1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32 #include <crypto/aead.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/netdevice.h> 36 #include <net/dst.h> 37 #include <net/inet_connection_sock.h> 38 #include <net/tcp.h> 39 #include <net/tls.h> 40 #include <linux/skbuff_ref.h> 41 42 #include "tls.h" 43 #include "trace.h" 44 45 /* device_offload_lock is used to synchronize tls_dev_add 46 * against NETDEV_DOWN notifications. 47 */ 48 static DECLARE_RWSEM(device_offload_lock); 49 50 static struct workqueue_struct *destruct_wq __read_mostly; 51 52 static LIST_HEAD(tls_device_list); 53 static LIST_HEAD(tls_device_down_list); 54 static DEFINE_SPINLOCK(tls_device_lock); 55 56 static struct page *dummy_page; 57 58 static void tls_device_free_ctx(struct tls_context *ctx) 59 { 60 if (ctx->tx_conf == TLS_HW) 61 kfree(tls_offload_ctx_tx(ctx)); 62 63 if (ctx->rx_conf == TLS_HW) 64 kfree(tls_offload_ctx_rx(ctx)); 65 66 tls_ctx_free(NULL, ctx); 67 } 68 69 static void tls_device_tx_del_task(struct work_struct *work) 70 { 71 struct tls_offload_context_tx *offload_ctx = 72 container_of(work, struct tls_offload_context_tx, destruct_work); 73 struct tls_context *ctx = offload_ctx->ctx; 74 struct net_device *netdev; 75 76 /* Safe, because this is the destroy flow, refcount is 0, so 77 * tls_device_down can't store this field in parallel. 78 */ 79 netdev = rcu_dereference_protected(ctx->netdev, 80 !refcount_read(&ctx->refcount)); 81 82 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX); 83 dev_put(netdev); 84 ctx->netdev = NULL; 85 tls_device_free_ctx(ctx); 86 } 87 88 static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 89 { 90 struct net_device *netdev; 91 unsigned long flags; 92 bool async_cleanup; 93 94 spin_lock_irqsave(&tls_device_lock, flags); 95 if (unlikely(!refcount_dec_and_test(&ctx->refcount))) { 96 spin_unlock_irqrestore(&tls_device_lock, flags); 97 return; 98 } 99 100 list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */ 101 102 /* Safe, because this is the destroy flow, refcount is 0, so 103 * tls_device_down can't store this field in parallel. 104 */ 105 netdev = rcu_dereference_protected(ctx->netdev, 106 !refcount_read(&ctx->refcount)); 107 108 async_cleanup = netdev && ctx->tx_conf == TLS_HW; 109 if (async_cleanup) { 110 struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx); 111 112 /* queue_work inside the spinlock 113 * to make sure tls_device_down waits for that work. 114 */ 115 queue_work(destruct_wq, &offload_ctx->destruct_work); 116 } 117 spin_unlock_irqrestore(&tls_device_lock, flags); 118 119 if (!async_cleanup) 120 tls_device_free_ctx(ctx); 121 } 122 123 /* We assume that the socket is already connected */ 124 static struct net_device *get_netdev_for_sock(struct sock *sk) 125 { 126 struct net_device *dev, *lowest_dev = NULL; 127 struct dst_entry *dst; 128 129 rcu_read_lock(); 130 dst = __sk_dst_get(sk); 131 dev = dst ? dst_dev_rcu(dst) : NULL; 132 if (likely(dev)) { 133 lowest_dev = netdev_sk_get_lowest_dev(dev, sk); 134 dev_hold(lowest_dev); 135 } 136 rcu_read_unlock(); 137 138 return lowest_dev; 139 } 140 141 static void destroy_record(struct tls_record_info *record) 142 { 143 int i; 144 145 for (i = 0; i < record->num_frags; i++) 146 __skb_frag_unref(&record->frags[i], false); 147 kfree(record); 148 } 149 150 static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 151 { 152 struct tls_record_info *info, *temp; 153 154 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 155 list_del(&info->list); 156 destroy_record(info); 157 } 158 159 offload_ctx->retransmit_hint = NULL; 160 } 161 162 static void tls_tcp_clean_acked(struct sock *sk, u32 acked_seq) 163 { 164 struct tls_context *tls_ctx = tls_get_ctx(sk); 165 struct tls_record_info *info, *temp; 166 struct tls_offload_context_tx *ctx; 167 u64 deleted_records = 0; 168 unsigned long flags; 169 170 if (!tls_ctx) 171 return; 172 173 ctx = tls_offload_ctx_tx(tls_ctx); 174 175 spin_lock_irqsave(&ctx->lock, flags); 176 info = ctx->retransmit_hint; 177 if (info && !before(acked_seq, info->end_seq)) 178 ctx->retransmit_hint = NULL; 179 180 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 181 if (before(acked_seq, info->end_seq)) 182 break; 183 list_del(&info->list); 184 185 destroy_record(info); 186 deleted_records++; 187 } 188 189 ctx->unacked_record_sn += deleted_records; 190 spin_unlock_irqrestore(&ctx->lock, flags); 191 } 192 193 /* At this point, there should be no references on this 194 * socket and no in-flight SKBs associated with this 195 * socket, so it is safe to free all the resources. 196 */ 197 void tls_device_sk_destruct(struct sock *sk) 198 { 199 struct tls_context *tls_ctx = tls_get_ctx(sk); 200 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 201 202 tls_ctx->sk_destruct(sk); 203 204 if (tls_ctx->tx_conf == TLS_HW) { 205 if (ctx->open_record) 206 destroy_record(ctx->open_record); 207 delete_all_records(ctx); 208 crypto_free_aead(ctx->aead_send); 209 clean_acked_data_disable(tcp_sk(sk)); 210 } 211 212 tls_device_queue_ctx_destruction(tls_ctx); 213 } 214 EXPORT_SYMBOL_GPL(tls_device_sk_destruct); 215 216 void tls_device_free_resources_tx(struct sock *sk) 217 { 218 struct tls_context *tls_ctx = tls_get_ctx(sk); 219 220 tls_free_partial_record(sk, tls_ctx); 221 } 222 223 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) 224 { 225 struct tls_context *tls_ctx = tls_get_ctx(sk); 226 227 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); 228 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 229 } 230 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); 231 232 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, 233 u32 seq) 234 { 235 struct net_device *netdev; 236 int err = 0; 237 u8 *rcd_sn; 238 239 tcp_write_collapse_fence(sk); 240 rcd_sn = tls_ctx->tx.rec_seq; 241 242 trace_tls_device_tx_resync_send(sk, seq, rcd_sn); 243 down_read(&device_offload_lock); 244 netdev = rcu_dereference_protected(tls_ctx->netdev, 245 lockdep_is_held(&device_offload_lock)); 246 if (netdev) 247 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, 248 rcd_sn, 249 TLS_OFFLOAD_CTX_DIR_TX); 250 up_read(&device_offload_lock); 251 if (err) 252 return; 253 254 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 255 } 256 257 static void tls_append_frag(struct tls_record_info *record, 258 struct page_frag *pfrag, 259 int size) 260 { 261 skb_frag_t *frag; 262 263 frag = &record->frags[record->num_frags - 1]; 264 if (skb_frag_page(frag) == pfrag->page && 265 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { 266 skb_frag_size_add(frag, size); 267 } else { 268 ++frag; 269 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset, 270 size); 271 ++record->num_frags; 272 get_page(pfrag->page); 273 } 274 275 pfrag->offset += size; 276 record->len += size; 277 } 278 279 static int tls_push_record(struct sock *sk, 280 struct tls_context *ctx, 281 struct tls_offload_context_tx *offload_ctx, 282 struct tls_record_info *record, 283 int flags) 284 { 285 struct tls_prot_info *prot = &ctx->prot_info; 286 struct tcp_sock *tp = tcp_sk(sk); 287 skb_frag_t *frag; 288 int i; 289 290 record->end_seq = tp->write_seq + record->len; 291 list_add_tail_rcu(&record->list, &offload_ctx->records_list); 292 offload_ctx->open_record = NULL; 293 294 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) 295 tls_device_resync_tx(sk, ctx, tp->write_seq); 296 297 tls_advance_record_sn(sk, prot, &ctx->tx); 298 299 for (i = 0; i < record->num_frags; i++) { 300 frag = &record->frags[i]; 301 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 302 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 303 skb_frag_size(frag), skb_frag_off(frag)); 304 sk_mem_charge(sk, skb_frag_size(frag)); 305 get_page(skb_frag_page(frag)); 306 } 307 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 308 309 /* all ready, send */ 310 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 311 } 312 313 static void tls_device_record_close(struct sock *sk, 314 struct tls_context *ctx, 315 struct tls_record_info *record, 316 struct page_frag *pfrag, 317 unsigned char record_type) 318 { 319 struct tls_prot_info *prot = &ctx->prot_info; 320 struct page_frag dummy_tag_frag; 321 322 /* append tag 323 * device will fill in the tag, we just need to append a placeholder 324 * use socket memory to improve coalescing (re-using a single buffer 325 * increases frag count) 326 * if we can't allocate memory now use the dummy page 327 */ 328 if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) && 329 !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) { 330 dummy_tag_frag.page = dummy_page; 331 dummy_tag_frag.offset = 0; 332 pfrag = &dummy_tag_frag; 333 } 334 tls_append_frag(record, pfrag, prot->tag_size); 335 336 /* fill prepend */ 337 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), 338 record->len - prot->overhead_size, 339 record_type); 340 } 341 342 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 343 struct page_frag *pfrag, 344 size_t prepend_size) 345 { 346 struct tls_record_info *record; 347 skb_frag_t *frag; 348 349 record = kmalloc(sizeof(*record), GFP_KERNEL); 350 if (!record) 351 return -ENOMEM; 352 353 frag = &record->frags[0]; 354 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset, 355 prepend_size); 356 357 get_page(pfrag->page); 358 pfrag->offset += prepend_size; 359 360 record->num_frags = 1; 361 record->len = prepend_size; 362 offload_ctx->open_record = record; 363 return 0; 364 } 365 366 static int tls_do_allocation(struct sock *sk, 367 struct tls_offload_context_tx *offload_ctx, 368 struct page_frag *pfrag, 369 size_t prepend_size) 370 { 371 int ret; 372 373 if (!offload_ctx->open_record) { 374 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 375 sk->sk_allocation))) { 376 if (!sk->sk_bypass_prot_mem) 377 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); 378 sk_stream_moderate_sndbuf(sk); 379 return -ENOMEM; 380 } 381 382 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 383 if (ret) 384 return ret; 385 386 if (pfrag->size > pfrag->offset) 387 return 0; 388 } 389 390 if (!sk_page_frag_refill(sk, pfrag)) 391 return -ENOMEM; 392 393 return 0; 394 } 395 396 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) 397 { 398 size_t pre_copy, nocache; 399 400 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); 401 if (pre_copy) { 402 pre_copy = min(pre_copy, bytes); 403 if (copy_from_iter(addr, pre_copy, i) != pre_copy) 404 return -EFAULT; 405 bytes -= pre_copy; 406 addr += pre_copy; 407 } 408 409 nocache = round_down(bytes, SMP_CACHE_BYTES); 410 if (copy_from_iter_nocache(addr, nocache, i) != nocache) 411 return -EFAULT; 412 bytes -= nocache; 413 addr += nocache; 414 415 if (bytes && copy_from_iter(addr, bytes, i) != bytes) 416 return -EFAULT; 417 418 return 0; 419 } 420 421 static int tls_push_data(struct sock *sk, 422 struct iov_iter *iter, 423 size_t size, int flags, 424 unsigned char record_type) 425 { 426 struct tls_context *tls_ctx = tls_get_ctx(sk); 427 struct tls_prot_info *prot = &tls_ctx->prot_info; 428 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 429 struct tls_record_info *record; 430 int tls_push_record_flags; 431 struct page_frag *pfrag; 432 size_t orig_size = size; 433 u32 max_open_record_len; 434 bool more = false; 435 bool done = false; 436 int copy, rc = 0; 437 long timeo; 438 439 if (flags & 440 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 441 MSG_SPLICE_PAGES | MSG_EOR)) 442 return -EOPNOTSUPP; 443 444 if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR)) 445 return -EINVAL; 446 447 if (unlikely(sk->sk_err)) 448 return -sk->sk_err; 449 450 flags |= MSG_SENDPAGE_DECRYPTED; 451 tls_push_record_flags = flags | MSG_MORE; 452 453 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 454 if (tls_is_partially_sent_record(tls_ctx)) { 455 rc = tls_push_partial_record(sk, tls_ctx, flags); 456 if (rc < 0) 457 return rc; 458 } 459 460 pfrag = sk_page_frag(sk); 461 462 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 463 * we need to leave room for an authentication tag. 464 */ 465 max_open_record_len = tls_ctx->tx_max_payload_len + 466 prot->prepend_size; 467 do { 468 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); 469 if (unlikely(rc)) { 470 rc = sk_stream_wait_memory(sk, &timeo); 471 if (!rc) 472 continue; 473 474 record = ctx->open_record; 475 if (!record) 476 break; 477 handle_error: 478 if (record_type != TLS_RECORD_TYPE_DATA) { 479 /* avoid sending partial 480 * record with type != 481 * application_data 482 */ 483 size = orig_size; 484 destroy_record(record); 485 ctx->open_record = NULL; 486 } else if (record->len > prot->prepend_size) { 487 goto last_record; 488 } 489 490 break; 491 } 492 493 record = ctx->open_record; 494 495 copy = min_t(size_t, size, max_open_record_len - record->len); 496 if (copy && (flags & MSG_SPLICE_PAGES)) { 497 struct page_frag zc_pfrag; 498 struct page **pages = &zc_pfrag.page; 499 size_t off; 500 501 rc = iov_iter_extract_pages(iter, &pages, 502 copy, 1, 0, &off); 503 if (rc <= 0) { 504 if (rc == 0) 505 rc = -EIO; 506 goto handle_error; 507 } 508 copy = rc; 509 510 if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) { 511 iov_iter_revert(iter, copy); 512 rc = -EIO; 513 goto handle_error; 514 } 515 516 zc_pfrag.offset = off; 517 zc_pfrag.size = copy; 518 tls_append_frag(record, &zc_pfrag, copy); 519 } else if (copy) { 520 copy = min_t(size_t, copy, pfrag->size - pfrag->offset); 521 522 rc = tls_device_copy_data(page_address(pfrag->page) + 523 pfrag->offset, copy, 524 iter); 525 if (rc) 526 goto handle_error; 527 tls_append_frag(record, pfrag, copy); 528 } 529 530 size -= copy; 531 if (!size) { 532 last_record: 533 tls_push_record_flags = flags; 534 if (flags & MSG_MORE) { 535 more = true; 536 break; 537 } 538 539 done = true; 540 } 541 542 if (done || record->len >= max_open_record_len || 543 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 544 tls_device_record_close(sk, tls_ctx, record, 545 pfrag, record_type); 546 547 rc = tls_push_record(sk, 548 tls_ctx, 549 ctx, 550 record, 551 tls_push_record_flags); 552 if (rc < 0) 553 break; 554 } 555 } while (!done); 556 557 tls_ctx->pending_open_record_frags = more; 558 559 if (orig_size - size > 0) 560 rc = orig_size - size; 561 562 return rc; 563 } 564 565 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 566 { 567 unsigned char record_type = TLS_RECORD_TYPE_DATA; 568 struct tls_context *tls_ctx = tls_get_ctx(sk); 569 int rc; 570 571 if (!tls_ctx->zerocopy_sendfile) 572 msg->msg_flags &= ~MSG_SPLICE_PAGES; 573 574 mutex_lock(&tls_ctx->tx_lock); 575 lock_sock(sk); 576 577 if (unlikely(msg->msg_controllen)) { 578 rc = tls_process_cmsg(sk, msg, &record_type); 579 if (rc) 580 goto out; 581 } 582 583 rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags, 584 record_type); 585 586 out: 587 release_sock(sk); 588 mutex_unlock(&tls_ctx->tx_lock); 589 return rc; 590 } 591 592 void tls_device_splice_eof(struct socket *sock) 593 { 594 struct sock *sk = sock->sk; 595 struct tls_context *tls_ctx = tls_get_ctx(sk); 596 struct iov_iter iter = {}; 597 598 if (!tls_is_partially_sent_record(tls_ctx)) 599 return; 600 601 mutex_lock(&tls_ctx->tx_lock); 602 lock_sock(sk); 603 604 if (tls_is_partially_sent_record(tls_ctx)) { 605 iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0); 606 tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA); 607 } 608 609 release_sock(sk); 610 mutex_unlock(&tls_ctx->tx_lock); 611 } 612 613 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 614 u32 seq, u64 *p_record_sn) 615 { 616 u64 record_sn = context->hint_record_sn; 617 struct tls_record_info *info, *last; 618 619 info = context->retransmit_hint; 620 if (!info || 621 before(seq, info->end_seq - info->len)) { 622 /* if retransmit_hint is irrelevant start 623 * from the beginning of the list 624 */ 625 info = list_first_entry_or_null(&context->records_list, 626 struct tls_record_info, list); 627 if (!info) 628 return NULL; 629 /* send the start_marker record if seq number is before the 630 * tls offload start marker sequence number. This record is 631 * required to handle TCP packets which are before TLS offload 632 * started. 633 * And if it's not start marker, look if this seq number 634 * belongs to the list. 635 */ 636 if (likely(!tls_record_is_start_marker(info))) { 637 /* we have the first record, get the last record to see 638 * if this seq number belongs to the list. 639 */ 640 last = list_last_entry(&context->records_list, 641 struct tls_record_info, list); 642 643 if (!between(seq, tls_record_start_seq(info), 644 last->end_seq)) 645 return NULL; 646 } 647 record_sn = context->unacked_record_sn; 648 } 649 650 /* We just need the _rcu for the READ_ONCE() */ 651 rcu_read_lock(); 652 list_for_each_entry_from_rcu(info, &context->records_list, list) { 653 if (before(seq, info->end_seq)) { 654 if (!context->retransmit_hint || 655 after(info->end_seq, 656 context->retransmit_hint->end_seq)) { 657 context->hint_record_sn = record_sn; 658 context->retransmit_hint = info; 659 } 660 *p_record_sn = record_sn; 661 goto exit_rcu_unlock; 662 } 663 record_sn++; 664 } 665 info = NULL; 666 667 exit_rcu_unlock: 668 rcu_read_unlock(); 669 return info; 670 } 671 EXPORT_SYMBOL(tls_get_record); 672 673 static int tls_device_push_pending_record(struct sock *sk, int flags) 674 { 675 struct iov_iter iter; 676 677 iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0); 678 return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA); 679 } 680 681 void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 682 { 683 if (tls_is_partially_sent_record(ctx)) { 684 gfp_t sk_allocation = sk->sk_allocation; 685 686 WARN_ON_ONCE(sk->sk_write_pending); 687 688 sk->sk_allocation = GFP_ATOMIC; 689 tls_push_partial_record(sk, ctx, 690 MSG_DONTWAIT | MSG_NOSIGNAL | 691 MSG_SENDPAGE_DECRYPTED); 692 sk->sk_allocation = sk_allocation; 693 } 694 } 695 696 static void tls_device_resync_rx(struct tls_context *tls_ctx, 697 struct sock *sk, u32 seq, u8 *rcd_sn) 698 { 699 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 700 struct net_device *netdev; 701 702 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); 703 rcu_read_lock(); 704 netdev = rcu_dereference(tls_ctx->netdev); 705 if (netdev) 706 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, 707 TLS_OFFLOAD_CTX_DIR_RX); 708 rcu_read_unlock(); 709 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); 710 } 711 712 static bool 713 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, 714 s64 resync_req, u32 *seq, u16 *rcd_delta) 715 { 716 u32 is_async = resync_req & RESYNC_REQ_ASYNC; 717 u32 req_seq = resync_req >> 32; 718 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); 719 u16 i; 720 721 *rcd_delta = 0; 722 723 if (is_async) { 724 /* shouldn't get to wraparound: 725 * too long in async stage, something bad happened 726 */ 727 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) 728 return false; 729 730 /* asynchronous stage: log all headers seq such that 731 * req_seq <= seq <= end_seq, and wait for real resync request 732 */ 733 if (before(*seq, req_seq)) 734 return false; 735 if (!after(*seq, req_end) && 736 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) 737 resync_async->log[resync_async->loglen++] = *seq; 738 739 resync_async->rcd_delta++; 740 741 return false; 742 } 743 744 /* synchronous stage: check against the logged entries and 745 * proceed to check the next entries if no match was found 746 */ 747 for (i = 0; i < resync_async->loglen; i++) 748 if (req_seq == resync_async->log[i] && 749 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { 750 *rcd_delta = resync_async->rcd_delta - i; 751 *seq = req_seq; 752 resync_async->loglen = 0; 753 resync_async->rcd_delta = 0; 754 return true; 755 } 756 757 resync_async->loglen = 0; 758 resync_async->rcd_delta = 0; 759 760 if (req_seq == *seq && 761 atomic64_try_cmpxchg(&resync_async->req, 762 &resync_req, 0)) 763 return true; 764 765 return false; 766 } 767 768 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) 769 { 770 struct tls_context *tls_ctx = tls_get_ctx(sk); 771 struct tls_offload_context_rx *rx_ctx; 772 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 773 u32 sock_data, is_req_pending; 774 struct tls_prot_info *prot; 775 s64 resync_req; 776 u16 rcd_delta; 777 u32 req_seq; 778 779 if (tls_ctx->rx_conf != TLS_HW) 780 return; 781 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) 782 return; 783 784 prot = &tls_ctx->prot_info; 785 rx_ctx = tls_offload_ctx_rx(tls_ctx); 786 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 787 788 switch (rx_ctx->resync_type) { 789 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: 790 resync_req = atomic64_read(&rx_ctx->resync_req); 791 req_seq = resync_req >> 32; 792 seq += TLS_HEADER_SIZE - 1; 793 is_req_pending = resync_req; 794 795 if (likely(!is_req_pending) || req_seq != seq || 796 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 797 return; 798 break; 799 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: 800 if (likely(!rx_ctx->resync_nh_do_now)) 801 return; 802 803 /* head of next rec is already in, note that the sock_inq will 804 * include the currently parsed message when called from parser 805 */ 806 sock_data = tcp_inq(sk); 807 if (sock_data > rcd_len) { 808 trace_tls_device_rx_resync_nh_delay(sk, sock_data, 809 rcd_len); 810 return; 811 } 812 813 rx_ctx->resync_nh_do_now = 0; 814 seq += rcd_len; 815 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 816 break; 817 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: 818 resync_req = atomic64_read(&rx_ctx->resync_async->req); 819 is_req_pending = resync_req; 820 if (likely(!is_req_pending)) 821 return; 822 823 if (!tls_device_rx_resync_async(rx_ctx->resync_async, 824 resync_req, &seq, &rcd_delta)) 825 return; 826 tls_bigint_subtract(rcd_sn, rcd_delta); 827 break; 828 } 829 830 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); 831 } 832 833 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, 834 struct tls_offload_context_rx *ctx, 835 struct sock *sk, struct sk_buff *skb) 836 { 837 struct strp_msg *rxm; 838 839 /* device will request resyncs by itself based on stream scan */ 840 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) 841 return; 842 /* already scheduled */ 843 if (ctx->resync_nh_do_now) 844 return; 845 /* seen decrypted fragments since last fully-failed record */ 846 if (ctx->resync_nh_reset) { 847 ctx->resync_nh_reset = 0; 848 ctx->resync_nh.decrypted_failed = 1; 849 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; 850 return; 851 } 852 853 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) 854 return; 855 856 /* doing resync, bump the next target in case it fails */ 857 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) 858 ctx->resync_nh.decrypted_tgt *= 2; 859 else 860 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; 861 862 rxm = strp_msg(skb); 863 864 /* head of next rec is already in, parser will sync for us */ 865 if (tcp_inq(sk) > rxm->full_len) { 866 trace_tls_device_rx_resync_nh_schedule(sk); 867 ctx->resync_nh_do_now = 1; 868 } else { 869 struct tls_prot_info *prot = &tls_ctx->prot_info; 870 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 871 872 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 873 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 874 875 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, 876 rcd_sn); 877 } 878 } 879 880 static int 881 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx) 882 { 883 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); 884 const struct tls_cipher_desc *cipher_desc; 885 int err, offset, copy, data_len, pos; 886 struct sk_buff *skb, *skb_iter; 887 struct scatterlist sg[1]; 888 struct strp_msg *rxm; 889 char *orig_buf, *buf; 890 891 cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type); 892 DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable); 893 894 rxm = strp_msg(tls_strp_msg(sw_ctx)); 895 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv, 896 sk->sk_allocation); 897 if (!orig_buf) 898 return -ENOMEM; 899 buf = orig_buf; 900 901 err = tls_strp_msg_cow(sw_ctx); 902 if (unlikely(err)) 903 goto free_buf; 904 905 skb = tls_strp_msg(sw_ctx); 906 rxm = strp_msg(skb); 907 offset = rxm->offset; 908 909 sg_init_table(sg, 1); 910 sg_set_buf(&sg[0], buf, 911 rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv); 912 err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv); 913 if (err) 914 goto free_buf; 915 916 /* We are interested only in the decrypted data not the auth */ 917 err = decrypt_skb(sk, sg); 918 if (err != -EBADMSG) 919 goto free_buf; 920 else 921 err = 0; 922 923 data_len = rxm->full_len - cipher_desc->tag; 924 925 if (skb_pagelen(skb) > offset) { 926 copy = min_t(int, skb_pagelen(skb) - offset, data_len); 927 928 if (skb->decrypted) { 929 err = skb_store_bits(skb, offset, buf, copy); 930 if (err) 931 goto free_buf; 932 } 933 934 offset += copy; 935 buf += copy; 936 } 937 938 pos = skb_pagelen(skb); 939 skb_walk_frags(skb, skb_iter) { 940 int frag_pos; 941 942 /* Practically all frags must belong to msg if reencrypt 943 * is needed with current strparser and coalescing logic, 944 * but strparser may "get optimized", so let's be safe. 945 */ 946 if (pos + skb_iter->len <= offset) 947 goto done_with_frag; 948 if (pos >= data_len + rxm->offset) 949 break; 950 951 frag_pos = offset - pos; 952 copy = min_t(int, skb_iter->len - frag_pos, 953 data_len + rxm->offset - offset); 954 955 if (skb_iter->decrypted) { 956 err = skb_store_bits(skb_iter, frag_pos, buf, copy); 957 if (err) 958 goto free_buf; 959 } 960 961 offset += copy; 962 buf += copy; 963 done_with_frag: 964 pos += skb_iter->len; 965 } 966 967 free_buf: 968 kfree(orig_buf); 969 return err; 970 } 971 972 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) 973 { 974 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 975 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); 976 struct sk_buff *skb = tls_strp_msg(sw_ctx); 977 struct strp_msg *rxm = strp_msg(skb); 978 int is_decrypted, is_encrypted; 979 980 if (!tls_strp_msg_mixed_decrypted(sw_ctx)) { 981 is_decrypted = skb->decrypted; 982 is_encrypted = !is_decrypted; 983 } else { 984 is_decrypted = 0; 985 is_encrypted = 0; 986 } 987 988 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, 989 tls_ctx->rx.rec_seq, rxm->full_len, 990 is_encrypted, is_decrypted); 991 992 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) { 993 if (likely(is_encrypted || is_decrypted)) 994 return is_decrypted; 995 996 /* After tls_device_down disables the offload, the next SKB will 997 * likely have initial fragments decrypted, and final ones not 998 * decrypted. We need to reencrypt that single SKB. 999 */ 1000 return tls_device_reencrypt(sk, tls_ctx); 1001 } 1002 1003 /* Return immediately if the record is either entirely plaintext or 1004 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 1005 * record. 1006 */ 1007 if (is_decrypted) { 1008 ctx->resync_nh_reset = 1; 1009 return is_decrypted; 1010 } 1011 if (is_encrypted) { 1012 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); 1013 return 0; 1014 } 1015 1016 ctx->resync_nh_reset = 1; 1017 return tls_device_reencrypt(sk, tls_ctx); 1018 } 1019 1020 static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 1021 struct net_device *netdev) 1022 { 1023 if (sk->sk_destruct != tls_device_sk_destruct) { 1024 refcount_set(&ctx->refcount, 1); 1025 dev_hold(netdev); 1026 RCU_INIT_POINTER(ctx->netdev, netdev); 1027 spin_lock_irq(&tls_device_lock); 1028 list_add_tail(&ctx->list, &tls_device_list); 1029 spin_unlock_irq(&tls_device_lock); 1030 1031 ctx->sk_destruct = sk->sk_destruct; 1032 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); 1033 } 1034 } 1035 1036 static struct tls_offload_context_tx *alloc_offload_ctx_tx(struct tls_context *ctx) 1037 { 1038 struct tls_offload_context_tx *offload_ctx; 1039 __be64 rcd_sn; 1040 1041 offload_ctx = kzalloc(sizeof(*offload_ctx), GFP_KERNEL); 1042 if (!offload_ctx) 1043 return NULL; 1044 1045 INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task); 1046 INIT_LIST_HEAD(&offload_ctx->records_list); 1047 spin_lock_init(&offload_ctx->lock); 1048 sg_init_table(offload_ctx->sg_tx_data, 1049 ARRAY_SIZE(offload_ctx->sg_tx_data)); 1050 1051 /* start at rec_seq - 1 to account for the start marker record */ 1052 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 1053 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 1054 1055 offload_ctx->ctx = ctx; 1056 1057 return offload_ctx; 1058 } 1059 1060 int tls_set_device_offload(struct sock *sk) 1061 { 1062 struct tls_record_info *start_marker_record; 1063 struct tls_offload_context_tx *offload_ctx; 1064 const struct tls_cipher_desc *cipher_desc; 1065 struct tls_crypto_info *crypto_info; 1066 struct tls_prot_info *prot; 1067 struct net_device *netdev; 1068 struct tls_context *ctx; 1069 char *iv, *rec_seq; 1070 int rc; 1071 1072 ctx = tls_get_ctx(sk); 1073 prot = &ctx->prot_info; 1074 1075 if (ctx->priv_ctx_tx) 1076 return -EEXIST; 1077 1078 netdev = get_netdev_for_sock(sk); 1079 if (!netdev) { 1080 pr_err_ratelimited("%s: netdev not found\n", __func__); 1081 return -EINVAL; 1082 } 1083 1084 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 1085 rc = -EOPNOTSUPP; 1086 goto release_netdev; 1087 } 1088 1089 crypto_info = &ctx->crypto_send.info; 1090 if (crypto_info->version != TLS_1_2_VERSION) { 1091 rc = -EOPNOTSUPP; 1092 goto release_netdev; 1093 } 1094 1095 cipher_desc = get_cipher_desc(crypto_info->cipher_type); 1096 if (!cipher_desc || !cipher_desc->offloadable) { 1097 rc = -EINVAL; 1098 goto release_netdev; 1099 } 1100 1101 rc = init_prot_info(prot, crypto_info, cipher_desc); 1102 if (rc) 1103 goto release_netdev; 1104 1105 iv = crypto_info_iv(crypto_info, cipher_desc); 1106 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc); 1107 1108 memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv); 1109 memcpy(ctx->tx.rec_seq, rec_seq, cipher_desc->rec_seq); 1110 1111 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 1112 if (!start_marker_record) { 1113 rc = -ENOMEM; 1114 goto release_netdev; 1115 } 1116 1117 offload_ctx = alloc_offload_ctx_tx(ctx); 1118 if (!offload_ctx) { 1119 rc = -ENOMEM; 1120 goto free_marker_record; 1121 } 1122 1123 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 1124 if (rc) 1125 goto free_offload_ctx; 1126 1127 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 1128 start_marker_record->len = 0; 1129 start_marker_record->num_frags = 0; 1130 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 1131 1132 clean_acked_data_enable(tcp_sk(sk), &tls_tcp_clean_acked); 1133 ctx->push_pending_record = tls_device_push_pending_record; 1134 1135 /* TLS offload is greatly simplified if we don't send 1136 * SKBs where only part of the payload needs to be encrypted. 1137 * So mark the last skb in the write queue as end of record. 1138 */ 1139 tcp_write_collapse_fence(sk); 1140 1141 /* Avoid offloading if the device is down 1142 * We don't want to offload new flows after 1143 * the NETDEV_DOWN event 1144 * 1145 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1146 * handler thus protecting from the device going down before 1147 * ctx was added to tls_device_list. 1148 */ 1149 down_read(&device_offload_lock); 1150 if (!(netdev->flags & IFF_UP)) { 1151 rc = -EINVAL; 1152 goto release_lock; 1153 } 1154 1155 ctx->priv_ctx_tx = offload_ctx; 1156 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 1157 &ctx->crypto_send.info, 1158 tcp_sk(sk)->write_seq); 1159 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, 1160 tcp_sk(sk)->write_seq, rec_seq, rc); 1161 if (rc) 1162 goto release_lock; 1163 1164 tls_device_attach(ctx, sk, netdev); 1165 up_read(&device_offload_lock); 1166 1167 /* following this assignment tls_is_skb_tx_device_offloaded 1168 * will return true and the context might be accessed 1169 * by the netdev's xmit function. 1170 */ 1171 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 1172 dev_put(netdev); 1173 1174 return 0; 1175 1176 release_lock: 1177 up_read(&device_offload_lock); 1178 clean_acked_data_disable(tcp_sk(sk)); 1179 crypto_free_aead(offload_ctx->aead_send); 1180 free_offload_ctx: 1181 kfree(offload_ctx); 1182 ctx->priv_ctx_tx = NULL; 1183 free_marker_record: 1184 kfree(start_marker_record); 1185 release_netdev: 1186 dev_put(netdev); 1187 return rc; 1188 } 1189 1190 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 1191 { 1192 struct tls12_crypto_info_aes_gcm_128 *info; 1193 struct tls_offload_context_rx *context; 1194 struct net_device *netdev; 1195 int rc = 0; 1196 1197 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) 1198 return -EOPNOTSUPP; 1199 1200 netdev = get_netdev_for_sock(sk); 1201 if (!netdev) { 1202 pr_err_ratelimited("%s: netdev not found\n", __func__); 1203 return -EINVAL; 1204 } 1205 1206 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 1207 rc = -EOPNOTSUPP; 1208 goto release_netdev; 1209 } 1210 1211 /* Avoid offloading if the device is down 1212 * We don't want to offload new flows after 1213 * the NETDEV_DOWN event 1214 * 1215 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1216 * handler thus protecting from the device going down before 1217 * ctx was added to tls_device_list. 1218 */ 1219 down_read(&device_offload_lock); 1220 if (!(netdev->flags & IFF_UP)) { 1221 rc = -EINVAL; 1222 goto release_lock; 1223 } 1224 1225 context = kzalloc(sizeof(*context), GFP_KERNEL); 1226 if (!context) { 1227 rc = -ENOMEM; 1228 goto release_lock; 1229 } 1230 context->resync_nh_reset = 1; 1231 1232 ctx->priv_ctx_rx = context; 1233 rc = tls_set_sw_offload(sk, 0, NULL); 1234 if (rc) 1235 goto release_ctx; 1236 1237 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 1238 &ctx->crypto_recv.info, 1239 tcp_sk(sk)->copied_seq); 1240 info = (void *)&ctx->crypto_recv.info; 1241 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, 1242 tcp_sk(sk)->copied_seq, info->rec_seq, rc); 1243 if (rc) 1244 goto free_sw_resources; 1245 1246 tls_device_attach(ctx, sk, netdev); 1247 up_read(&device_offload_lock); 1248 1249 dev_put(netdev); 1250 1251 return 0; 1252 1253 free_sw_resources: 1254 up_read(&device_offload_lock); 1255 tls_sw_free_resources_rx(sk); 1256 down_read(&device_offload_lock); 1257 release_ctx: 1258 ctx->priv_ctx_rx = NULL; 1259 release_lock: 1260 up_read(&device_offload_lock); 1261 release_netdev: 1262 dev_put(netdev); 1263 return rc; 1264 } 1265 1266 void tls_device_offload_cleanup_rx(struct sock *sk) 1267 { 1268 struct tls_context *tls_ctx = tls_get_ctx(sk); 1269 struct net_device *netdev; 1270 1271 down_read(&device_offload_lock); 1272 netdev = rcu_dereference_protected(tls_ctx->netdev, 1273 lockdep_is_held(&device_offload_lock)); 1274 if (!netdev) 1275 goto out; 1276 1277 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 1278 TLS_OFFLOAD_CTX_DIR_RX); 1279 1280 if (tls_ctx->tx_conf != TLS_HW) { 1281 dev_put(netdev); 1282 rcu_assign_pointer(tls_ctx->netdev, NULL); 1283 } else { 1284 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); 1285 } 1286 out: 1287 up_read(&device_offload_lock); 1288 tls_sw_release_resources_rx(sk); 1289 } 1290 1291 static int tls_device_down(struct net_device *netdev) 1292 { 1293 struct tls_context *ctx, *tmp; 1294 unsigned long flags; 1295 LIST_HEAD(list); 1296 1297 /* Request a write lock to block new offload attempts */ 1298 down_write(&device_offload_lock); 1299 1300 spin_lock_irqsave(&tls_device_lock, flags); 1301 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 1302 struct net_device *ctx_netdev = 1303 rcu_dereference_protected(ctx->netdev, 1304 lockdep_is_held(&device_offload_lock)); 1305 1306 if (ctx_netdev != netdev || 1307 !refcount_inc_not_zero(&ctx->refcount)) 1308 continue; 1309 1310 list_move(&ctx->list, &list); 1311 } 1312 spin_unlock_irqrestore(&tls_device_lock, flags); 1313 1314 list_for_each_entry_safe(ctx, tmp, &list, list) { 1315 /* Stop offloaded TX and switch to the fallback. 1316 * tls_is_skb_tx_device_offloaded will return false. 1317 */ 1318 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw); 1319 1320 /* Stop the RX and TX resync. 1321 * tls_dev_resync must not be called after tls_dev_del. 1322 */ 1323 rcu_assign_pointer(ctx->netdev, NULL); 1324 1325 /* Start skipping the RX resync logic completely. */ 1326 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags); 1327 1328 /* Sync with inflight packets. After this point: 1329 * TX: no non-encrypted packets will be passed to the driver. 1330 * RX: resync requests from the driver will be ignored. 1331 */ 1332 synchronize_net(); 1333 1334 /* Release the offload context on the driver side. */ 1335 if (ctx->tx_conf == TLS_HW) 1336 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1337 TLS_OFFLOAD_CTX_DIR_TX); 1338 if (ctx->rx_conf == TLS_HW && 1339 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) 1340 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1341 TLS_OFFLOAD_CTX_DIR_RX); 1342 1343 dev_put(netdev); 1344 1345 /* Move the context to a separate list for two reasons: 1346 * 1. When the context is deallocated, list_del is called. 1347 * 2. It's no longer an offloaded context, so we don't want to 1348 * run offload-specific code on this context. 1349 */ 1350 spin_lock_irqsave(&tls_device_lock, flags); 1351 list_move_tail(&ctx->list, &tls_device_down_list); 1352 spin_unlock_irqrestore(&tls_device_lock, flags); 1353 1354 /* Device contexts for RX and TX will be freed in on sk_destruct 1355 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW. 1356 * Now release the ref taken above. 1357 */ 1358 if (refcount_dec_and_test(&ctx->refcount)) { 1359 /* sk_destruct ran after tls_device_down took a ref, and 1360 * it returned early. Complete the destruction here. 1361 */ 1362 list_del(&ctx->list); 1363 tls_device_free_ctx(ctx); 1364 } 1365 } 1366 1367 up_write(&device_offload_lock); 1368 1369 flush_workqueue(destruct_wq); 1370 1371 return NOTIFY_DONE; 1372 } 1373 1374 static int tls_dev_event(struct notifier_block *this, unsigned long event, 1375 void *ptr) 1376 { 1377 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1378 1379 if (!dev->tlsdev_ops && 1380 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 1381 return NOTIFY_DONE; 1382 1383 switch (event) { 1384 case NETDEV_REGISTER: 1385 case NETDEV_FEAT_CHANGE: 1386 if (netif_is_bond_master(dev)) 1387 return NOTIFY_DONE; 1388 if ((dev->features & NETIF_F_HW_TLS_RX) && 1389 !dev->tlsdev_ops->tls_dev_resync) 1390 return NOTIFY_BAD; 1391 1392 if (dev->tlsdev_ops && 1393 dev->tlsdev_ops->tls_dev_add && 1394 dev->tlsdev_ops->tls_dev_del) 1395 return NOTIFY_DONE; 1396 else 1397 return NOTIFY_BAD; 1398 case NETDEV_DOWN: 1399 return tls_device_down(dev); 1400 } 1401 return NOTIFY_DONE; 1402 } 1403 1404 static struct notifier_block tls_dev_notifier = { 1405 .notifier_call = tls_dev_event, 1406 }; 1407 1408 int __init tls_device_init(void) 1409 { 1410 int err; 1411 1412 dummy_page = alloc_page(GFP_KERNEL); 1413 if (!dummy_page) 1414 return -ENOMEM; 1415 1416 destruct_wq = alloc_workqueue("ktls_device_destruct", WQ_PERCPU, 0); 1417 if (!destruct_wq) { 1418 err = -ENOMEM; 1419 goto err_free_dummy; 1420 } 1421 1422 err = register_netdevice_notifier(&tls_dev_notifier); 1423 if (err) 1424 goto err_destroy_wq; 1425 1426 return 0; 1427 1428 err_destroy_wq: 1429 destroy_workqueue(destruct_wq); 1430 err_free_dummy: 1431 put_page(dummy_page); 1432 return err; 1433 } 1434 1435 void __exit tls_device_cleanup(void) 1436 { 1437 unregister_netdevice_notifier(&tls_dev_notifier); 1438 destroy_workqueue(destruct_wq); 1439 clean_acked_data_flush(); 1440 put_page(dummy_page); 1441 } 1442