1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32 #include <crypto/aead.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/netdevice.h> 36 #include <net/dst.h> 37 #include <net/inet_connection_sock.h> 38 #include <net/tcp.h> 39 #include <net/tls.h> 40 41 #include "trace.h" 42 43 /* device_offload_lock is used to synchronize tls_dev_add 44 * against NETDEV_DOWN notifications. 45 */ 46 static DECLARE_RWSEM(device_offload_lock); 47 48 static void tls_device_gc_task(struct work_struct *work); 49 50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task); 51 static LIST_HEAD(tls_device_gc_list); 52 static LIST_HEAD(tls_device_list); 53 static LIST_HEAD(tls_device_down_list); 54 static DEFINE_SPINLOCK(tls_device_lock); 55 56 static void tls_device_free_ctx(struct tls_context *ctx) 57 { 58 if (ctx->tx_conf == TLS_HW) { 59 kfree(tls_offload_ctx_tx(ctx)); 60 kfree(ctx->tx.rec_seq); 61 kfree(ctx->tx.iv); 62 } 63 64 if (ctx->rx_conf == TLS_HW) 65 kfree(tls_offload_ctx_rx(ctx)); 66 67 tls_ctx_free(NULL, ctx); 68 } 69 70 static void tls_device_gc_task(struct work_struct *work) 71 { 72 struct tls_context *ctx, *tmp; 73 unsigned long flags; 74 LIST_HEAD(gc_list); 75 76 spin_lock_irqsave(&tls_device_lock, flags); 77 list_splice_init(&tls_device_gc_list, &gc_list); 78 spin_unlock_irqrestore(&tls_device_lock, flags); 79 80 list_for_each_entry_safe(ctx, tmp, &gc_list, list) { 81 struct net_device *netdev = ctx->netdev; 82 83 if (netdev && ctx->tx_conf == TLS_HW) { 84 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 85 TLS_OFFLOAD_CTX_DIR_TX); 86 dev_put(netdev); 87 ctx->netdev = NULL; 88 } 89 90 list_del(&ctx->list); 91 tls_device_free_ctx(ctx); 92 } 93 } 94 95 static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 96 { 97 unsigned long flags; 98 99 spin_lock_irqsave(&tls_device_lock, flags); 100 list_move_tail(&ctx->list, &tls_device_gc_list); 101 102 /* schedule_work inside the spinlock 103 * to make sure tls_device_down waits for that work. 104 */ 105 schedule_work(&tls_device_gc_work); 106 107 spin_unlock_irqrestore(&tls_device_lock, flags); 108 } 109 110 /* We assume that the socket is already connected */ 111 static struct net_device *get_netdev_for_sock(struct sock *sk) 112 { 113 struct dst_entry *dst = sk_dst_get(sk); 114 struct net_device *netdev = NULL; 115 116 if (likely(dst)) { 117 netdev = netdev_sk_get_lowest_dev(dst->dev, sk); 118 dev_hold(netdev); 119 } 120 121 dst_release(dst); 122 123 return netdev; 124 } 125 126 static void destroy_record(struct tls_record_info *record) 127 { 128 int i; 129 130 for (i = 0; i < record->num_frags; i++) 131 __skb_frag_unref(&record->frags[i], false); 132 kfree(record); 133 } 134 135 static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 136 { 137 struct tls_record_info *info, *temp; 138 139 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 140 list_del(&info->list); 141 destroy_record(info); 142 } 143 144 offload_ctx->retransmit_hint = NULL; 145 } 146 147 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) 148 { 149 struct tls_context *tls_ctx = tls_get_ctx(sk); 150 struct tls_record_info *info, *temp; 151 struct tls_offload_context_tx *ctx; 152 u64 deleted_records = 0; 153 unsigned long flags; 154 155 if (!tls_ctx) 156 return; 157 158 ctx = tls_offload_ctx_tx(tls_ctx); 159 160 spin_lock_irqsave(&ctx->lock, flags); 161 info = ctx->retransmit_hint; 162 if (info && !before(acked_seq, info->end_seq)) 163 ctx->retransmit_hint = NULL; 164 165 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 166 if (before(acked_seq, info->end_seq)) 167 break; 168 list_del(&info->list); 169 170 destroy_record(info); 171 deleted_records++; 172 } 173 174 ctx->unacked_record_sn += deleted_records; 175 spin_unlock_irqrestore(&ctx->lock, flags); 176 } 177 178 /* At this point, there should be no references on this 179 * socket and no in-flight SKBs associated with this 180 * socket, so it is safe to free all the resources. 181 */ 182 void tls_device_sk_destruct(struct sock *sk) 183 { 184 struct tls_context *tls_ctx = tls_get_ctx(sk); 185 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 186 187 tls_ctx->sk_destruct(sk); 188 189 if (tls_ctx->tx_conf == TLS_HW) { 190 if (ctx->open_record) 191 destroy_record(ctx->open_record); 192 delete_all_records(ctx); 193 crypto_free_aead(ctx->aead_send); 194 clean_acked_data_disable(inet_csk(sk)); 195 } 196 197 if (refcount_dec_and_test(&tls_ctx->refcount)) 198 tls_device_queue_ctx_destruction(tls_ctx); 199 } 200 EXPORT_SYMBOL_GPL(tls_device_sk_destruct); 201 202 void tls_device_free_resources_tx(struct sock *sk) 203 { 204 struct tls_context *tls_ctx = tls_get_ctx(sk); 205 206 tls_free_partial_record(sk, tls_ctx); 207 } 208 209 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) 210 { 211 struct tls_context *tls_ctx = tls_get_ctx(sk); 212 213 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); 214 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 215 } 216 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); 217 218 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, 219 u32 seq) 220 { 221 struct net_device *netdev; 222 struct sk_buff *skb; 223 int err = 0; 224 u8 *rcd_sn; 225 226 skb = tcp_write_queue_tail(sk); 227 if (skb) 228 TCP_SKB_CB(skb)->eor = 1; 229 230 rcd_sn = tls_ctx->tx.rec_seq; 231 232 trace_tls_device_tx_resync_send(sk, seq, rcd_sn); 233 down_read(&device_offload_lock); 234 netdev = tls_ctx->netdev; 235 if (netdev) 236 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, 237 rcd_sn, 238 TLS_OFFLOAD_CTX_DIR_TX); 239 up_read(&device_offload_lock); 240 if (err) 241 return; 242 243 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 244 } 245 246 static void tls_append_frag(struct tls_record_info *record, 247 struct page_frag *pfrag, 248 int size) 249 { 250 skb_frag_t *frag; 251 252 frag = &record->frags[record->num_frags - 1]; 253 if (skb_frag_page(frag) == pfrag->page && 254 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { 255 skb_frag_size_add(frag, size); 256 } else { 257 ++frag; 258 __skb_frag_set_page(frag, pfrag->page); 259 skb_frag_off_set(frag, pfrag->offset); 260 skb_frag_size_set(frag, size); 261 ++record->num_frags; 262 get_page(pfrag->page); 263 } 264 265 pfrag->offset += size; 266 record->len += size; 267 } 268 269 static int tls_push_record(struct sock *sk, 270 struct tls_context *ctx, 271 struct tls_offload_context_tx *offload_ctx, 272 struct tls_record_info *record, 273 int flags) 274 { 275 struct tls_prot_info *prot = &ctx->prot_info; 276 struct tcp_sock *tp = tcp_sk(sk); 277 skb_frag_t *frag; 278 int i; 279 280 record->end_seq = tp->write_seq + record->len; 281 list_add_tail_rcu(&record->list, &offload_ctx->records_list); 282 offload_ctx->open_record = NULL; 283 284 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) 285 tls_device_resync_tx(sk, ctx, tp->write_seq); 286 287 tls_advance_record_sn(sk, prot, &ctx->tx); 288 289 for (i = 0; i < record->num_frags; i++) { 290 frag = &record->frags[i]; 291 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 292 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 293 skb_frag_size(frag), skb_frag_off(frag)); 294 sk_mem_charge(sk, skb_frag_size(frag)); 295 get_page(skb_frag_page(frag)); 296 } 297 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 298 299 /* all ready, send */ 300 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 301 } 302 303 static int tls_device_record_close(struct sock *sk, 304 struct tls_context *ctx, 305 struct tls_record_info *record, 306 struct page_frag *pfrag, 307 unsigned char record_type) 308 { 309 struct tls_prot_info *prot = &ctx->prot_info; 310 int ret; 311 312 /* append tag 313 * device will fill in the tag, we just need to append a placeholder 314 * use socket memory to improve coalescing (re-using a single buffer 315 * increases frag count) 316 * if we can't allocate memory now, steal some back from data 317 */ 318 if (likely(skb_page_frag_refill(prot->tag_size, pfrag, 319 sk->sk_allocation))) { 320 ret = 0; 321 tls_append_frag(record, pfrag, prot->tag_size); 322 } else { 323 ret = prot->tag_size; 324 if (record->len <= prot->overhead_size) 325 return -ENOMEM; 326 } 327 328 /* fill prepend */ 329 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), 330 record->len - prot->overhead_size, 331 record_type); 332 return ret; 333 } 334 335 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 336 struct page_frag *pfrag, 337 size_t prepend_size) 338 { 339 struct tls_record_info *record; 340 skb_frag_t *frag; 341 342 record = kmalloc(sizeof(*record), GFP_KERNEL); 343 if (!record) 344 return -ENOMEM; 345 346 frag = &record->frags[0]; 347 __skb_frag_set_page(frag, pfrag->page); 348 skb_frag_off_set(frag, pfrag->offset); 349 skb_frag_size_set(frag, prepend_size); 350 351 get_page(pfrag->page); 352 pfrag->offset += prepend_size; 353 354 record->num_frags = 1; 355 record->len = prepend_size; 356 offload_ctx->open_record = record; 357 return 0; 358 } 359 360 static int tls_do_allocation(struct sock *sk, 361 struct tls_offload_context_tx *offload_ctx, 362 struct page_frag *pfrag, 363 size_t prepend_size) 364 { 365 int ret; 366 367 if (!offload_ctx->open_record) { 368 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 369 sk->sk_allocation))) { 370 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); 371 sk_stream_moderate_sndbuf(sk); 372 return -ENOMEM; 373 } 374 375 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 376 if (ret) 377 return ret; 378 379 if (pfrag->size > pfrag->offset) 380 return 0; 381 } 382 383 if (!sk_page_frag_refill(sk, pfrag)) 384 return -ENOMEM; 385 386 return 0; 387 } 388 389 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) 390 { 391 size_t pre_copy, nocache; 392 393 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); 394 if (pre_copy) { 395 pre_copy = min(pre_copy, bytes); 396 if (copy_from_iter(addr, pre_copy, i) != pre_copy) 397 return -EFAULT; 398 bytes -= pre_copy; 399 addr += pre_copy; 400 } 401 402 nocache = round_down(bytes, SMP_CACHE_BYTES); 403 if (copy_from_iter_nocache(addr, nocache, i) != nocache) 404 return -EFAULT; 405 bytes -= nocache; 406 addr += nocache; 407 408 if (bytes && copy_from_iter(addr, bytes, i) != bytes) 409 return -EFAULT; 410 411 return 0; 412 } 413 414 union tls_iter_offset { 415 struct iov_iter *msg_iter; 416 int offset; 417 }; 418 419 static int tls_push_data(struct sock *sk, 420 union tls_iter_offset iter_offset, 421 size_t size, int flags, 422 unsigned char record_type, 423 struct page *zc_page) 424 { 425 struct tls_context *tls_ctx = tls_get_ctx(sk); 426 struct tls_prot_info *prot = &tls_ctx->prot_info; 427 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 428 struct tls_record_info *record; 429 int tls_push_record_flags; 430 struct page_frag *pfrag; 431 size_t orig_size = size; 432 u32 max_open_record_len; 433 bool more = false; 434 bool done = false; 435 int copy, rc = 0; 436 long timeo; 437 438 if (flags & 439 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) 440 return -EOPNOTSUPP; 441 442 if (unlikely(sk->sk_err)) 443 return -sk->sk_err; 444 445 flags |= MSG_SENDPAGE_DECRYPTED; 446 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST; 447 448 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 449 if (tls_is_partially_sent_record(tls_ctx)) { 450 rc = tls_push_partial_record(sk, tls_ctx, flags); 451 if (rc < 0) 452 return rc; 453 } 454 455 pfrag = sk_page_frag(sk); 456 457 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 458 * we need to leave room for an authentication tag. 459 */ 460 max_open_record_len = TLS_MAX_PAYLOAD_SIZE + 461 prot->prepend_size; 462 do { 463 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); 464 if (unlikely(rc)) { 465 rc = sk_stream_wait_memory(sk, &timeo); 466 if (!rc) 467 continue; 468 469 record = ctx->open_record; 470 if (!record) 471 break; 472 handle_error: 473 if (record_type != TLS_RECORD_TYPE_DATA) { 474 /* avoid sending partial 475 * record with type != 476 * application_data 477 */ 478 size = orig_size; 479 destroy_record(record); 480 ctx->open_record = NULL; 481 } else if (record->len > prot->prepend_size) { 482 goto last_record; 483 } 484 485 break; 486 } 487 488 record = ctx->open_record; 489 490 copy = min_t(size_t, size, max_open_record_len - record->len); 491 if (copy && zc_page) { 492 struct page_frag zc_pfrag; 493 494 zc_pfrag.page = zc_page; 495 zc_pfrag.offset = iter_offset.offset; 496 zc_pfrag.size = copy; 497 tls_append_frag(record, &zc_pfrag, copy); 498 } else if (copy) { 499 copy = min_t(size_t, copy, pfrag->size - pfrag->offset); 500 501 rc = tls_device_copy_data(page_address(pfrag->page) + 502 pfrag->offset, copy, 503 iter_offset.msg_iter); 504 if (rc) 505 goto handle_error; 506 tls_append_frag(record, pfrag, copy); 507 } 508 509 size -= copy; 510 if (!size) { 511 last_record: 512 tls_push_record_flags = flags; 513 if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) { 514 more = true; 515 break; 516 } 517 518 done = true; 519 } 520 521 if (done || record->len >= max_open_record_len || 522 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 523 rc = tls_device_record_close(sk, tls_ctx, record, 524 pfrag, record_type); 525 if (rc) { 526 if (rc > 0) { 527 size += rc; 528 } else { 529 size = orig_size; 530 destroy_record(record); 531 ctx->open_record = NULL; 532 break; 533 } 534 } 535 536 rc = tls_push_record(sk, 537 tls_ctx, 538 ctx, 539 record, 540 tls_push_record_flags); 541 if (rc < 0) 542 break; 543 } 544 } while (!done); 545 546 tls_ctx->pending_open_record_frags = more; 547 548 if (orig_size - size > 0) 549 rc = orig_size - size; 550 551 return rc; 552 } 553 554 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 555 { 556 unsigned char record_type = TLS_RECORD_TYPE_DATA; 557 struct tls_context *tls_ctx = tls_get_ctx(sk); 558 union tls_iter_offset iter; 559 int rc; 560 561 mutex_lock(&tls_ctx->tx_lock); 562 lock_sock(sk); 563 564 if (unlikely(msg->msg_controllen)) { 565 rc = tls_proccess_cmsg(sk, msg, &record_type); 566 if (rc) 567 goto out; 568 } 569 570 iter.msg_iter = &msg->msg_iter; 571 rc = tls_push_data(sk, iter, size, msg->msg_flags, record_type, NULL); 572 573 out: 574 release_sock(sk); 575 mutex_unlock(&tls_ctx->tx_lock); 576 return rc; 577 } 578 579 int tls_device_sendpage(struct sock *sk, struct page *page, 580 int offset, size_t size, int flags) 581 { 582 struct tls_context *tls_ctx = tls_get_ctx(sk); 583 union tls_iter_offset iter_offset; 584 struct iov_iter msg_iter; 585 char *kaddr; 586 struct kvec iov; 587 int rc; 588 589 if (flags & MSG_SENDPAGE_NOTLAST) 590 flags |= MSG_MORE; 591 592 mutex_lock(&tls_ctx->tx_lock); 593 lock_sock(sk); 594 595 if (flags & MSG_OOB) { 596 rc = -EOPNOTSUPP; 597 goto out; 598 } 599 600 if (tls_ctx->zerocopy_sendfile) { 601 iter_offset.offset = offset; 602 rc = tls_push_data(sk, iter_offset, size, 603 flags, TLS_RECORD_TYPE_DATA, page); 604 goto out; 605 } 606 607 kaddr = kmap(page); 608 iov.iov_base = kaddr + offset; 609 iov.iov_len = size; 610 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size); 611 iter_offset.msg_iter = &msg_iter; 612 rc = tls_push_data(sk, iter_offset, size, flags, TLS_RECORD_TYPE_DATA, 613 NULL); 614 kunmap(page); 615 616 out: 617 release_sock(sk); 618 mutex_unlock(&tls_ctx->tx_lock); 619 return rc; 620 } 621 622 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 623 u32 seq, u64 *p_record_sn) 624 { 625 u64 record_sn = context->hint_record_sn; 626 struct tls_record_info *info, *last; 627 628 info = context->retransmit_hint; 629 if (!info || 630 before(seq, info->end_seq - info->len)) { 631 /* if retransmit_hint is irrelevant start 632 * from the beginning of the list 633 */ 634 info = list_first_entry_or_null(&context->records_list, 635 struct tls_record_info, list); 636 if (!info) 637 return NULL; 638 /* send the start_marker record if seq number is before the 639 * tls offload start marker sequence number. This record is 640 * required to handle TCP packets which are before TLS offload 641 * started. 642 * And if it's not start marker, look if this seq number 643 * belongs to the list. 644 */ 645 if (likely(!tls_record_is_start_marker(info))) { 646 /* we have the first record, get the last record to see 647 * if this seq number belongs to the list. 648 */ 649 last = list_last_entry(&context->records_list, 650 struct tls_record_info, list); 651 652 if (!between(seq, tls_record_start_seq(info), 653 last->end_seq)) 654 return NULL; 655 } 656 record_sn = context->unacked_record_sn; 657 } 658 659 /* We just need the _rcu for the READ_ONCE() */ 660 rcu_read_lock(); 661 list_for_each_entry_from_rcu(info, &context->records_list, list) { 662 if (before(seq, info->end_seq)) { 663 if (!context->retransmit_hint || 664 after(info->end_seq, 665 context->retransmit_hint->end_seq)) { 666 context->hint_record_sn = record_sn; 667 context->retransmit_hint = info; 668 } 669 *p_record_sn = record_sn; 670 goto exit_rcu_unlock; 671 } 672 record_sn++; 673 } 674 info = NULL; 675 676 exit_rcu_unlock: 677 rcu_read_unlock(); 678 return info; 679 } 680 EXPORT_SYMBOL(tls_get_record); 681 682 static int tls_device_push_pending_record(struct sock *sk, int flags) 683 { 684 union tls_iter_offset iter; 685 struct iov_iter msg_iter; 686 687 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0); 688 iter.msg_iter = &msg_iter; 689 return tls_push_data(sk, iter, 0, flags, TLS_RECORD_TYPE_DATA, NULL); 690 } 691 692 void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 693 { 694 if (tls_is_partially_sent_record(ctx)) { 695 gfp_t sk_allocation = sk->sk_allocation; 696 697 WARN_ON_ONCE(sk->sk_write_pending); 698 699 sk->sk_allocation = GFP_ATOMIC; 700 tls_push_partial_record(sk, ctx, 701 MSG_DONTWAIT | MSG_NOSIGNAL | 702 MSG_SENDPAGE_DECRYPTED); 703 sk->sk_allocation = sk_allocation; 704 } 705 } 706 707 static void tls_device_resync_rx(struct tls_context *tls_ctx, 708 struct sock *sk, u32 seq, u8 *rcd_sn) 709 { 710 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 711 struct net_device *netdev; 712 713 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); 714 rcu_read_lock(); 715 netdev = READ_ONCE(tls_ctx->netdev); 716 if (netdev) 717 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, 718 TLS_OFFLOAD_CTX_DIR_RX); 719 rcu_read_unlock(); 720 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); 721 } 722 723 static bool 724 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, 725 s64 resync_req, u32 *seq, u16 *rcd_delta) 726 { 727 u32 is_async = resync_req & RESYNC_REQ_ASYNC; 728 u32 req_seq = resync_req >> 32; 729 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); 730 u16 i; 731 732 *rcd_delta = 0; 733 734 if (is_async) { 735 /* shouldn't get to wraparound: 736 * too long in async stage, something bad happened 737 */ 738 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) 739 return false; 740 741 /* asynchronous stage: log all headers seq such that 742 * req_seq <= seq <= end_seq, and wait for real resync request 743 */ 744 if (before(*seq, req_seq)) 745 return false; 746 if (!after(*seq, req_end) && 747 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) 748 resync_async->log[resync_async->loglen++] = *seq; 749 750 resync_async->rcd_delta++; 751 752 return false; 753 } 754 755 /* synchronous stage: check against the logged entries and 756 * proceed to check the next entries if no match was found 757 */ 758 for (i = 0; i < resync_async->loglen; i++) 759 if (req_seq == resync_async->log[i] && 760 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { 761 *rcd_delta = resync_async->rcd_delta - i; 762 *seq = req_seq; 763 resync_async->loglen = 0; 764 resync_async->rcd_delta = 0; 765 return true; 766 } 767 768 resync_async->loglen = 0; 769 resync_async->rcd_delta = 0; 770 771 if (req_seq == *seq && 772 atomic64_try_cmpxchg(&resync_async->req, 773 &resync_req, 0)) 774 return true; 775 776 return false; 777 } 778 779 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) 780 { 781 struct tls_context *tls_ctx = tls_get_ctx(sk); 782 struct tls_offload_context_rx *rx_ctx; 783 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 784 u32 sock_data, is_req_pending; 785 struct tls_prot_info *prot; 786 s64 resync_req; 787 u16 rcd_delta; 788 u32 req_seq; 789 790 if (tls_ctx->rx_conf != TLS_HW) 791 return; 792 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) 793 return; 794 795 prot = &tls_ctx->prot_info; 796 rx_ctx = tls_offload_ctx_rx(tls_ctx); 797 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 798 799 switch (rx_ctx->resync_type) { 800 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: 801 resync_req = atomic64_read(&rx_ctx->resync_req); 802 req_seq = resync_req >> 32; 803 seq += TLS_HEADER_SIZE - 1; 804 is_req_pending = resync_req; 805 806 if (likely(!is_req_pending) || req_seq != seq || 807 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 808 return; 809 break; 810 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: 811 if (likely(!rx_ctx->resync_nh_do_now)) 812 return; 813 814 /* head of next rec is already in, note that the sock_inq will 815 * include the currently parsed message when called from parser 816 */ 817 sock_data = tcp_inq(sk); 818 if (sock_data > rcd_len) { 819 trace_tls_device_rx_resync_nh_delay(sk, sock_data, 820 rcd_len); 821 return; 822 } 823 824 rx_ctx->resync_nh_do_now = 0; 825 seq += rcd_len; 826 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 827 break; 828 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: 829 resync_req = atomic64_read(&rx_ctx->resync_async->req); 830 is_req_pending = resync_req; 831 if (likely(!is_req_pending)) 832 return; 833 834 if (!tls_device_rx_resync_async(rx_ctx->resync_async, 835 resync_req, &seq, &rcd_delta)) 836 return; 837 tls_bigint_subtract(rcd_sn, rcd_delta); 838 break; 839 } 840 841 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); 842 } 843 844 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, 845 struct tls_offload_context_rx *ctx, 846 struct sock *sk, struct sk_buff *skb) 847 { 848 struct strp_msg *rxm; 849 850 /* device will request resyncs by itself based on stream scan */ 851 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) 852 return; 853 /* already scheduled */ 854 if (ctx->resync_nh_do_now) 855 return; 856 /* seen decrypted fragments since last fully-failed record */ 857 if (ctx->resync_nh_reset) { 858 ctx->resync_nh_reset = 0; 859 ctx->resync_nh.decrypted_failed = 1; 860 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; 861 return; 862 } 863 864 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) 865 return; 866 867 /* doing resync, bump the next target in case it fails */ 868 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) 869 ctx->resync_nh.decrypted_tgt *= 2; 870 else 871 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; 872 873 rxm = strp_msg(skb); 874 875 /* head of next rec is already in, parser will sync for us */ 876 if (tcp_inq(sk) > rxm->full_len) { 877 trace_tls_device_rx_resync_nh_schedule(sk); 878 ctx->resync_nh_do_now = 1; 879 } else { 880 struct tls_prot_info *prot = &tls_ctx->prot_info; 881 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 882 883 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 884 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 885 886 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, 887 rcd_sn); 888 } 889 } 890 891 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb) 892 { 893 struct strp_msg *rxm = strp_msg(skb); 894 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos; 895 struct sk_buff *skb_iter, *unused; 896 struct scatterlist sg[1]; 897 char *orig_buf, *buf; 898 899 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + 900 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation); 901 if (!orig_buf) 902 return -ENOMEM; 903 buf = orig_buf; 904 905 nsg = skb_cow_data(skb, 0, &unused); 906 if (unlikely(nsg < 0)) { 907 err = nsg; 908 goto free_buf; 909 } 910 911 sg_init_table(sg, 1); 912 sg_set_buf(&sg[0], buf, 913 rxm->full_len + TLS_HEADER_SIZE + 914 TLS_CIPHER_AES_GCM_128_IV_SIZE); 915 err = skb_copy_bits(skb, offset, buf, 916 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); 917 if (err) 918 goto free_buf; 919 920 /* We are interested only in the decrypted data not the auth */ 921 err = decrypt_skb(sk, skb, sg); 922 if (err != -EBADMSG) 923 goto free_buf; 924 else 925 err = 0; 926 927 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE; 928 929 if (skb_pagelen(skb) > offset) { 930 copy = min_t(int, skb_pagelen(skb) - offset, data_len); 931 932 if (skb->decrypted) { 933 err = skb_store_bits(skb, offset, buf, copy); 934 if (err) 935 goto free_buf; 936 } 937 938 offset += copy; 939 buf += copy; 940 } 941 942 pos = skb_pagelen(skb); 943 skb_walk_frags(skb, skb_iter) { 944 int frag_pos; 945 946 /* Practically all frags must belong to msg if reencrypt 947 * is needed with current strparser and coalescing logic, 948 * but strparser may "get optimized", so let's be safe. 949 */ 950 if (pos + skb_iter->len <= offset) 951 goto done_with_frag; 952 if (pos >= data_len + rxm->offset) 953 break; 954 955 frag_pos = offset - pos; 956 copy = min_t(int, skb_iter->len - frag_pos, 957 data_len + rxm->offset - offset); 958 959 if (skb_iter->decrypted) { 960 err = skb_store_bits(skb_iter, frag_pos, buf, copy); 961 if (err) 962 goto free_buf; 963 } 964 965 offset += copy; 966 buf += copy; 967 done_with_frag: 968 pos += skb_iter->len; 969 } 970 971 free_buf: 972 kfree(orig_buf); 973 return err; 974 } 975 976 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 977 struct sk_buff *skb, struct strp_msg *rxm) 978 { 979 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 980 int is_decrypted = skb->decrypted; 981 int is_encrypted = !is_decrypted; 982 struct sk_buff *skb_iter; 983 984 /* Check if all the data is decrypted already */ 985 skb_walk_frags(skb, skb_iter) { 986 is_decrypted &= skb_iter->decrypted; 987 is_encrypted &= !skb_iter->decrypted; 988 } 989 990 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, 991 tls_ctx->rx.rec_seq, rxm->full_len, 992 is_encrypted, is_decrypted); 993 994 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) { 995 if (likely(is_encrypted || is_decrypted)) 996 return is_decrypted; 997 998 /* After tls_device_down disables the offload, the next SKB will 999 * likely have initial fragments decrypted, and final ones not 1000 * decrypted. We need to reencrypt that single SKB. 1001 */ 1002 return tls_device_reencrypt(sk, skb); 1003 } 1004 1005 /* Return immediately if the record is either entirely plaintext or 1006 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 1007 * record. 1008 */ 1009 if (is_decrypted) { 1010 ctx->resync_nh_reset = 1; 1011 return is_decrypted; 1012 } 1013 if (is_encrypted) { 1014 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); 1015 return 0; 1016 } 1017 1018 ctx->resync_nh_reset = 1; 1019 return tls_device_reencrypt(sk, skb); 1020 } 1021 1022 static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 1023 struct net_device *netdev) 1024 { 1025 if (sk->sk_destruct != tls_device_sk_destruct) { 1026 refcount_set(&ctx->refcount, 1); 1027 dev_hold(netdev); 1028 ctx->netdev = netdev; 1029 spin_lock_irq(&tls_device_lock); 1030 list_add_tail(&ctx->list, &tls_device_list); 1031 spin_unlock_irq(&tls_device_lock); 1032 1033 ctx->sk_destruct = sk->sk_destruct; 1034 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); 1035 } 1036 } 1037 1038 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 1039 { 1040 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 1041 struct tls_context *tls_ctx = tls_get_ctx(sk); 1042 struct tls_prot_info *prot = &tls_ctx->prot_info; 1043 struct tls_record_info *start_marker_record; 1044 struct tls_offload_context_tx *offload_ctx; 1045 struct tls_crypto_info *crypto_info; 1046 struct net_device *netdev; 1047 char *iv, *rec_seq; 1048 struct sk_buff *skb; 1049 __be64 rcd_sn; 1050 int rc; 1051 1052 if (!ctx) 1053 return -EINVAL; 1054 1055 if (ctx->priv_ctx_tx) 1056 return -EEXIST; 1057 1058 netdev = get_netdev_for_sock(sk); 1059 if (!netdev) { 1060 pr_err_ratelimited("%s: netdev not found\n", __func__); 1061 return -EINVAL; 1062 } 1063 1064 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 1065 rc = -EOPNOTSUPP; 1066 goto release_netdev; 1067 } 1068 1069 crypto_info = &ctx->crypto_send.info; 1070 if (crypto_info->version != TLS_1_2_VERSION) { 1071 rc = -EOPNOTSUPP; 1072 goto release_netdev; 1073 } 1074 1075 switch (crypto_info->cipher_type) { 1076 case TLS_CIPHER_AES_GCM_128: 1077 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1078 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 1079 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1080 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 1081 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 1082 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 1083 rec_seq = 1084 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 1085 break; 1086 default: 1087 rc = -EINVAL; 1088 goto release_netdev; 1089 } 1090 1091 /* Sanity-check the rec_seq_size for stack allocations */ 1092 if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 1093 rc = -EINVAL; 1094 goto release_netdev; 1095 } 1096 1097 prot->version = crypto_info->version; 1098 prot->cipher_type = crypto_info->cipher_type; 1099 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 1100 prot->tag_size = tag_size; 1101 prot->overhead_size = prot->prepend_size + prot->tag_size; 1102 prot->iv_size = iv_size; 1103 prot->salt_size = salt_size; 1104 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 1105 GFP_KERNEL); 1106 if (!ctx->tx.iv) { 1107 rc = -ENOMEM; 1108 goto release_netdev; 1109 } 1110 1111 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 1112 1113 prot->rec_seq_size = rec_seq_size; 1114 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 1115 if (!ctx->tx.rec_seq) { 1116 rc = -ENOMEM; 1117 goto free_iv; 1118 } 1119 1120 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 1121 if (!start_marker_record) { 1122 rc = -ENOMEM; 1123 goto free_rec_seq; 1124 } 1125 1126 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); 1127 if (!offload_ctx) { 1128 rc = -ENOMEM; 1129 goto free_marker_record; 1130 } 1131 1132 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 1133 if (rc) 1134 goto free_offload_ctx; 1135 1136 /* start at rec_seq - 1 to account for the start marker record */ 1137 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 1138 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 1139 1140 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 1141 start_marker_record->len = 0; 1142 start_marker_record->num_frags = 0; 1143 1144 INIT_LIST_HEAD(&offload_ctx->records_list); 1145 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 1146 spin_lock_init(&offload_ctx->lock); 1147 sg_init_table(offload_ctx->sg_tx_data, 1148 ARRAY_SIZE(offload_ctx->sg_tx_data)); 1149 1150 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); 1151 ctx->push_pending_record = tls_device_push_pending_record; 1152 1153 /* TLS offload is greatly simplified if we don't send 1154 * SKBs where only part of the payload needs to be encrypted. 1155 * So mark the last skb in the write queue as end of record. 1156 */ 1157 skb = tcp_write_queue_tail(sk); 1158 if (skb) 1159 TCP_SKB_CB(skb)->eor = 1; 1160 1161 /* Avoid offloading if the device is down 1162 * We don't want to offload new flows after 1163 * the NETDEV_DOWN event 1164 * 1165 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1166 * handler thus protecting from the device going down before 1167 * ctx was added to tls_device_list. 1168 */ 1169 down_read(&device_offload_lock); 1170 if (!(netdev->flags & IFF_UP)) { 1171 rc = -EINVAL; 1172 goto release_lock; 1173 } 1174 1175 ctx->priv_ctx_tx = offload_ctx; 1176 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 1177 &ctx->crypto_send.info, 1178 tcp_sk(sk)->write_seq); 1179 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, 1180 tcp_sk(sk)->write_seq, rec_seq, rc); 1181 if (rc) 1182 goto release_lock; 1183 1184 tls_device_attach(ctx, sk, netdev); 1185 up_read(&device_offload_lock); 1186 1187 /* following this assignment tls_is_sk_tx_device_offloaded 1188 * will return true and the context might be accessed 1189 * by the netdev's xmit function. 1190 */ 1191 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 1192 dev_put(netdev); 1193 1194 return 0; 1195 1196 release_lock: 1197 up_read(&device_offload_lock); 1198 clean_acked_data_disable(inet_csk(sk)); 1199 crypto_free_aead(offload_ctx->aead_send); 1200 free_offload_ctx: 1201 kfree(offload_ctx); 1202 ctx->priv_ctx_tx = NULL; 1203 free_marker_record: 1204 kfree(start_marker_record); 1205 free_rec_seq: 1206 kfree(ctx->tx.rec_seq); 1207 free_iv: 1208 kfree(ctx->tx.iv); 1209 release_netdev: 1210 dev_put(netdev); 1211 return rc; 1212 } 1213 1214 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 1215 { 1216 struct tls12_crypto_info_aes_gcm_128 *info; 1217 struct tls_offload_context_rx *context; 1218 struct net_device *netdev; 1219 int rc = 0; 1220 1221 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) 1222 return -EOPNOTSUPP; 1223 1224 netdev = get_netdev_for_sock(sk); 1225 if (!netdev) { 1226 pr_err_ratelimited("%s: netdev not found\n", __func__); 1227 return -EINVAL; 1228 } 1229 1230 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 1231 rc = -EOPNOTSUPP; 1232 goto release_netdev; 1233 } 1234 1235 /* Avoid offloading if the device is down 1236 * We don't want to offload new flows after 1237 * the NETDEV_DOWN event 1238 * 1239 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1240 * handler thus protecting from the device going down before 1241 * ctx was added to tls_device_list. 1242 */ 1243 down_read(&device_offload_lock); 1244 if (!(netdev->flags & IFF_UP)) { 1245 rc = -EINVAL; 1246 goto release_lock; 1247 } 1248 1249 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); 1250 if (!context) { 1251 rc = -ENOMEM; 1252 goto release_lock; 1253 } 1254 context->resync_nh_reset = 1; 1255 1256 ctx->priv_ctx_rx = context; 1257 rc = tls_set_sw_offload(sk, ctx, 0); 1258 if (rc) 1259 goto release_ctx; 1260 1261 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 1262 &ctx->crypto_recv.info, 1263 tcp_sk(sk)->copied_seq); 1264 info = (void *)&ctx->crypto_recv.info; 1265 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, 1266 tcp_sk(sk)->copied_seq, info->rec_seq, rc); 1267 if (rc) 1268 goto free_sw_resources; 1269 1270 tls_device_attach(ctx, sk, netdev); 1271 up_read(&device_offload_lock); 1272 1273 dev_put(netdev); 1274 1275 return 0; 1276 1277 free_sw_resources: 1278 up_read(&device_offload_lock); 1279 tls_sw_free_resources_rx(sk); 1280 down_read(&device_offload_lock); 1281 release_ctx: 1282 ctx->priv_ctx_rx = NULL; 1283 release_lock: 1284 up_read(&device_offload_lock); 1285 release_netdev: 1286 dev_put(netdev); 1287 return rc; 1288 } 1289 1290 void tls_device_offload_cleanup_rx(struct sock *sk) 1291 { 1292 struct tls_context *tls_ctx = tls_get_ctx(sk); 1293 struct net_device *netdev; 1294 1295 down_read(&device_offload_lock); 1296 netdev = tls_ctx->netdev; 1297 if (!netdev) 1298 goto out; 1299 1300 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 1301 TLS_OFFLOAD_CTX_DIR_RX); 1302 1303 if (tls_ctx->tx_conf != TLS_HW) { 1304 dev_put(netdev); 1305 tls_ctx->netdev = NULL; 1306 } else { 1307 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); 1308 } 1309 out: 1310 up_read(&device_offload_lock); 1311 tls_sw_release_resources_rx(sk); 1312 } 1313 1314 static int tls_device_down(struct net_device *netdev) 1315 { 1316 struct tls_context *ctx, *tmp; 1317 unsigned long flags; 1318 LIST_HEAD(list); 1319 1320 /* Request a write lock to block new offload attempts */ 1321 down_write(&device_offload_lock); 1322 1323 spin_lock_irqsave(&tls_device_lock, flags); 1324 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 1325 if (ctx->netdev != netdev || 1326 !refcount_inc_not_zero(&ctx->refcount)) 1327 continue; 1328 1329 list_move(&ctx->list, &list); 1330 } 1331 spin_unlock_irqrestore(&tls_device_lock, flags); 1332 1333 list_for_each_entry_safe(ctx, tmp, &list, list) { 1334 /* Stop offloaded TX and switch to the fallback. 1335 * tls_is_sk_tx_device_offloaded will return false. 1336 */ 1337 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw); 1338 1339 /* Stop the RX and TX resync. 1340 * tls_dev_resync must not be called after tls_dev_del. 1341 */ 1342 WRITE_ONCE(ctx->netdev, NULL); 1343 1344 /* Start skipping the RX resync logic completely. */ 1345 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags); 1346 1347 /* Sync with inflight packets. After this point: 1348 * TX: no non-encrypted packets will be passed to the driver. 1349 * RX: resync requests from the driver will be ignored. 1350 */ 1351 synchronize_net(); 1352 1353 /* Release the offload context on the driver side. */ 1354 if (ctx->tx_conf == TLS_HW) 1355 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1356 TLS_OFFLOAD_CTX_DIR_TX); 1357 if (ctx->rx_conf == TLS_HW && 1358 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) 1359 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1360 TLS_OFFLOAD_CTX_DIR_RX); 1361 1362 dev_put(netdev); 1363 1364 /* Move the context to a separate list for two reasons: 1365 * 1. When the context is deallocated, list_del is called. 1366 * 2. It's no longer an offloaded context, so we don't want to 1367 * run offload-specific code on this context. 1368 */ 1369 spin_lock_irqsave(&tls_device_lock, flags); 1370 list_move_tail(&ctx->list, &tls_device_down_list); 1371 spin_unlock_irqrestore(&tls_device_lock, flags); 1372 1373 /* Device contexts for RX and TX will be freed in on sk_destruct 1374 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW. 1375 * Now release the ref taken above. 1376 */ 1377 if (refcount_dec_and_test(&ctx->refcount)) 1378 tls_device_free_ctx(ctx); 1379 } 1380 1381 up_write(&device_offload_lock); 1382 1383 flush_work(&tls_device_gc_work); 1384 1385 return NOTIFY_DONE; 1386 } 1387 1388 static int tls_dev_event(struct notifier_block *this, unsigned long event, 1389 void *ptr) 1390 { 1391 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1392 1393 if (!dev->tlsdev_ops && 1394 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 1395 return NOTIFY_DONE; 1396 1397 switch (event) { 1398 case NETDEV_REGISTER: 1399 case NETDEV_FEAT_CHANGE: 1400 if (netif_is_bond_master(dev)) 1401 return NOTIFY_DONE; 1402 if ((dev->features & NETIF_F_HW_TLS_RX) && 1403 !dev->tlsdev_ops->tls_dev_resync) 1404 return NOTIFY_BAD; 1405 1406 if (dev->tlsdev_ops && 1407 dev->tlsdev_ops->tls_dev_add && 1408 dev->tlsdev_ops->tls_dev_del) 1409 return NOTIFY_DONE; 1410 else 1411 return NOTIFY_BAD; 1412 case NETDEV_DOWN: 1413 return tls_device_down(dev); 1414 } 1415 return NOTIFY_DONE; 1416 } 1417 1418 static struct notifier_block tls_dev_notifier = { 1419 .notifier_call = tls_dev_event, 1420 }; 1421 1422 void __init tls_device_init(void) 1423 { 1424 register_netdevice_notifier(&tls_dev_notifier); 1425 } 1426 1427 void __exit tls_device_cleanup(void) 1428 { 1429 unregister_netdevice_notifier(&tls_dev_notifier); 1430 flush_work(&tls_device_gc_work); 1431 clean_acked_data_flush(); 1432 } 1433