xref: /linux/net/tls/tls_device.c (revision 1bc80d673087e5704adbb3ee8e4b785c14899cce)
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40 #include <linux/skbuff_ref.h>
41 
42 #include "tls.h"
43 #include "trace.h"
44 
45 /* device_offload_lock is used to synchronize tls_dev_add
46  * against NETDEV_DOWN notifications.
47  */
48 static DECLARE_RWSEM(device_offload_lock);
49 
50 static struct workqueue_struct *destruct_wq __read_mostly;
51 
52 static LIST_HEAD(tls_device_list);
53 static LIST_HEAD(tls_device_down_list);
54 static DEFINE_SPINLOCK(tls_device_lock);
55 
56 static struct page *dummy_page;
57 
58 static void tls_device_free_ctx(struct tls_context *ctx)
59 {
60 	if (ctx->tx_conf == TLS_HW)
61 		kfree(tls_offload_ctx_tx(ctx));
62 
63 	if (ctx->rx_conf == TLS_HW)
64 		kfree(tls_offload_ctx_rx(ctx));
65 
66 	tls_ctx_free(NULL, ctx);
67 }
68 
69 static void tls_device_tx_del_task(struct work_struct *work)
70 {
71 	struct tls_offload_context_tx *offload_ctx =
72 		container_of(work, struct tls_offload_context_tx, destruct_work);
73 	struct tls_context *ctx = offload_ctx->ctx;
74 	struct net_device *netdev;
75 
76 	/* Safe, because this is the destroy flow, refcount is 0, so
77 	 * tls_device_down can't store this field in parallel.
78 	 */
79 	netdev = rcu_dereference_protected(ctx->netdev,
80 					   !refcount_read(&ctx->refcount));
81 
82 	netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
83 	dev_put(netdev);
84 	ctx->netdev = NULL;
85 	tls_device_free_ctx(ctx);
86 }
87 
88 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
89 {
90 	struct net_device *netdev;
91 	unsigned long flags;
92 	bool async_cleanup;
93 
94 	spin_lock_irqsave(&tls_device_lock, flags);
95 	if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
96 		spin_unlock_irqrestore(&tls_device_lock, flags);
97 		return;
98 	}
99 
100 	list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
101 
102 	/* Safe, because this is the destroy flow, refcount is 0, so
103 	 * tls_device_down can't store this field in parallel.
104 	 */
105 	netdev = rcu_dereference_protected(ctx->netdev,
106 					   !refcount_read(&ctx->refcount));
107 
108 	async_cleanup = netdev && ctx->tx_conf == TLS_HW;
109 	if (async_cleanup) {
110 		struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
111 
112 		/* queue_work inside the spinlock
113 		 * to make sure tls_device_down waits for that work.
114 		 */
115 		queue_work(destruct_wq, &offload_ctx->destruct_work);
116 	}
117 	spin_unlock_irqrestore(&tls_device_lock, flags);
118 
119 	if (!async_cleanup)
120 		tls_device_free_ctx(ctx);
121 }
122 
123 /* We assume that the socket is already connected */
124 static struct net_device *get_netdev_for_sock(struct sock *sk)
125 {
126 	struct net_device *dev, *lowest_dev = NULL;
127 	struct dst_entry *dst;
128 
129 	rcu_read_lock();
130 	dst = __sk_dst_get(sk);
131 	dev = dst ? dst_dev_rcu(dst) : NULL;
132 	if (likely(dev)) {
133 		lowest_dev = netdev_sk_get_lowest_dev(dev, sk);
134 		dev_hold(lowest_dev);
135 	}
136 	rcu_read_unlock();
137 
138 	return lowest_dev;
139 }
140 
141 static void destroy_record(struct tls_record_info *record)
142 {
143 	int i;
144 
145 	for (i = 0; i < record->num_frags; i++)
146 		__skb_frag_unref(&record->frags[i], false);
147 	kfree(record);
148 }
149 
150 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
151 {
152 	struct tls_record_info *info, *temp;
153 
154 	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
155 		list_del(&info->list);
156 		destroy_record(info);
157 	}
158 
159 	offload_ctx->retransmit_hint = NULL;
160 }
161 
162 static void tls_tcp_clean_acked(struct sock *sk, u32 acked_seq)
163 {
164 	struct tls_context *tls_ctx = tls_get_ctx(sk);
165 	struct tls_record_info *info, *temp;
166 	struct tls_offload_context_tx *ctx;
167 	u64 deleted_records = 0;
168 	unsigned long flags;
169 
170 	if (!tls_ctx)
171 		return;
172 
173 	ctx = tls_offload_ctx_tx(tls_ctx);
174 
175 	spin_lock_irqsave(&ctx->lock, flags);
176 	info = ctx->retransmit_hint;
177 	if (info && !before(acked_seq, info->end_seq))
178 		ctx->retransmit_hint = NULL;
179 
180 	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
181 		if (before(acked_seq, info->end_seq))
182 			break;
183 		list_del(&info->list);
184 
185 		destroy_record(info);
186 		deleted_records++;
187 	}
188 
189 	ctx->unacked_record_sn += deleted_records;
190 	spin_unlock_irqrestore(&ctx->lock, flags);
191 }
192 
193 /* At this point, there should be no references on this
194  * socket and no in-flight SKBs associated with this
195  * socket, so it is safe to free all the resources.
196  */
197 void tls_device_sk_destruct(struct sock *sk)
198 {
199 	struct tls_context *tls_ctx = tls_get_ctx(sk);
200 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
201 
202 	tls_ctx->sk_destruct(sk);
203 
204 	if (tls_ctx->tx_conf == TLS_HW) {
205 		if (ctx->open_record)
206 			destroy_record(ctx->open_record);
207 		delete_all_records(ctx);
208 		crypto_free_aead(ctx->aead_send);
209 		clean_acked_data_disable(tcp_sk(sk));
210 	}
211 
212 	tls_device_queue_ctx_destruction(tls_ctx);
213 }
214 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
215 
216 void tls_device_free_resources_tx(struct sock *sk)
217 {
218 	struct tls_context *tls_ctx = tls_get_ctx(sk);
219 
220 	tls_free_partial_record(sk, tls_ctx);
221 }
222 
223 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
224 {
225 	struct tls_context *tls_ctx = tls_get_ctx(sk);
226 
227 	trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
228 	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
229 }
230 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
231 
232 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
233 				 u32 seq)
234 {
235 	struct net_device *netdev;
236 	int err = 0;
237 	u8 *rcd_sn;
238 
239 	tcp_write_collapse_fence(sk);
240 	rcd_sn = tls_ctx->tx.rec_seq;
241 
242 	trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
243 	down_read(&device_offload_lock);
244 	netdev = rcu_dereference_protected(tls_ctx->netdev,
245 					   lockdep_is_held(&device_offload_lock));
246 	if (netdev)
247 		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
248 							 rcd_sn,
249 							 TLS_OFFLOAD_CTX_DIR_TX);
250 	up_read(&device_offload_lock);
251 	if (err)
252 		return;
253 
254 	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
255 }
256 
257 static void tls_append_frag(struct tls_record_info *record,
258 			    struct page_frag *pfrag,
259 			    int size)
260 {
261 	skb_frag_t *frag;
262 
263 	frag = &record->frags[record->num_frags - 1];
264 	if (skb_frag_page(frag) == pfrag->page &&
265 	    skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
266 		skb_frag_size_add(frag, size);
267 	} else {
268 		++frag;
269 		skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
270 					size);
271 		++record->num_frags;
272 		get_page(pfrag->page);
273 	}
274 
275 	pfrag->offset += size;
276 	record->len += size;
277 }
278 
279 static int tls_push_record(struct sock *sk,
280 			   struct tls_context *ctx,
281 			   struct tls_offload_context_tx *offload_ctx,
282 			   struct tls_record_info *record,
283 			   int flags)
284 {
285 	struct tls_prot_info *prot = &ctx->prot_info;
286 	struct tcp_sock *tp = tcp_sk(sk);
287 	skb_frag_t *frag;
288 	int i;
289 
290 	record->end_seq = tp->write_seq + record->len;
291 	list_add_tail_rcu(&record->list, &offload_ctx->records_list);
292 	offload_ctx->open_record = NULL;
293 
294 	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
295 		tls_device_resync_tx(sk, ctx, tp->write_seq);
296 
297 	tls_advance_record_sn(sk, prot, &ctx->tx);
298 
299 	for (i = 0; i < record->num_frags; i++) {
300 		frag = &record->frags[i];
301 		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
302 		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
303 			    skb_frag_size(frag), skb_frag_off(frag));
304 		sk_mem_charge(sk, skb_frag_size(frag));
305 		get_page(skb_frag_page(frag));
306 	}
307 	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
308 
309 	/* all ready, send */
310 	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
311 }
312 
313 static void tls_device_record_close(struct sock *sk,
314 				    struct tls_context *ctx,
315 				    struct tls_record_info *record,
316 				    struct page_frag *pfrag,
317 				    unsigned char record_type)
318 {
319 	struct tls_prot_info *prot = &ctx->prot_info;
320 	struct page_frag dummy_tag_frag;
321 
322 	/* append tag
323 	 * device will fill in the tag, we just need to append a placeholder
324 	 * use socket memory to improve coalescing (re-using a single buffer
325 	 * increases frag count)
326 	 * if we can't allocate memory now use the dummy page
327 	 */
328 	if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) &&
329 	    !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) {
330 		dummy_tag_frag.page = dummy_page;
331 		dummy_tag_frag.offset = 0;
332 		pfrag = &dummy_tag_frag;
333 	}
334 	tls_append_frag(record, pfrag, prot->tag_size);
335 
336 	/* fill prepend */
337 	tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
338 			 record->len - prot->overhead_size,
339 			 record_type);
340 }
341 
342 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
343 				 struct page_frag *pfrag,
344 				 size_t prepend_size)
345 {
346 	struct tls_record_info *record;
347 	skb_frag_t *frag;
348 
349 	record = kmalloc(sizeof(*record), GFP_KERNEL);
350 	if (!record)
351 		return -ENOMEM;
352 
353 	frag = &record->frags[0];
354 	skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
355 				prepend_size);
356 
357 	get_page(pfrag->page);
358 	pfrag->offset += prepend_size;
359 
360 	record->num_frags = 1;
361 	record->len = prepend_size;
362 	offload_ctx->open_record = record;
363 	return 0;
364 }
365 
366 static int tls_do_allocation(struct sock *sk,
367 			     struct tls_offload_context_tx *offload_ctx,
368 			     struct page_frag *pfrag,
369 			     size_t prepend_size)
370 {
371 	int ret;
372 
373 	if (!offload_ctx->open_record) {
374 		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
375 						   sk->sk_allocation))) {
376 			if (!sk->sk_bypass_prot_mem)
377 				READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
378 			sk_stream_moderate_sndbuf(sk);
379 			return -ENOMEM;
380 		}
381 
382 		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
383 		if (ret)
384 			return ret;
385 
386 		if (pfrag->size > pfrag->offset)
387 			return 0;
388 	}
389 
390 	if (!sk_page_frag_refill(sk, pfrag))
391 		return -ENOMEM;
392 
393 	return 0;
394 }
395 
396 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
397 {
398 	size_t pre_copy, nocache;
399 
400 	pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
401 	if (pre_copy) {
402 		pre_copy = min(pre_copy, bytes);
403 		if (copy_from_iter(addr, pre_copy, i) != pre_copy)
404 			return -EFAULT;
405 		bytes -= pre_copy;
406 		addr += pre_copy;
407 	}
408 
409 	nocache = round_down(bytes, SMP_CACHE_BYTES);
410 	if (copy_from_iter_nocache(addr, nocache, i) != nocache)
411 		return -EFAULT;
412 	bytes -= nocache;
413 	addr += nocache;
414 
415 	if (bytes && copy_from_iter(addr, bytes, i) != bytes)
416 		return -EFAULT;
417 
418 	return 0;
419 }
420 
421 static int tls_push_data(struct sock *sk,
422 			 struct iov_iter *iter,
423 			 size_t size, int flags,
424 			 unsigned char record_type)
425 {
426 	struct tls_context *tls_ctx = tls_get_ctx(sk);
427 	struct tls_prot_info *prot = &tls_ctx->prot_info;
428 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
429 	struct tls_record_info *record;
430 	int tls_push_record_flags;
431 	struct page_frag *pfrag;
432 	size_t orig_size = size;
433 	u32 max_open_record_len;
434 	bool more = false;
435 	bool done = false;
436 	int copy, rc = 0;
437 	long timeo;
438 
439 	if (flags &
440 	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
441 	      MSG_SPLICE_PAGES | MSG_EOR))
442 		return -EOPNOTSUPP;
443 
444 	if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR))
445 		return -EINVAL;
446 
447 	if (unlikely(sk->sk_err))
448 		return -sk->sk_err;
449 
450 	flags |= MSG_SENDPAGE_DECRYPTED;
451 	tls_push_record_flags = flags | MSG_MORE;
452 
453 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
454 	if (tls_is_partially_sent_record(tls_ctx)) {
455 		rc = tls_push_partial_record(sk, tls_ctx, flags);
456 		if (rc < 0)
457 			return rc;
458 	}
459 
460 	pfrag = sk_page_frag(sk);
461 
462 	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
463 	 * we need to leave room for an authentication tag.
464 	 */
465 	max_open_record_len = tls_ctx->tx_max_payload_len +
466 			      prot->prepend_size;
467 	do {
468 		rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
469 		if (unlikely(rc)) {
470 			rc = sk_stream_wait_memory(sk, &timeo);
471 			if (!rc)
472 				continue;
473 
474 			record = ctx->open_record;
475 			if (!record)
476 				break;
477 handle_error:
478 			if (record_type != TLS_RECORD_TYPE_DATA) {
479 				/* avoid sending partial
480 				 * record with type !=
481 				 * application_data
482 				 */
483 				size = orig_size;
484 				destroy_record(record);
485 				ctx->open_record = NULL;
486 			} else if (record->len > prot->prepend_size) {
487 				goto last_record;
488 			}
489 
490 			break;
491 		}
492 
493 		record = ctx->open_record;
494 
495 		copy = min_t(size_t, size, max_open_record_len - record->len);
496 		if (copy && (flags & MSG_SPLICE_PAGES)) {
497 			struct page_frag zc_pfrag;
498 			struct page **pages = &zc_pfrag.page;
499 			size_t off;
500 
501 			rc = iov_iter_extract_pages(iter, &pages,
502 						    copy, 1, 0, &off);
503 			if (rc <= 0) {
504 				if (rc == 0)
505 					rc = -EIO;
506 				goto handle_error;
507 			}
508 			copy = rc;
509 
510 			if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) {
511 				iov_iter_revert(iter, copy);
512 				rc = -EIO;
513 				goto handle_error;
514 			}
515 
516 			zc_pfrag.offset = off;
517 			zc_pfrag.size = copy;
518 			tls_append_frag(record, &zc_pfrag, copy);
519 		} else if (copy) {
520 			copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
521 
522 			rc = tls_device_copy_data(page_address(pfrag->page) +
523 						  pfrag->offset, copy,
524 						  iter);
525 			if (rc)
526 				goto handle_error;
527 			tls_append_frag(record, pfrag, copy);
528 		}
529 
530 		size -= copy;
531 		if (!size) {
532 last_record:
533 			tls_push_record_flags = flags;
534 			if (flags & MSG_MORE) {
535 				more = true;
536 				break;
537 			}
538 
539 			done = true;
540 		}
541 
542 		if (done || record->len >= max_open_record_len ||
543 		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
544 			tls_device_record_close(sk, tls_ctx, record,
545 						pfrag, record_type);
546 
547 			rc = tls_push_record(sk,
548 					     tls_ctx,
549 					     ctx,
550 					     record,
551 					     tls_push_record_flags);
552 			if (rc < 0)
553 				break;
554 		}
555 	} while (!done);
556 
557 	tls_ctx->pending_open_record_frags = more;
558 
559 	if (orig_size - size > 0)
560 		rc = orig_size - size;
561 
562 	return rc;
563 }
564 
565 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
566 {
567 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
568 	struct tls_context *tls_ctx = tls_get_ctx(sk);
569 	int rc;
570 
571 	if (!tls_ctx->zerocopy_sendfile)
572 		msg->msg_flags &= ~MSG_SPLICE_PAGES;
573 
574 	mutex_lock(&tls_ctx->tx_lock);
575 	lock_sock(sk);
576 
577 	if (unlikely(msg->msg_controllen)) {
578 		rc = tls_process_cmsg(sk, msg, &record_type);
579 		if (rc)
580 			goto out;
581 	}
582 
583 	rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags,
584 			   record_type);
585 
586 out:
587 	release_sock(sk);
588 	mutex_unlock(&tls_ctx->tx_lock);
589 	return rc;
590 }
591 
592 void tls_device_splice_eof(struct socket *sock)
593 {
594 	struct sock *sk = sock->sk;
595 	struct tls_context *tls_ctx = tls_get_ctx(sk);
596 	struct iov_iter iter = {};
597 
598 	if (!tls_is_partially_sent_record(tls_ctx))
599 		return;
600 
601 	mutex_lock(&tls_ctx->tx_lock);
602 	lock_sock(sk);
603 
604 	if (tls_is_partially_sent_record(tls_ctx)) {
605 		iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0);
606 		tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA);
607 	}
608 
609 	release_sock(sk);
610 	mutex_unlock(&tls_ctx->tx_lock);
611 }
612 
613 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
614 				       u32 seq, u64 *p_record_sn)
615 {
616 	u64 record_sn = context->hint_record_sn;
617 	struct tls_record_info *info, *last;
618 
619 	info = context->retransmit_hint;
620 	if (!info ||
621 	    before(seq, info->end_seq - info->len)) {
622 		/* if retransmit_hint is irrelevant start
623 		 * from the beginning of the list
624 		 */
625 		info = list_first_entry_or_null(&context->records_list,
626 						struct tls_record_info, list);
627 		if (!info)
628 			return NULL;
629 		/* send the start_marker record if seq number is before the
630 		 * tls offload start marker sequence number. This record is
631 		 * required to handle TCP packets which are before TLS offload
632 		 * started.
633 		 *  And if it's not start marker, look if this seq number
634 		 * belongs to the list.
635 		 */
636 		if (likely(!tls_record_is_start_marker(info))) {
637 			/* we have the first record, get the last record to see
638 			 * if this seq number belongs to the list.
639 			 */
640 			last = list_last_entry(&context->records_list,
641 					       struct tls_record_info, list);
642 
643 			if (!between(seq, tls_record_start_seq(info),
644 				     last->end_seq))
645 				return NULL;
646 		}
647 		record_sn = context->unacked_record_sn;
648 	}
649 
650 	/* We just need the _rcu for the READ_ONCE() */
651 	rcu_read_lock();
652 	list_for_each_entry_from_rcu(info, &context->records_list, list) {
653 		if (before(seq, info->end_seq)) {
654 			if (!context->retransmit_hint ||
655 			    after(info->end_seq,
656 				  context->retransmit_hint->end_seq)) {
657 				context->hint_record_sn = record_sn;
658 				context->retransmit_hint = info;
659 			}
660 			*p_record_sn = record_sn;
661 			goto exit_rcu_unlock;
662 		}
663 		record_sn++;
664 	}
665 	info = NULL;
666 
667 exit_rcu_unlock:
668 	rcu_read_unlock();
669 	return info;
670 }
671 EXPORT_SYMBOL(tls_get_record);
672 
673 static int tls_device_push_pending_record(struct sock *sk, int flags)
674 {
675 	struct iov_iter iter;
676 
677 	iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0);
678 	return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA);
679 }
680 
681 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
682 {
683 	if (tls_is_partially_sent_record(ctx)) {
684 		gfp_t sk_allocation = sk->sk_allocation;
685 
686 		WARN_ON_ONCE(sk->sk_write_pending);
687 
688 		sk->sk_allocation = GFP_ATOMIC;
689 		tls_push_partial_record(sk, ctx,
690 					MSG_DONTWAIT | MSG_NOSIGNAL |
691 					MSG_SENDPAGE_DECRYPTED);
692 		sk->sk_allocation = sk_allocation;
693 	}
694 }
695 
696 static void tls_device_resync_rx(struct tls_context *tls_ctx,
697 				 struct sock *sk, u32 seq, u8 *rcd_sn)
698 {
699 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
700 	struct net_device *netdev;
701 
702 	trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
703 	rcu_read_lock();
704 	netdev = rcu_dereference(tls_ctx->netdev);
705 	if (netdev)
706 		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
707 						   TLS_OFFLOAD_CTX_DIR_RX);
708 	rcu_read_unlock();
709 	TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
710 }
711 
712 static bool
713 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
714 			   s64 resync_req, u32 *seq, u16 *rcd_delta)
715 {
716 	u32 is_async = resync_req & RESYNC_REQ_ASYNC;
717 	u32 req_seq = resync_req >> 32;
718 	u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
719 	u16 i;
720 
721 	*rcd_delta = 0;
722 
723 	if (is_async) {
724 		/* shouldn't get to wraparound:
725 		 * too long in async stage, something bad happened
726 		 */
727 		if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
728 			return false;
729 
730 		/* asynchronous stage: log all headers seq such that
731 		 * req_seq <= seq <= end_seq, and wait for real resync request
732 		 */
733 		if (before(*seq, req_seq))
734 			return false;
735 		if (!after(*seq, req_end) &&
736 		    resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
737 			resync_async->log[resync_async->loglen++] = *seq;
738 
739 		resync_async->rcd_delta++;
740 
741 		return false;
742 	}
743 
744 	/* synchronous stage: check against the logged entries and
745 	 * proceed to check the next entries if no match was found
746 	 */
747 	for (i = 0; i < resync_async->loglen; i++)
748 		if (req_seq == resync_async->log[i] &&
749 		    atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
750 			*rcd_delta = resync_async->rcd_delta - i;
751 			*seq = req_seq;
752 			resync_async->loglen = 0;
753 			resync_async->rcd_delta = 0;
754 			return true;
755 		}
756 
757 	resync_async->loglen = 0;
758 	resync_async->rcd_delta = 0;
759 
760 	if (req_seq == *seq &&
761 	    atomic64_try_cmpxchg(&resync_async->req,
762 				 &resync_req, 0))
763 		return true;
764 
765 	return false;
766 }
767 
768 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
769 {
770 	struct tls_context *tls_ctx = tls_get_ctx(sk);
771 	struct tls_offload_context_rx *rx_ctx;
772 	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
773 	u32 sock_data, is_req_pending;
774 	struct tls_prot_info *prot;
775 	s64 resync_req;
776 	u16 rcd_delta;
777 	u32 req_seq;
778 
779 	if (tls_ctx->rx_conf != TLS_HW)
780 		return;
781 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
782 		return;
783 
784 	prot = &tls_ctx->prot_info;
785 	rx_ctx = tls_offload_ctx_rx(tls_ctx);
786 	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
787 
788 	switch (rx_ctx->resync_type) {
789 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
790 		resync_req = atomic64_read(&rx_ctx->resync_req);
791 		req_seq = resync_req >> 32;
792 		seq += TLS_HEADER_SIZE - 1;
793 		is_req_pending = resync_req;
794 
795 		if (likely(!is_req_pending) || req_seq != seq ||
796 		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
797 			return;
798 		break;
799 	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
800 		if (likely(!rx_ctx->resync_nh_do_now))
801 			return;
802 
803 		/* head of next rec is already in, note that the sock_inq will
804 		 * include the currently parsed message when called from parser
805 		 */
806 		sock_data = tcp_inq(sk);
807 		if (sock_data > rcd_len) {
808 			trace_tls_device_rx_resync_nh_delay(sk, sock_data,
809 							    rcd_len);
810 			return;
811 		}
812 
813 		rx_ctx->resync_nh_do_now = 0;
814 		seq += rcd_len;
815 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
816 		break;
817 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
818 		resync_req = atomic64_read(&rx_ctx->resync_async->req);
819 		is_req_pending = resync_req;
820 		if (likely(!is_req_pending))
821 			return;
822 
823 		if (!tls_device_rx_resync_async(rx_ctx->resync_async,
824 						resync_req, &seq, &rcd_delta))
825 			return;
826 		tls_bigint_subtract(rcd_sn, rcd_delta);
827 		break;
828 	}
829 
830 	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
831 }
832 
833 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
834 					   struct tls_offload_context_rx *ctx,
835 					   struct sock *sk, struct sk_buff *skb)
836 {
837 	struct strp_msg *rxm;
838 
839 	/* device will request resyncs by itself based on stream scan */
840 	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
841 		return;
842 	/* already scheduled */
843 	if (ctx->resync_nh_do_now)
844 		return;
845 	/* seen decrypted fragments since last fully-failed record */
846 	if (ctx->resync_nh_reset) {
847 		ctx->resync_nh_reset = 0;
848 		ctx->resync_nh.decrypted_failed = 1;
849 		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
850 		return;
851 	}
852 
853 	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
854 		return;
855 
856 	/* doing resync, bump the next target in case it fails */
857 	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
858 		ctx->resync_nh.decrypted_tgt *= 2;
859 	else
860 		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
861 
862 	rxm = strp_msg(skb);
863 
864 	/* head of next rec is already in, parser will sync for us */
865 	if (tcp_inq(sk) > rxm->full_len) {
866 		trace_tls_device_rx_resync_nh_schedule(sk);
867 		ctx->resync_nh_do_now = 1;
868 	} else {
869 		struct tls_prot_info *prot = &tls_ctx->prot_info;
870 		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
871 
872 		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
873 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
874 
875 		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
876 				     rcd_sn);
877 	}
878 }
879 
880 static int
881 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
882 {
883 	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
884 	const struct tls_cipher_desc *cipher_desc;
885 	int err, offset, copy, data_len, pos;
886 	struct sk_buff *skb, *skb_iter;
887 	struct scatterlist sg[1];
888 	struct strp_msg *rxm;
889 	char *orig_buf, *buf;
890 
891 	cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type);
892 	DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable);
893 
894 	rxm = strp_msg(tls_strp_msg(sw_ctx));
895 	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv,
896 			   sk->sk_allocation);
897 	if (!orig_buf)
898 		return -ENOMEM;
899 	buf = orig_buf;
900 
901 	err = tls_strp_msg_cow(sw_ctx);
902 	if (unlikely(err))
903 		goto free_buf;
904 
905 	skb = tls_strp_msg(sw_ctx);
906 	rxm = strp_msg(skb);
907 	offset = rxm->offset;
908 
909 	sg_init_table(sg, 1);
910 	sg_set_buf(&sg[0], buf,
911 		   rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv);
912 	err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv);
913 	if (err)
914 		goto free_buf;
915 
916 	/* We are interested only in the decrypted data not the auth */
917 	err = decrypt_skb(sk, sg);
918 	if (err != -EBADMSG)
919 		goto free_buf;
920 	else
921 		err = 0;
922 
923 	data_len = rxm->full_len - cipher_desc->tag;
924 
925 	if (skb_pagelen(skb) > offset) {
926 		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
927 
928 		if (skb->decrypted) {
929 			err = skb_store_bits(skb, offset, buf, copy);
930 			if (err)
931 				goto free_buf;
932 		}
933 
934 		offset += copy;
935 		buf += copy;
936 	}
937 
938 	pos = skb_pagelen(skb);
939 	skb_walk_frags(skb, skb_iter) {
940 		int frag_pos;
941 
942 		/* Practically all frags must belong to msg if reencrypt
943 		 * is needed with current strparser and coalescing logic,
944 		 * but strparser may "get optimized", so let's be safe.
945 		 */
946 		if (pos + skb_iter->len <= offset)
947 			goto done_with_frag;
948 		if (pos >= data_len + rxm->offset)
949 			break;
950 
951 		frag_pos = offset - pos;
952 		copy = min_t(int, skb_iter->len - frag_pos,
953 			     data_len + rxm->offset - offset);
954 
955 		if (skb_iter->decrypted) {
956 			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
957 			if (err)
958 				goto free_buf;
959 		}
960 
961 		offset += copy;
962 		buf += copy;
963 done_with_frag:
964 		pos += skb_iter->len;
965 	}
966 
967 free_buf:
968 	kfree(orig_buf);
969 	return err;
970 }
971 
972 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
973 {
974 	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
975 	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
976 	struct sk_buff *skb = tls_strp_msg(sw_ctx);
977 	struct strp_msg *rxm = strp_msg(skb);
978 	int is_decrypted, is_encrypted;
979 
980 	if (!tls_strp_msg_mixed_decrypted(sw_ctx)) {
981 		is_decrypted = skb->decrypted;
982 		is_encrypted = !is_decrypted;
983 	} else {
984 		is_decrypted = 0;
985 		is_encrypted = 0;
986 	}
987 
988 	trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
989 				   tls_ctx->rx.rec_seq, rxm->full_len,
990 				   is_encrypted, is_decrypted);
991 
992 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
993 		if (likely(is_encrypted || is_decrypted))
994 			return is_decrypted;
995 
996 		/* After tls_device_down disables the offload, the next SKB will
997 		 * likely have initial fragments decrypted, and final ones not
998 		 * decrypted. We need to reencrypt that single SKB.
999 		 */
1000 		return tls_device_reencrypt(sk, tls_ctx);
1001 	}
1002 
1003 	/* Return immediately if the record is either entirely plaintext or
1004 	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1005 	 * record.
1006 	 */
1007 	if (is_decrypted) {
1008 		ctx->resync_nh_reset = 1;
1009 		return is_decrypted;
1010 	}
1011 	if (is_encrypted) {
1012 		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1013 		return 0;
1014 	}
1015 
1016 	ctx->resync_nh_reset = 1;
1017 	return tls_device_reencrypt(sk, tls_ctx);
1018 }
1019 
1020 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1021 			      struct net_device *netdev)
1022 {
1023 	if (sk->sk_destruct != tls_device_sk_destruct) {
1024 		refcount_set(&ctx->refcount, 1);
1025 		dev_hold(netdev);
1026 		RCU_INIT_POINTER(ctx->netdev, netdev);
1027 		spin_lock_irq(&tls_device_lock);
1028 		list_add_tail(&ctx->list, &tls_device_list);
1029 		spin_unlock_irq(&tls_device_lock);
1030 
1031 		ctx->sk_destruct = sk->sk_destruct;
1032 		smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1033 	}
1034 }
1035 
1036 static struct tls_offload_context_tx *alloc_offload_ctx_tx(struct tls_context *ctx)
1037 {
1038 	struct tls_offload_context_tx *offload_ctx;
1039 	__be64 rcd_sn;
1040 
1041 	offload_ctx = kzalloc(sizeof(*offload_ctx), GFP_KERNEL);
1042 	if (!offload_ctx)
1043 		return NULL;
1044 
1045 	INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1046 	INIT_LIST_HEAD(&offload_ctx->records_list);
1047 	spin_lock_init(&offload_ctx->lock);
1048 	sg_init_table(offload_ctx->sg_tx_data,
1049 		      ARRAY_SIZE(offload_ctx->sg_tx_data));
1050 
1051 	/* start at rec_seq - 1 to account for the start marker record */
1052 	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1053 	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1054 
1055 	offload_ctx->ctx = ctx;
1056 
1057 	return offload_ctx;
1058 }
1059 
1060 int tls_set_device_offload(struct sock *sk)
1061 {
1062 	struct tls_record_info *start_marker_record;
1063 	struct tls_offload_context_tx *offload_ctx;
1064 	const struct tls_cipher_desc *cipher_desc;
1065 	struct tls_crypto_info *crypto_info;
1066 	struct tls_prot_info *prot;
1067 	struct net_device *netdev;
1068 	struct tls_context *ctx;
1069 	char *iv, *rec_seq;
1070 	int rc;
1071 
1072 	ctx = tls_get_ctx(sk);
1073 	prot = &ctx->prot_info;
1074 
1075 	if (ctx->priv_ctx_tx)
1076 		return -EEXIST;
1077 
1078 	netdev = get_netdev_for_sock(sk);
1079 	if (!netdev) {
1080 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1081 		return -EINVAL;
1082 	}
1083 
1084 	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1085 		rc = -EOPNOTSUPP;
1086 		goto release_netdev;
1087 	}
1088 
1089 	crypto_info = &ctx->crypto_send.info;
1090 	if (crypto_info->version != TLS_1_2_VERSION) {
1091 		rc = -EOPNOTSUPP;
1092 		goto release_netdev;
1093 	}
1094 
1095 	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
1096 	if (!cipher_desc || !cipher_desc->offloadable) {
1097 		rc = -EINVAL;
1098 		goto release_netdev;
1099 	}
1100 
1101 	rc = init_prot_info(prot, crypto_info, cipher_desc);
1102 	if (rc)
1103 		goto release_netdev;
1104 
1105 	iv = crypto_info_iv(crypto_info, cipher_desc);
1106 	rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
1107 
1108 	memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv);
1109 	memcpy(ctx->tx.rec_seq, rec_seq, cipher_desc->rec_seq);
1110 
1111 	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1112 	if (!start_marker_record) {
1113 		rc = -ENOMEM;
1114 		goto release_netdev;
1115 	}
1116 
1117 	offload_ctx = alloc_offload_ctx_tx(ctx);
1118 	if (!offload_ctx) {
1119 		rc = -ENOMEM;
1120 		goto free_marker_record;
1121 	}
1122 
1123 	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1124 	if (rc)
1125 		goto free_offload_ctx;
1126 
1127 	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1128 	start_marker_record->len = 0;
1129 	start_marker_record->num_frags = 0;
1130 	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1131 
1132 	clean_acked_data_enable(tcp_sk(sk), &tls_tcp_clean_acked);
1133 	ctx->push_pending_record = tls_device_push_pending_record;
1134 
1135 	/* TLS offload is greatly simplified if we don't send
1136 	 * SKBs where only part of the payload needs to be encrypted.
1137 	 * So mark the last skb in the write queue as end of record.
1138 	 */
1139 	tcp_write_collapse_fence(sk);
1140 
1141 	/* Avoid offloading if the device is down
1142 	 * We don't want to offload new flows after
1143 	 * the NETDEV_DOWN event
1144 	 *
1145 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1146 	 * handler thus protecting from the device going down before
1147 	 * ctx was added to tls_device_list.
1148 	 */
1149 	down_read(&device_offload_lock);
1150 	if (!(netdev->flags & IFF_UP)) {
1151 		rc = -EINVAL;
1152 		goto release_lock;
1153 	}
1154 
1155 	ctx->priv_ctx_tx = offload_ctx;
1156 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1157 					     &ctx->crypto_send.info,
1158 					     tcp_sk(sk)->write_seq);
1159 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1160 				     tcp_sk(sk)->write_seq, rec_seq, rc);
1161 	if (rc)
1162 		goto release_lock;
1163 
1164 	tls_device_attach(ctx, sk, netdev);
1165 	up_read(&device_offload_lock);
1166 
1167 	/* following this assignment tls_is_skb_tx_device_offloaded
1168 	 * will return true and the context might be accessed
1169 	 * by the netdev's xmit function.
1170 	 */
1171 	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1172 	dev_put(netdev);
1173 
1174 	return 0;
1175 
1176 release_lock:
1177 	up_read(&device_offload_lock);
1178 	clean_acked_data_disable(tcp_sk(sk));
1179 	crypto_free_aead(offload_ctx->aead_send);
1180 free_offload_ctx:
1181 	kfree(offload_ctx);
1182 	ctx->priv_ctx_tx = NULL;
1183 free_marker_record:
1184 	kfree(start_marker_record);
1185 release_netdev:
1186 	dev_put(netdev);
1187 	return rc;
1188 }
1189 
1190 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1191 {
1192 	struct tls12_crypto_info_aes_gcm_128 *info;
1193 	struct tls_offload_context_rx *context;
1194 	struct net_device *netdev;
1195 	int rc = 0;
1196 
1197 	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1198 		return -EOPNOTSUPP;
1199 
1200 	netdev = get_netdev_for_sock(sk);
1201 	if (!netdev) {
1202 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1203 		return -EINVAL;
1204 	}
1205 
1206 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1207 		rc = -EOPNOTSUPP;
1208 		goto release_netdev;
1209 	}
1210 
1211 	/* Avoid offloading if the device is down
1212 	 * We don't want to offload new flows after
1213 	 * the NETDEV_DOWN event
1214 	 *
1215 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1216 	 * handler thus protecting from the device going down before
1217 	 * ctx was added to tls_device_list.
1218 	 */
1219 	down_read(&device_offload_lock);
1220 	if (!(netdev->flags & IFF_UP)) {
1221 		rc = -EINVAL;
1222 		goto release_lock;
1223 	}
1224 
1225 	context = kzalloc(sizeof(*context), GFP_KERNEL);
1226 	if (!context) {
1227 		rc = -ENOMEM;
1228 		goto release_lock;
1229 	}
1230 	context->resync_nh_reset = 1;
1231 
1232 	ctx->priv_ctx_rx = context;
1233 	rc = tls_set_sw_offload(sk, 0, NULL);
1234 	if (rc)
1235 		goto release_ctx;
1236 
1237 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1238 					     &ctx->crypto_recv.info,
1239 					     tcp_sk(sk)->copied_seq);
1240 	info = (void *)&ctx->crypto_recv.info;
1241 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1242 				     tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1243 	if (rc)
1244 		goto free_sw_resources;
1245 
1246 	tls_device_attach(ctx, sk, netdev);
1247 	up_read(&device_offload_lock);
1248 
1249 	dev_put(netdev);
1250 
1251 	return 0;
1252 
1253 free_sw_resources:
1254 	up_read(&device_offload_lock);
1255 	tls_sw_free_resources_rx(sk);
1256 	down_read(&device_offload_lock);
1257 release_ctx:
1258 	ctx->priv_ctx_rx = NULL;
1259 release_lock:
1260 	up_read(&device_offload_lock);
1261 release_netdev:
1262 	dev_put(netdev);
1263 	return rc;
1264 }
1265 
1266 void tls_device_offload_cleanup_rx(struct sock *sk)
1267 {
1268 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1269 	struct net_device *netdev;
1270 
1271 	down_read(&device_offload_lock);
1272 	netdev = rcu_dereference_protected(tls_ctx->netdev,
1273 					   lockdep_is_held(&device_offload_lock));
1274 	if (!netdev)
1275 		goto out;
1276 
1277 	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1278 					TLS_OFFLOAD_CTX_DIR_RX);
1279 
1280 	if (tls_ctx->tx_conf != TLS_HW) {
1281 		dev_put(netdev);
1282 		rcu_assign_pointer(tls_ctx->netdev, NULL);
1283 	} else {
1284 		set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1285 	}
1286 out:
1287 	up_read(&device_offload_lock);
1288 	tls_sw_release_resources_rx(sk);
1289 }
1290 
1291 static int tls_device_down(struct net_device *netdev)
1292 {
1293 	struct tls_context *ctx, *tmp;
1294 	unsigned long flags;
1295 	LIST_HEAD(list);
1296 
1297 	/* Request a write lock to block new offload attempts */
1298 	down_write(&device_offload_lock);
1299 
1300 	spin_lock_irqsave(&tls_device_lock, flags);
1301 	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1302 		struct net_device *ctx_netdev =
1303 			rcu_dereference_protected(ctx->netdev,
1304 						  lockdep_is_held(&device_offload_lock));
1305 
1306 		if (ctx_netdev != netdev ||
1307 		    !refcount_inc_not_zero(&ctx->refcount))
1308 			continue;
1309 
1310 		list_move(&ctx->list, &list);
1311 	}
1312 	spin_unlock_irqrestore(&tls_device_lock, flags);
1313 
1314 	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1315 		/* Stop offloaded TX and switch to the fallback.
1316 		 * tls_is_skb_tx_device_offloaded will return false.
1317 		 */
1318 		WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1319 
1320 		/* Stop the RX and TX resync.
1321 		 * tls_dev_resync must not be called after tls_dev_del.
1322 		 */
1323 		rcu_assign_pointer(ctx->netdev, NULL);
1324 
1325 		/* Start skipping the RX resync logic completely. */
1326 		set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1327 
1328 		/* Sync with inflight packets. After this point:
1329 		 * TX: no non-encrypted packets will be passed to the driver.
1330 		 * RX: resync requests from the driver will be ignored.
1331 		 */
1332 		synchronize_net();
1333 
1334 		/* Release the offload context on the driver side. */
1335 		if (ctx->tx_conf == TLS_HW)
1336 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1337 							TLS_OFFLOAD_CTX_DIR_TX);
1338 		if (ctx->rx_conf == TLS_HW &&
1339 		    !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1340 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1341 							TLS_OFFLOAD_CTX_DIR_RX);
1342 
1343 		dev_put(netdev);
1344 
1345 		/* Move the context to a separate list for two reasons:
1346 		 * 1. When the context is deallocated, list_del is called.
1347 		 * 2. It's no longer an offloaded context, so we don't want to
1348 		 *    run offload-specific code on this context.
1349 		 */
1350 		spin_lock_irqsave(&tls_device_lock, flags);
1351 		list_move_tail(&ctx->list, &tls_device_down_list);
1352 		spin_unlock_irqrestore(&tls_device_lock, flags);
1353 
1354 		/* Device contexts for RX and TX will be freed in on sk_destruct
1355 		 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1356 		 * Now release the ref taken above.
1357 		 */
1358 		if (refcount_dec_and_test(&ctx->refcount)) {
1359 			/* sk_destruct ran after tls_device_down took a ref, and
1360 			 * it returned early. Complete the destruction here.
1361 			 */
1362 			list_del(&ctx->list);
1363 			tls_device_free_ctx(ctx);
1364 		}
1365 	}
1366 
1367 	up_write(&device_offload_lock);
1368 
1369 	flush_workqueue(destruct_wq);
1370 
1371 	return NOTIFY_DONE;
1372 }
1373 
1374 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1375 			 void *ptr)
1376 {
1377 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1378 
1379 	if (!dev->tlsdev_ops &&
1380 	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1381 		return NOTIFY_DONE;
1382 
1383 	switch (event) {
1384 	case NETDEV_REGISTER:
1385 	case NETDEV_FEAT_CHANGE:
1386 		if (netif_is_bond_master(dev))
1387 			return NOTIFY_DONE;
1388 		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1389 		    !dev->tlsdev_ops->tls_dev_resync)
1390 			return NOTIFY_BAD;
1391 
1392 		if  (dev->tlsdev_ops &&
1393 		     dev->tlsdev_ops->tls_dev_add &&
1394 		     dev->tlsdev_ops->tls_dev_del)
1395 			return NOTIFY_DONE;
1396 		else
1397 			return NOTIFY_BAD;
1398 	case NETDEV_DOWN:
1399 		return tls_device_down(dev);
1400 	}
1401 	return NOTIFY_DONE;
1402 }
1403 
1404 static struct notifier_block tls_dev_notifier = {
1405 	.notifier_call	= tls_dev_event,
1406 };
1407 
1408 int __init tls_device_init(void)
1409 {
1410 	int err;
1411 
1412 	dummy_page = alloc_page(GFP_KERNEL);
1413 	if (!dummy_page)
1414 		return -ENOMEM;
1415 
1416 	destruct_wq = alloc_workqueue("ktls_device_destruct", WQ_PERCPU, 0);
1417 	if (!destruct_wq) {
1418 		err = -ENOMEM;
1419 		goto err_free_dummy;
1420 	}
1421 
1422 	err = register_netdevice_notifier(&tls_dev_notifier);
1423 	if (err)
1424 		goto err_destroy_wq;
1425 
1426 	return 0;
1427 
1428 err_destroy_wq:
1429 	destroy_workqueue(destruct_wq);
1430 err_free_dummy:
1431 	put_page(dummy_page);
1432 	return err;
1433 }
1434 
1435 void __exit tls_device_cleanup(void)
1436 {
1437 	unregister_netdevice_notifier(&tls_dev_notifier);
1438 	destroy_workqueue(destruct_wq);
1439 	clean_acked_data_flush();
1440 	put_page(dummy_page);
1441 }
1442