flags, TLS_RECORD_TYPE_DATA);
499 	kunmap(page);
500 
501 out:
502 	release_sock(sk);
503 	return rc;
504 }
505 
506 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
507 				       u32 seq, u64 *p_record_sn)
508 {
509 	u64 record_sn = context->hint_record_sn;
510 	struct tls_record_info *info;
511 
512 	info = context->retransmit_hint;
513 	if (!info ||
514 	    before(seq, info->end_seq - info->len)) {
515 		/* if retransmit_hint is irrelevant start
516 		 * from the beggining of the list
517 		 */
518 		info = list_first_entry(&context->records_list,
519 					struct tls_record_info, list);
520 		record_sn = context->unacked_record_sn;
521 	}
522 
523 	list_for_each_entry_from(info, &context->records_list, list) {
524 		if (before(seq, info->end_seq)) {
525 			if (!context->retransmit_hint ||
526 			    after(info->end_seq,
527 				  context->retransmit_hint->end_seq)) {
528 				context->hint_record_sn = record_sn;
529 				context->retransmit_hint = info;
530 			}
531 			*p_record_sn = record_sn;
532 			return info;
533 		}
534 		record_sn++;
535 	}
536 
537 	return NULL;
538 }
539 EXPORT_SYMBOL(tls_get_record);
540 
541 static int tls_device_push_pending_record(struct sock *sk, int flags)
542 {
543 	struct iov_iter	msg_iter;
544 
545 	iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
546 	return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
547 }
548 
549 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
550 {
551 	int rc = 0;
552 
553 	if (!sk->sk_write_pending && tls_is_partially_sent_record(ctx)) {
554 		gfp_t sk_allocation = sk->sk_allocation;
555 
556 		sk->sk_allocation = GFP_ATOMIC;
557 		rc = tls_push_partial_record(sk, ctx,
558 					     MSG_DONTWAIT | MSG_NOSIGNAL);
559 		sk->sk_allocation = sk_allocation;
560 	}
561 }
562 
563 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn)
564 {
565 	struct tls_context *tls_ctx = tls_get_ctx(sk);
566 	struct net_device *netdev = tls_ctx->netdev;
567 	struct tls_offload_context_rx *rx_ctx;
568 	u32 is_req_pending;
569 	s64 resync_req;
570 	u32 req_seq;
571 
572 	if (tls_ctx->rx_conf != TLS_HW)
573 		return;
574 
575 	rx_ctx = tls_offload_ctx_rx(tls_ctx);
576 	resync_req = atomic64_read(&rx_ctx->resync_req);
577 	req_seq = ntohl(resync_req >> 32) - ((u32)TLS_HEADER_SIZE - 1);
578 	is_req_pending = resync_req;
579 
580 	if (unlikely(is_req_pending) && req_seq == seq &&
581 	    atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
582 		netdev->tlsdev_ops->tls_dev_resync_rx(netdev, sk,
583 						      seq + TLS_HEADER_SIZE - 1,
584 						      rcd_sn);
585 }
586 
587 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
588 {
589 	struct strp_msg *rxm = strp_msg(skb);
590 	int err = 0, offset = rxm->offset, copy, nsg;
591 	struct sk_buff *skb_iter, *unused;
592 	struct scatterlist sg[1];
593 	char *orig_buf, *buf;
594 
595 	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
596 			   TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
597 	if (!orig_buf)
598 		return -ENOMEM;
599 	buf = orig_buf;
600 
601 	nsg = skb_cow_data(skb, 0, &unused);
602 	if (unlikely(nsg < 0)) {
603 		err = nsg;
604 		goto free_buf;
605 	}
606 
607 	sg_init_table(sg, 1);
608 	sg_set_buf(&sg[0], buf,
609 		   rxm->full_len + TLS_HEADER_SIZE +
610 		   TLS_CIPHER_AES_GCM_128_IV_SIZE);
611 	skb_copy_bits(skb, offset, buf,
612 		      TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
613 
614 	/* We are interested only in the decrypted data not the auth */
615 	err = decrypt_skb(sk, skb, sg);
616 	if (err != -EBADMSG)
617 		goto free_buf;
618 	else
619 		err = 0;
620 
621 	copy = min_t(int, skb_pagelen(skb) - offset,
622 		     rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE);
623 
624 	if (skb->decrypted)
625 		skb_store_bits(skb, offset, buf, copy);
626 
627 	offset += copy;
628 	buf += copy;
629 
630 	skb_walk_frags(skb, skb_iter) {
631 		copy = min_t(int, skb_iter->len,
632 			     rxm->full_len - offset + rxm->offset -
633 			     TLS_CIPHER_AES_GCM_128_TAG_SIZE);
634 
635 		if (skb_iter->decrypted)
636 			skb_store_bits(skb_iter, offset, buf, copy);
637 
638 		offset += copy;
639 		buf += copy;
640 	}
641 
642 free_buf:
643 	kfree(orig_buf);
644 	return err;
645 }
646 
647 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
648 {
649 	struct tls_context *tls_ctx = tls_get_ctx(sk);
650 	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
651 	int is_decrypted = skb->decrypted;
652 	int is_encrypted = !is_decrypted;
653 	struct sk_buff *skb_iter;
654 
655 	/* Skip if it is already decrypted */
656 	if (ctx->sw.decrypted)
657 		return 0;
658 
659 	/* Check if all the data is decrypted already */
660 	skb_walk_frags(skb, skb_iter) {
661 		is_decrypted &= skb_iter->decrypted;
662 		is_encrypted &= !skb_iter->decrypted;
663 	}
664 
665 	ctx->sw.decrypted |= is_decrypted;
666 
667 	/* Return immedeatly if the record is either entirely plaintext or
668 	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
669 	 * record.
670 	 */
671 	return (is_encrypted || is_decrypted) ? 0 :
672 		tls_device_reencrypt(sk, skb);
673 }
674 
675 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
676 {
677 	u16 nonce_size, tag_size, iv_size, rec_seq_size;
678 	struct tls_context *tls_ctx = tls_get_ctx(sk);
679 	struct tls_prot_info *prot = &tls_ctx->prot_info;
680 	struct tls_record_info *start_marker_record;
681 	struct tls_offload_context_tx *offload_ctx;
682 	struct tls_crypto_info *crypto_info;
683 	struct net_device *netdev;
684 	char *iv, *rec_seq;
685 	struct sk_buff *skb;
686 	int rc = -EINVAL;
687 	__be64 rcd_sn;
688 
689 	if (!ctx)
690 		goto out;
691 
692 	if (ctx->priv_ctx_tx) {
693 		rc = -EEXIST;
694 		goto out;
695 	}
696 
697 	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
698 	if (!start_marker_record) {
699 		rc = -ENOMEM;
700 		goto out;
701 	}
702 
703 	offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
704 	if (!offload_ctx) {
705 		rc = -ENOMEM;
706 		goto free_marker_record;
707 	}
708 
709 	crypto_info = &ctx->crypto_send.info;
710 	switch (crypto_info->cipher_type) {
711 	case TLS_CIPHER_AES_GCM_128:
712 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
713 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
714 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
715 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
716 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
717 		rec_seq =
718 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
719 		break;
720 	default:
721 		rc = -EINVAL;
722 		goto free_offload_ctx;
723 	}
724 
725 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
726 	prot->tag_size = tag_size;
727 	prot->overhead_size = prot->prepend_size + prot->tag_size;
728 	prot->iv_size = iv_size;
729 	ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
730 			     GFP_KERNEL);
731 	if (!ctx->tx.iv) {
732 		rc = -ENOMEM;
733 		goto free_offload_ctx;
734 	}
735 
736 	memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
737 
738 	prot->rec_seq_size = rec_seq_size;
739 	ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
740 	if (!ctx->tx.rec_seq) {
741 		rc = -ENOMEM;
742 		goto free_iv;
743 	}
744 
745 	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
746 	if (rc)
747 		goto free_rec_seq;
748 
749 	/* start at rec_seq - 1 to account for the start marker record */
750 	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
751 	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
752 
753 	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
754 	start_marker_record->len = 0;
755 	start_marker_record->num_frags = 0;
756 
757 	INIT_LIST_HEAD(&offload_ctx->records_list);
758 	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
759 	spin_lock_init(&offload_ctx->lock);
760 	sg_init_table(offload_ctx->sg_tx_data,
761 		      ARRAY_SIZE(offload_ctx->sg_tx_data));
762 
763 	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
764 	ctx->push_pending_record = tls_device_push_pending_record;
765 
766 	/* TLS offload is greatly simplified if we don't send
767 	 * SKBs where only part of the payload needs to be encrypted.
768 	 * So mark the last skb in the write queue as end of record.
769 	 */
770 	skb = tcp_write_queue_tail(sk);
771 	if (skb)
772 		TCP_SKB_CB(skb)->eor = 1;
773 
774 	/* We support starting offload on multiple sockets
775 	 * concurrently, so we only need a read lock here.
776 	 * This lock must precede get_netdev_for_sock to prevent races between
777 	 * NETDEV_DOWN and setsockopt.
778 	 */
779 	down_read(&device_offload_lock);
780 	netdev = get_netdev_for_sock(sk);
781 	if (!netdev) {
782 		pr_err_ratelimited("%s: netdev not found\n", __func__);
783 		rc = -EINVAL;
784 		goto release_lock;
785 	}
786 
787 	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
788 		rc = -ENOTSUPP;
789 		goto release_netdev;
790 	}
791 
792 	/* Avoid offloading if the device is down
793 	 * We don't want to offload new flows after
794 	 * the NETDEV_DOWN event
795 	 */
796 	if (!(netdev->flags & IFF_UP)) {
797 		rc = -EINVAL;
798 		goto release_netdev;
799 	}
800 
801 	ctx->priv_ctx_tx = offload_ctx;
802 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
803 					     &ctx->crypto_send.info,
804 					     tcp_sk(sk)->write_seq);
805 	if (rc)
806 		goto release_netdev;
807 
808 	tls_device_attach(ctx, sk, netdev);
809 
810 	/* following this assignment tls_is_sk_tx_device_offloaded
811 	 * will return true and the context might be accessed
812 	 * by the netdev's xmit function.
813 	 */
814 	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
815 	dev_put(netdev);
816 	up_read(&device_offload_lock);
817 	goto out;
818 
819 release_netdev:
820 	dev_put(netdev);
821 release_lock:
822 	up_read(&device_offload_lock);
823 	clean_acked_data_disable(inet_csk(sk));
824 	crypto_free_aead(offload_ctx->aead_send);
825 free_rec_seq:
826 	kfree(ctx->tx.rec_seq);
827 free_iv:
828 	kfree(ctx->tx.iv);
829 free_offload_ctx:
830 	kfree(offload_ctx);
831 	ctx->priv_ctx_tx = NULL;
832 free_marker_record:
833 	kfree(start_marker_record);
834 out:
835 	return rc;
836 }
837 
838 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
839 {
840 	struct tls_offload_context_rx *context;
841 	struct net_device *netdev;
842 	int rc = 0;
843 
844 	/* We support starting offload on multiple sockets
845 	 * concurrently, so we only need a read lock here.
846 	 * This lock must precede get_netdev_for_sock to prevent races between
847 	 * NETDEV_DOWN and setsockopt.
848 	 */
849 	down_read(&device_offload_lock);
850 	netdev = get_netdev_for_sock(sk);
851 	if (!netdev) {
852 		pr_err_ratelimited("%s: netdev not found\n", __func__);
853 		rc = -EINVAL;
854 		goto release_lock;
855 	}
856 
857 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
858 		pr_err_ratelimited("%s: netdev %s with no TLS offload\n",
859 				   __func__, netdev->name);
860 		rc = -ENOTSUPP;
861 		goto release_netdev;
862 	}
863 
864 	/* Avoid offloading if the device is down
865 	 * We don't want to offload new flows after
866 	 * the NETDEV_DOWN event
867 	 */
868 	if (!(netdev->flags & IFF_UP)) {
869 		rc = -EINVAL;
870 		goto release_netdev;
871 	}
872 
873 	context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
874 	if (!context) {
875 		rc = -ENOMEM;
876 		goto release_netdev;
877 	}
878 
879 	ctx->priv_ctx_rx = context;
880 	rc = tls_set_sw_offload(sk, ctx, 0);
881 	if (rc)
882 		goto release_ctx;
883 
884 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
885 					     &ctx->crypto_recv.info,
886 					     tcp_sk(sk)->copied_seq);
887 	if (rc) {
888 		pr_err_ratelimited("%s: The netdev has refused to offload this socket\n",
889 				   __func__);
890 		goto free_sw_resources;
891 	}
892 
893 	tls_device_attach(ctx, sk, netdev);
894 	goto release_netdev;
895 
896 free_sw_resources:
897 	tls_sw_free_resources_rx(sk);
898 release_ctx:
899 	ctx->priv_ctx_rx = NULL;
900 release_netdev:
901 	dev_put(netdev);
902 release_lock:
903 	up_read(&device_offload_lock);
904 	return rc;
905 }
906 
907 void tls_device_offload_cleanup_rx(struct sock *sk)
908 {
909 	struct tls_context *tls_ctx = tls_get_ctx(sk);
910 	struct net_device *netdev;
911 
912 	down_read(&device_offload_lock);
913 	netdev = tls_ctx->netdev;
914 	if (!netdev)
915 		goto out;
916 
917 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
918 		pr_err_ratelimited("%s: device is missing NETIF_F_HW_TLS_RX cap\n",
919 				   __func__);
920 		goto out;
921 	}
922 
923 	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
924 					TLS_OFFLOAD_CTX_DIR_RX);
925 
926 	if (tls_ctx->tx_conf != TLS_HW) {
927 		dev_put(netdev);
928 		tls_ctx->netdev = NULL;
929 	}
930 out:
931 	up_read(&device_offload_lock);
932 	kfree(tls_ctx->rx.rec_seq);
933 	kfree(tls_ctx->rx.iv);
934 	tls_sw_release_resources_rx(sk);
935 }
936 
937 static int tls_device_down(struct net_device *netdev)
938 {
939 	struct tls_context *ctx, *tmp;
940 	unsigned long flags;
941 	LIST_HEAD(list);
942 
943 	/* Request a write lock to block new offload attempts */
944 	down_write(&device_offload_lock);
945 
946 	spin_lock_irqsave(&tls_device_lock, flags);
947 	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
948 		if (ctx->netdev != netdev ||
949 		    !refcount_inc_not_zero(&ctx->refcount))
950 			continue;
951 
952 		list_move(&ctx->list, &list);
953 	}
954 	spin_unlock_irqrestore(&tls_device_lock, flags);
955 
956 	list_for_each_entry_safe(ctx, tmp, &list, list)	{
957 		if (ctx->tx_conf == TLS_HW)
958 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
959 							TLS_OFFLOAD_CTX_DIR_TX);
960 		if (ctx->rx_conf == TLS_HW)
961 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
962 							TLS_OFFLOAD_CTX_DIR_RX);
963 		ctx->netdev = NULL;
964 		dev_put(netdev);
965 		list_del_init(&ctx->list);
966 
967 		if (refcount_dec_and_test(&ctx->refcount))
968 			tls_device_free_ctx(ctx);
969 	}
970 
971 	up_write(&device_offload_lock);
972 
973 	flush_work(&tls_device_gc_work);
974 
975 	return NOTIFY_DONE;
976 }
977 
978 static int tls_dev_event(struct notifier_block *this, unsigned long event,
979 			 void *ptr)
980 {
981 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
982 
983 	if (!(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
984 		return NOTIFY_DONE;
985 
986 	switch (event) {
987 	case NETDEV_REGISTER:
988 	case NETDEV_FEAT_CHANGE:
989 		if ((dev->features & NETIF_F_HW_TLS_RX) &&
990 		    !dev->tlsdev_ops->tls_dev_resync_rx)
991 			return NOTIFY_BAD;
992 
993 		if  (dev->tlsdev_ops &&
994 		     dev->tlsdev_ops->tls_dev_add &&
995 		     dev->tlsdev_ops->tls_dev_del)
996 			return NOTIFY_DONE;
997 		else
998 			return NOTIFY_BAD;
999 	case NETDEV_DOWN:
1000 		return tls_device_down(dev);
1001 	}
1002 	return NOTIFY_DONE;
1003 }
1004 
1005 static struct notifier_block tls_dev_notifier = {
1006 	.notifier_call	= tls_dev_event,
1007 };
1008 
1009 void __init tls_device_init(void)
1010 {
1011 	register_netdevice_notifier(&tls_dev_notifier);
1012 }
1013 
1014 void __exit tls_device_cleanup(void)
1015 {
1016 	unregister_netdevice_notifier(&tls_dev_notifier);
1017 	flush_work(&tls_device_gc_work);
1018 }
1019