xref: /linux/net/tls/tls_device.c (revision 0a94608f0f7de9b1135ffea3546afe68eafef57f)
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40 
41 #include "trace.h"
42 
43 /* device_offload_lock is used to synchronize tls_dev_add
44  * against NETDEV_DOWN notifications.
45  */
46 static DECLARE_RWSEM(device_offload_lock);
47 
48 static void tls_device_gc_task(struct work_struct *work);
49 
50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
51 static LIST_HEAD(tls_device_gc_list);
52 static LIST_HEAD(tls_device_list);
53 static LIST_HEAD(tls_device_down_list);
54 static DEFINE_SPINLOCK(tls_device_lock);
55 
56 static void tls_device_free_ctx(struct tls_context *ctx)
57 {
58 	if (ctx->tx_conf == TLS_HW) {
59 		kfree(tls_offload_ctx_tx(ctx));
60 		kfree(ctx->tx.rec_seq);
61 		kfree(ctx->tx.iv);
62 	}
63 
64 	if (ctx->rx_conf == TLS_HW)
65 		kfree(tls_offload_ctx_rx(ctx));
66 
67 	tls_ctx_free(NULL, ctx);
68 }
69 
70 static void tls_device_gc_task(struct work_struct *work)
71 {
72 	struct tls_context *ctx, *tmp;
73 	unsigned long flags;
74 	LIST_HEAD(gc_list);
75 
76 	spin_lock_irqsave(&tls_device_lock, flags);
77 	list_splice_init(&tls_device_gc_list, &gc_list);
78 	spin_unlock_irqrestore(&tls_device_lock, flags);
79 
80 	list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
81 		struct net_device *netdev = ctx->netdev;
82 
83 		if (netdev && ctx->tx_conf == TLS_HW) {
84 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
85 							TLS_OFFLOAD_CTX_DIR_TX);
86 			dev_put(netdev);
87 			ctx->netdev = NULL;
88 		}
89 
90 		list_del(&ctx->list);
91 		tls_device_free_ctx(ctx);
92 	}
93 }
94 
95 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
96 {
97 	unsigned long flags;
98 
99 	spin_lock_irqsave(&tls_device_lock, flags);
100 	list_move_tail(&ctx->list, &tls_device_gc_list);
101 
102 	/* schedule_work inside the spinlock
103 	 * to make sure tls_device_down waits for that work.
104 	 */
105 	schedule_work(&tls_device_gc_work);
106 
107 	spin_unlock_irqrestore(&tls_device_lock, flags);
108 }
109 
110 /* We assume that the socket is already connected */
111 static struct net_device *get_netdev_for_sock(struct sock *sk)
112 {
113 	struct dst_entry *dst = sk_dst_get(sk);
114 	struct net_device *netdev = NULL;
115 
116 	if (likely(dst)) {
117 		netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
118 		dev_hold(netdev);
119 	}
120 
121 	dst_release(dst);
122 
123 	return netdev;
124 }
125 
126 static void destroy_record(struct tls_record_info *record)
127 {
128 	int i;
129 
130 	for (i = 0; i < record->num_frags; i++)
131 		__skb_frag_unref(&record->frags[i], false);
132 	kfree(record);
133 }
134 
135 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
136 {
137 	struct tls_record_info *info, *temp;
138 
139 	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
140 		list_del(&info->list);
141 		destroy_record(info);
142 	}
143 
144 	offload_ctx->retransmit_hint = NULL;
145 }
146 
147 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
148 {
149 	struct tls_context *tls_ctx = tls_get_ctx(sk);
150 	struct tls_record_info *info, *temp;
151 	struct tls_offload_context_tx *ctx;
152 	u64 deleted_records = 0;
153 	unsigned long flags;
154 
155 	if (!tls_ctx)
156 		return;
157 
158 	ctx = tls_offload_ctx_tx(tls_ctx);
159 
160 	spin_lock_irqsave(&ctx->lock, flags);
161 	info = ctx->retransmit_hint;
162 	if (info && !before(acked_seq, info->end_seq))
163 		ctx->retransmit_hint = NULL;
164 
165 	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
166 		if (before(acked_seq, info->end_seq))
167 			break;
168 		list_del(&info->list);
169 
170 		destroy_record(info);
171 		deleted_records++;
172 	}
173 
174 	ctx->unacked_record_sn += deleted_records;
175 	spin_unlock_irqrestore(&ctx->lock, flags);
176 }
177 
178 /* At this point, there should be no references on this
179  * socket and no in-flight SKBs associated with this
180  * socket, so it is safe to free all the resources.
181  */
182 void tls_device_sk_destruct(struct sock *sk)
183 {
184 	struct tls_context *tls_ctx = tls_get_ctx(sk);
185 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
186 
187 	tls_ctx->sk_destruct(sk);
188 
189 	if (tls_ctx->tx_conf == TLS_HW) {
190 		if (ctx->open_record)
191 			destroy_record(ctx->open_record);
192 		delete_all_records(ctx);
193 		crypto_free_aead(ctx->aead_send);
194 		clean_acked_data_disable(inet_csk(sk));
195 	}
196 
197 	if (refcount_dec_and_test(&tls_ctx->refcount))
198 		tls_device_queue_ctx_destruction(tls_ctx);
199 }
200 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
201 
202 void tls_device_free_resources_tx(struct sock *sk)
203 {
204 	struct tls_context *tls_ctx = tls_get_ctx(sk);
205 
206 	tls_free_partial_record(sk, tls_ctx);
207 }
208 
209 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
210 {
211 	struct tls_context *tls_ctx = tls_get_ctx(sk);
212 
213 	trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
214 	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
215 }
216 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
217 
218 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
219 				 u32 seq)
220 {
221 	struct net_device *netdev;
222 	struct sk_buff *skb;
223 	int err = 0;
224 	u8 *rcd_sn;
225 
226 	skb = tcp_write_queue_tail(sk);
227 	if (skb)
228 		TCP_SKB_CB(skb)->eor = 1;
229 
230 	rcd_sn = tls_ctx->tx.rec_seq;
231 
232 	trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
233 	down_read(&device_offload_lock);
234 	netdev = tls_ctx->netdev;
235 	if (netdev)
236 		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
237 							 rcd_sn,
238 							 TLS_OFFLOAD_CTX_DIR_TX);
239 	up_read(&device_offload_lock);
240 	if (err)
241 		return;
242 
243 	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
244 }
245 
246 static void tls_append_frag(struct tls_record_info *record,
247 			    struct page_frag *pfrag,
248 			    int size)
249 {
250 	skb_frag_t *frag;
251 
252 	frag = &record->frags[record->num_frags - 1];
253 	if (skb_frag_page(frag) == pfrag->page &&
254 	    skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
255 		skb_frag_size_add(frag, size);
256 	} else {
257 		++frag;
258 		__skb_frag_set_page(frag, pfrag->page);
259 		skb_frag_off_set(frag, pfrag->offset);
260 		skb_frag_size_set(frag, size);
261 		++record->num_frags;
262 		get_page(pfrag->page);
263 	}
264 
265 	pfrag->offset += size;
266 	record->len += size;
267 }
268 
269 static int tls_push_record(struct sock *sk,
270 			   struct tls_context *ctx,
271 			   struct tls_offload_context_tx *offload_ctx,
272 			   struct tls_record_info *record,
273 			   int flags)
274 {
275 	struct tls_prot_info *prot = &ctx->prot_info;
276 	struct tcp_sock *tp = tcp_sk(sk);
277 	skb_frag_t *frag;
278 	int i;
279 
280 	record->end_seq = tp->write_seq + record->len;
281 	list_add_tail_rcu(&record->list, &offload_ctx->records_list);
282 	offload_ctx->open_record = NULL;
283 
284 	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
285 		tls_device_resync_tx(sk, ctx, tp->write_seq);
286 
287 	tls_advance_record_sn(sk, prot, &ctx->tx);
288 
289 	for (i = 0; i < record->num_frags; i++) {
290 		frag = &record->frags[i];
291 		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
292 		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
293 			    skb_frag_size(frag), skb_frag_off(frag));
294 		sk_mem_charge(sk, skb_frag_size(frag));
295 		get_page(skb_frag_page(frag));
296 	}
297 	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
298 
299 	/* all ready, send */
300 	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
301 }
302 
303 static int tls_device_record_close(struct sock *sk,
304 				   struct tls_context *ctx,
305 				   struct tls_record_info *record,
306 				   struct page_frag *pfrag,
307 				   unsigned char record_type)
308 {
309 	struct tls_prot_info *prot = &ctx->prot_info;
310 	int ret;
311 
312 	/* append tag
313 	 * device will fill in the tag, we just need to append a placeholder
314 	 * use socket memory to improve coalescing (re-using a single buffer
315 	 * increases frag count)
316 	 * if we can't allocate memory now, steal some back from data
317 	 */
318 	if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
319 					sk->sk_allocation))) {
320 		ret = 0;
321 		tls_append_frag(record, pfrag, prot->tag_size);
322 	} else {
323 		ret = prot->tag_size;
324 		if (record->len <= prot->overhead_size)
325 			return -ENOMEM;
326 	}
327 
328 	/* fill prepend */
329 	tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
330 			 record->len - prot->overhead_size,
331 			 record_type);
332 	return ret;
333 }
334 
335 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
336 				 struct page_frag *pfrag,
337 				 size_t prepend_size)
338 {
339 	struct tls_record_info *record;
340 	skb_frag_t *frag;
341 
342 	record = kmalloc(sizeof(*record), GFP_KERNEL);
343 	if (!record)
344 		return -ENOMEM;
345 
346 	frag = &record->frags[0];
347 	__skb_frag_set_page(frag, pfrag->page);
348 	skb_frag_off_set(frag, pfrag->offset);
349 	skb_frag_size_set(frag, prepend_size);
350 
351 	get_page(pfrag->page);
352 	pfrag->offset += prepend_size;
353 
354 	record->num_frags = 1;
355 	record->len = prepend_size;
356 	offload_ctx->open_record = record;
357 	return 0;
358 }
359 
360 static int tls_do_allocation(struct sock *sk,
361 			     struct tls_offload_context_tx *offload_ctx,
362 			     struct page_frag *pfrag,
363 			     size_t prepend_size)
364 {
365 	int ret;
366 
367 	if (!offload_ctx->open_record) {
368 		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
369 						   sk->sk_allocation))) {
370 			READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
371 			sk_stream_moderate_sndbuf(sk);
372 			return -ENOMEM;
373 		}
374 
375 		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
376 		if (ret)
377 			return ret;
378 
379 		if (pfrag->size > pfrag->offset)
380 			return 0;
381 	}
382 
383 	if (!sk_page_frag_refill(sk, pfrag))
384 		return -ENOMEM;
385 
386 	return 0;
387 }
388 
389 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
390 {
391 	size_t pre_copy, nocache;
392 
393 	pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
394 	if (pre_copy) {
395 		pre_copy = min(pre_copy, bytes);
396 		if (copy_from_iter(addr, pre_copy, i) != pre_copy)
397 			return -EFAULT;
398 		bytes -= pre_copy;
399 		addr += pre_copy;
400 	}
401 
402 	nocache = round_down(bytes, SMP_CACHE_BYTES);
403 	if (copy_from_iter_nocache(addr, nocache, i) != nocache)
404 		return -EFAULT;
405 	bytes -= nocache;
406 	addr += nocache;
407 
408 	if (bytes && copy_from_iter(addr, bytes, i) != bytes)
409 		return -EFAULT;
410 
411 	return 0;
412 }
413 
414 static int tls_push_data(struct sock *sk,
415 			 struct iov_iter *msg_iter,
416 			 size_t size, int flags,
417 			 unsigned char record_type)
418 {
419 	struct tls_context *tls_ctx = tls_get_ctx(sk);
420 	struct tls_prot_info *prot = &tls_ctx->prot_info;
421 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
422 	struct tls_record_info *record;
423 	int tls_push_record_flags;
424 	struct page_frag *pfrag;
425 	size_t orig_size = size;
426 	u32 max_open_record_len;
427 	bool more = false;
428 	bool done = false;
429 	int copy, rc = 0;
430 	long timeo;
431 
432 	if (flags &
433 	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
434 		return -EOPNOTSUPP;
435 
436 	if (unlikely(sk->sk_err))
437 		return -sk->sk_err;
438 
439 	flags |= MSG_SENDPAGE_DECRYPTED;
440 	tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
441 
442 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
443 	if (tls_is_partially_sent_record(tls_ctx)) {
444 		rc = tls_push_partial_record(sk, tls_ctx, flags);
445 		if (rc < 0)
446 			return rc;
447 	}
448 
449 	pfrag = sk_page_frag(sk);
450 
451 	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
452 	 * we need to leave room for an authentication tag.
453 	 */
454 	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
455 			      prot->prepend_size;
456 	do {
457 		rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
458 		if (unlikely(rc)) {
459 			rc = sk_stream_wait_memory(sk, &timeo);
460 			if (!rc)
461 				continue;
462 
463 			record = ctx->open_record;
464 			if (!record)
465 				break;
466 handle_error:
467 			if (record_type != TLS_RECORD_TYPE_DATA) {
468 				/* avoid sending partial
469 				 * record with type !=
470 				 * application_data
471 				 */
472 				size = orig_size;
473 				destroy_record(record);
474 				ctx->open_record = NULL;
475 			} else if (record->len > prot->prepend_size) {
476 				goto last_record;
477 			}
478 
479 			break;
480 		}
481 
482 		record = ctx->open_record;
483 		copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
484 		copy = min_t(size_t, copy, (max_open_record_len - record->len));
485 
486 		if (copy) {
487 			rc = tls_device_copy_data(page_address(pfrag->page) +
488 						  pfrag->offset, copy, msg_iter);
489 			if (rc)
490 				goto handle_error;
491 			tls_append_frag(record, pfrag, copy);
492 		}
493 
494 		size -= copy;
495 		if (!size) {
496 last_record:
497 			tls_push_record_flags = flags;
498 			if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
499 				more = true;
500 				break;
501 			}
502 
503 			done = true;
504 		}
505 
506 		if (done || record->len >= max_open_record_len ||
507 		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
508 			rc = tls_device_record_close(sk, tls_ctx, record,
509 						     pfrag, record_type);
510 			if (rc) {
511 				if (rc > 0) {
512 					size += rc;
513 				} else {
514 					size = orig_size;
515 					destroy_record(record);
516 					ctx->open_record = NULL;
517 					break;
518 				}
519 			}
520 
521 			rc = tls_push_record(sk,
522 					     tls_ctx,
523 					     ctx,
524 					     record,
525 					     tls_push_record_flags);
526 			if (rc < 0)
527 				break;
528 		}
529 	} while (!done);
530 
531 	tls_ctx->pending_open_record_frags = more;
532 
533 	if (orig_size - size > 0)
534 		rc = orig_size - size;
535 
536 	return rc;
537 }
538 
539 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
540 {
541 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
542 	struct tls_context *tls_ctx = tls_get_ctx(sk);
543 	int rc;
544 
545 	mutex_lock(&tls_ctx->tx_lock);
546 	lock_sock(sk);
547 
548 	if (unlikely(msg->msg_controllen)) {
549 		rc = tls_proccess_cmsg(sk, msg, &record_type);
550 		if (rc)
551 			goto out;
552 	}
553 
554 	rc = tls_push_data(sk, &msg->msg_iter, size,
555 			   msg->msg_flags, record_type);
556 
557 out:
558 	release_sock(sk);
559 	mutex_unlock(&tls_ctx->tx_lock);
560 	return rc;
561 }
562 
563 int tls_device_sendpage(struct sock *sk, struct page *page,
564 			int offset, size_t size, int flags)
565 {
566 	struct tls_context *tls_ctx = tls_get_ctx(sk);
567 	struct iov_iter	msg_iter;
568 	char *kaddr;
569 	struct kvec iov;
570 	int rc;
571 
572 	if (flags & MSG_SENDPAGE_NOTLAST)
573 		flags |= MSG_MORE;
574 
575 	mutex_lock(&tls_ctx->tx_lock);
576 	lock_sock(sk);
577 
578 	if (flags & MSG_OOB) {
579 		rc = -EOPNOTSUPP;
580 		goto out;
581 	}
582 
583 	kaddr = kmap(page);
584 	iov.iov_base = kaddr + offset;
585 	iov.iov_len = size;
586 	iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
587 	rc = tls_push_data(sk, &msg_iter, size,
588 			   flags, TLS_RECORD_TYPE_DATA);
589 	kunmap(page);
590 
591 out:
592 	release_sock(sk);
593 	mutex_unlock(&tls_ctx->tx_lock);
594 	return rc;
595 }
596 
597 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
598 				       u32 seq, u64 *p_record_sn)
599 {
600 	u64 record_sn = context->hint_record_sn;
601 	struct tls_record_info *info, *last;
602 
603 	info = context->retransmit_hint;
604 	if (!info ||
605 	    before(seq, info->end_seq - info->len)) {
606 		/* if retransmit_hint is irrelevant start
607 		 * from the beginning of the list
608 		 */
609 		info = list_first_entry_or_null(&context->records_list,
610 						struct tls_record_info, list);
611 		if (!info)
612 			return NULL;
613 		/* send the start_marker record if seq number is before the
614 		 * tls offload start marker sequence number. This record is
615 		 * required to handle TCP packets which are before TLS offload
616 		 * started.
617 		 *  And if it's not start marker, look if this seq number
618 		 * belongs to the list.
619 		 */
620 		if (likely(!tls_record_is_start_marker(info))) {
621 			/* we have the first record, get the last record to see
622 			 * if this seq number belongs to the list.
623 			 */
624 			last = list_last_entry(&context->records_list,
625 					       struct tls_record_info, list);
626 
627 			if (!between(seq, tls_record_start_seq(info),
628 				     last->end_seq))
629 				return NULL;
630 		}
631 		record_sn = context->unacked_record_sn;
632 	}
633 
634 	/* We just need the _rcu for the READ_ONCE() */
635 	rcu_read_lock();
636 	list_for_each_entry_from_rcu(info, &context->records_list, list) {
637 		if (before(seq, info->end_seq)) {
638 			if (!context->retransmit_hint ||
639 			    after(info->end_seq,
640 				  context->retransmit_hint->end_seq)) {
641 				context->hint_record_sn = record_sn;
642 				context->retransmit_hint = info;
643 			}
644 			*p_record_sn = record_sn;
645 			goto exit_rcu_unlock;
646 		}
647 		record_sn++;
648 	}
649 	info = NULL;
650 
651 exit_rcu_unlock:
652 	rcu_read_unlock();
653 	return info;
654 }
655 EXPORT_SYMBOL(tls_get_record);
656 
657 static int tls_device_push_pending_record(struct sock *sk, int flags)
658 {
659 	struct iov_iter	msg_iter;
660 
661 	iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
662 	return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
663 }
664 
665 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
666 {
667 	if (tls_is_partially_sent_record(ctx)) {
668 		gfp_t sk_allocation = sk->sk_allocation;
669 
670 		WARN_ON_ONCE(sk->sk_write_pending);
671 
672 		sk->sk_allocation = GFP_ATOMIC;
673 		tls_push_partial_record(sk, ctx,
674 					MSG_DONTWAIT | MSG_NOSIGNAL |
675 					MSG_SENDPAGE_DECRYPTED);
676 		sk->sk_allocation = sk_allocation;
677 	}
678 }
679 
680 static void tls_device_resync_rx(struct tls_context *tls_ctx,
681 				 struct sock *sk, u32 seq, u8 *rcd_sn)
682 {
683 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
684 	struct net_device *netdev;
685 
686 	trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
687 	rcu_read_lock();
688 	netdev = READ_ONCE(tls_ctx->netdev);
689 	if (netdev)
690 		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
691 						   TLS_OFFLOAD_CTX_DIR_RX);
692 	rcu_read_unlock();
693 	TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
694 }
695 
696 static bool
697 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
698 			   s64 resync_req, u32 *seq, u16 *rcd_delta)
699 {
700 	u32 is_async = resync_req & RESYNC_REQ_ASYNC;
701 	u32 req_seq = resync_req >> 32;
702 	u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
703 	u16 i;
704 
705 	*rcd_delta = 0;
706 
707 	if (is_async) {
708 		/* shouldn't get to wraparound:
709 		 * too long in async stage, something bad happened
710 		 */
711 		if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
712 			return false;
713 
714 		/* asynchronous stage: log all headers seq such that
715 		 * req_seq <= seq <= end_seq, and wait for real resync request
716 		 */
717 		if (before(*seq, req_seq))
718 			return false;
719 		if (!after(*seq, req_end) &&
720 		    resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
721 			resync_async->log[resync_async->loglen++] = *seq;
722 
723 		resync_async->rcd_delta++;
724 
725 		return false;
726 	}
727 
728 	/* synchronous stage: check against the logged entries and
729 	 * proceed to check the next entries if no match was found
730 	 */
731 	for (i = 0; i < resync_async->loglen; i++)
732 		if (req_seq == resync_async->log[i] &&
733 		    atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
734 			*rcd_delta = resync_async->rcd_delta - i;
735 			*seq = req_seq;
736 			resync_async->loglen = 0;
737 			resync_async->rcd_delta = 0;
738 			return true;
739 		}
740 
741 	resync_async->loglen = 0;
742 	resync_async->rcd_delta = 0;
743 
744 	if (req_seq == *seq &&
745 	    atomic64_try_cmpxchg(&resync_async->req,
746 				 &resync_req, 0))
747 		return true;
748 
749 	return false;
750 }
751 
752 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
753 {
754 	struct tls_context *tls_ctx = tls_get_ctx(sk);
755 	struct tls_offload_context_rx *rx_ctx;
756 	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
757 	u32 sock_data, is_req_pending;
758 	struct tls_prot_info *prot;
759 	s64 resync_req;
760 	u16 rcd_delta;
761 	u32 req_seq;
762 
763 	if (tls_ctx->rx_conf != TLS_HW)
764 		return;
765 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
766 		return;
767 
768 	prot = &tls_ctx->prot_info;
769 	rx_ctx = tls_offload_ctx_rx(tls_ctx);
770 	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
771 
772 	switch (rx_ctx->resync_type) {
773 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
774 		resync_req = atomic64_read(&rx_ctx->resync_req);
775 		req_seq = resync_req >> 32;
776 		seq += TLS_HEADER_SIZE - 1;
777 		is_req_pending = resync_req;
778 
779 		if (likely(!is_req_pending) || req_seq != seq ||
780 		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
781 			return;
782 		break;
783 	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
784 		if (likely(!rx_ctx->resync_nh_do_now))
785 			return;
786 
787 		/* head of next rec is already in, note that the sock_inq will
788 		 * include the currently parsed message when called from parser
789 		 */
790 		sock_data = tcp_inq(sk);
791 		if (sock_data > rcd_len) {
792 			trace_tls_device_rx_resync_nh_delay(sk, sock_data,
793 							    rcd_len);
794 			return;
795 		}
796 
797 		rx_ctx->resync_nh_do_now = 0;
798 		seq += rcd_len;
799 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
800 		break;
801 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
802 		resync_req = atomic64_read(&rx_ctx->resync_async->req);
803 		is_req_pending = resync_req;
804 		if (likely(!is_req_pending))
805 			return;
806 
807 		if (!tls_device_rx_resync_async(rx_ctx->resync_async,
808 						resync_req, &seq, &rcd_delta))
809 			return;
810 		tls_bigint_subtract(rcd_sn, rcd_delta);
811 		break;
812 	}
813 
814 	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
815 }
816 
817 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
818 					   struct tls_offload_context_rx *ctx,
819 					   struct sock *sk, struct sk_buff *skb)
820 {
821 	struct strp_msg *rxm;
822 
823 	/* device will request resyncs by itself based on stream scan */
824 	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
825 		return;
826 	/* already scheduled */
827 	if (ctx->resync_nh_do_now)
828 		return;
829 	/* seen decrypted fragments since last fully-failed record */
830 	if (ctx->resync_nh_reset) {
831 		ctx->resync_nh_reset = 0;
832 		ctx->resync_nh.decrypted_failed = 1;
833 		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
834 		return;
835 	}
836 
837 	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
838 		return;
839 
840 	/* doing resync, bump the next target in case it fails */
841 	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
842 		ctx->resync_nh.decrypted_tgt *= 2;
843 	else
844 		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
845 
846 	rxm = strp_msg(skb);
847 
848 	/* head of next rec is already in, parser will sync for us */
849 	if (tcp_inq(sk) > rxm->full_len) {
850 		trace_tls_device_rx_resync_nh_schedule(sk);
851 		ctx->resync_nh_do_now = 1;
852 	} else {
853 		struct tls_prot_info *prot = &tls_ctx->prot_info;
854 		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
855 
856 		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
857 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
858 
859 		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
860 				     rcd_sn);
861 	}
862 }
863 
864 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
865 {
866 	struct strp_msg *rxm = strp_msg(skb);
867 	int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
868 	struct sk_buff *skb_iter, *unused;
869 	struct scatterlist sg[1];
870 	char *orig_buf, *buf;
871 
872 	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
873 			   TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
874 	if (!orig_buf)
875 		return -ENOMEM;
876 	buf = orig_buf;
877 
878 	nsg = skb_cow_data(skb, 0, &unused);
879 	if (unlikely(nsg < 0)) {
880 		err = nsg;
881 		goto free_buf;
882 	}
883 
884 	sg_init_table(sg, 1);
885 	sg_set_buf(&sg[0], buf,
886 		   rxm->full_len + TLS_HEADER_SIZE +
887 		   TLS_CIPHER_AES_GCM_128_IV_SIZE);
888 	err = skb_copy_bits(skb, offset, buf,
889 			    TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
890 	if (err)
891 		goto free_buf;
892 
893 	/* We are interested only in the decrypted data not the auth */
894 	err = decrypt_skb(sk, skb, sg);
895 	if (err != -EBADMSG)
896 		goto free_buf;
897 	else
898 		err = 0;
899 
900 	data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
901 
902 	if (skb_pagelen(skb) > offset) {
903 		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
904 
905 		if (skb->decrypted) {
906 			err = skb_store_bits(skb, offset, buf, copy);
907 			if (err)
908 				goto free_buf;
909 		}
910 
911 		offset += copy;
912 		buf += copy;
913 	}
914 
915 	pos = skb_pagelen(skb);
916 	skb_walk_frags(skb, skb_iter) {
917 		int frag_pos;
918 
919 		/* Practically all frags must belong to msg if reencrypt
920 		 * is needed with current strparser and coalescing logic,
921 		 * but strparser may "get optimized", so let's be safe.
922 		 */
923 		if (pos + skb_iter->len <= offset)
924 			goto done_with_frag;
925 		if (pos >= data_len + rxm->offset)
926 			break;
927 
928 		frag_pos = offset - pos;
929 		copy = min_t(int, skb_iter->len - frag_pos,
930 			     data_len + rxm->offset - offset);
931 
932 		if (skb_iter->decrypted) {
933 			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
934 			if (err)
935 				goto free_buf;
936 		}
937 
938 		offset += copy;
939 		buf += copy;
940 done_with_frag:
941 		pos += skb_iter->len;
942 	}
943 
944 free_buf:
945 	kfree(orig_buf);
946 	return err;
947 }
948 
949 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
950 			 struct sk_buff *skb, struct strp_msg *rxm)
951 {
952 	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
953 	int is_decrypted = skb->decrypted;
954 	int is_encrypted = !is_decrypted;
955 	struct sk_buff *skb_iter;
956 
957 	/* Check if all the data is decrypted already */
958 	skb_walk_frags(skb, skb_iter) {
959 		is_decrypted &= skb_iter->decrypted;
960 		is_encrypted &= !skb_iter->decrypted;
961 	}
962 
963 	trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
964 				   tls_ctx->rx.rec_seq, rxm->full_len,
965 				   is_encrypted, is_decrypted);
966 
967 	ctx->sw.decrypted |= is_decrypted;
968 
969 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
970 		if (likely(is_encrypted || is_decrypted))
971 			return 0;
972 
973 		/* After tls_device_down disables the offload, the next SKB will
974 		 * likely have initial fragments decrypted, and final ones not
975 		 * decrypted. We need to reencrypt that single SKB.
976 		 */
977 		return tls_device_reencrypt(sk, skb);
978 	}
979 
980 	/* Return immediately if the record is either entirely plaintext or
981 	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
982 	 * record.
983 	 */
984 	if (is_decrypted) {
985 		ctx->resync_nh_reset = 1;
986 		return 0;
987 	}
988 	if (is_encrypted) {
989 		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
990 		return 0;
991 	}
992 
993 	ctx->resync_nh_reset = 1;
994 	return tls_device_reencrypt(sk, skb);
995 }
996 
997 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
998 			      struct net_device *netdev)
999 {
1000 	if (sk->sk_destruct != tls_device_sk_destruct) {
1001 		refcount_set(&ctx->refcount, 1);
1002 		dev_hold(netdev);
1003 		ctx->netdev = netdev;
1004 		spin_lock_irq(&tls_device_lock);
1005 		list_add_tail(&ctx->list, &tls_device_list);
1006 		spin_unlock_irq(&tls_device_lock);
1007 
1008 		ctx->sk_destruct = sk->sk_destruct;
1009 		smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1010 	}
1011 }
1012 
1013 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1014 {
1015 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
1016 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1017 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1018 	struct tls_record_info *start_marker_record;
1019 	struct tls_offload_context_tx *offload_ctx;
1020 	struct tls_crypto_info *crypto_info;
1021 	struct net_device *netdev;
1022 	char *iv, *rec_seq;
1023 	struct sk_buff *skb;
1024 	__be64 rcd_sn;
1025 	int rc;
1026 
1027 	if (!ctx)
1028 		return -EINVAL;
1029 
1030 	if (ctx->priv_ctx_tx)
1031 		return -EEXIST;
1032 
1033 	netdev = get_netdev_for_sock(sk);
1034 	if (!netdev) {
1035 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1036 		return -EINVAL;
1037 	}
1038 
1039 	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1040 		rc = -EOPNOTSUPP;
1041 		goto release_netdev;
1042 	}
1043 
1044 	crypto_info = &ctx->crypto_send.info;
1045 	if (crypto_info->version != TLS_1_2_VERSION) {
1046 		rc = -EOPNOTSUPP;
1047 		goto release_netdev;
1048 	}
1049 
1050 	switch (crypto_info->cipher_type) {
1051 	case TLS_CIPHER_AES_GCM_128:
1052 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1053 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1054 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1055 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1056 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1057 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
1058 		rec_seq =
1059 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1060 		break;
1061 	default:
1062 		rc = -EINVAL;
1063 		goto release_netdev;
1064 	}
1065 
1066 	/* Sanity-check the rec_seq_size for stack allocations */
1067 	if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
1068 		rc = -EINVAL;
1069 		goto release_netdev;
1070 	}
1071 
1072 	prot->version = crypto_info->version;
1073 	prot->cipher_type = crypto_info->cipher_type;
1074 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
1075 	prot->tag_size = tag_size;
1076 	prot->overhead_size = prot->prepend_size + prot->tag_size;
1077 	prot->iv_size = iv_size;
1078 	prot->salt_size = salt_size;
1079 	ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1080 			     GFP_KERNEL);
1081 	if (!ctx->tx.iv) {
1082 		rc = -ENOMEM;
1083 		goto release_netdev;
1084 	}
1085 
1086 	memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1087 
1088 	prot->rec_seq_size = rec_seq_size;
1089 	ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1090 	if (!ctx->tx.rec_seq) {
1091 		rc = -ENOMEM;
1092 		goto free_iv;
1093 	}
1094 
1095 	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1096 	if (!start_marker_record) {
1097 		rc = -ENOMEM;
1098 		goto free_rec_seq;
1099 	}
1100 
1101 	offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1102 	if (!offload_ctx) {
1103 		rc = -ENOMEM;
1104 		goto free_marker_record;
1105 	}
1106 
1107 	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1108 	if (rc)
1109 		goto free_offload_ctx;
1110 
1111 	/* start at rec_seq - 1 to account for the start marker record */
1112 	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1113 	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1114 
1115 	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1116 	start_marker_record->len = 0;
1117 	start_marker_record->num_frags = 0;
1118 
1119 	INIT_LIST_HEAD(&offload_ctx->records_list);
1120 	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1121 	spin_lock_init(&offload_ctx->lock);
1122 	sg_init_table(offload_ctx->sg_tx_data,
1123 		      ARRAY_SIZE(offload_ctx->sg_tx_data));
1124 
1125 	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1126 	ctx->push_pending_record = tls_device_push_pending_record;
1127 
1128 	/* TLS offload is greatly simplified if we don't send
1129 	 * SKBs where only part of the payload needs to be encrypted.
1130 	 * So mark the last skb in the write queue as end of record.
1131 	 */
1132 	skb = tcp_write_queue_tail(sk);
1133 	if (skb)
1134 		TCP_SKB_CB(skb)->eor = 1;
1135 
1136 	/* Avoid offloading if the device is down
1137 	 * We don't want to offload new flows after
1138 	 * the NETDEV_DOWN event
1139 	 *
1140 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1141 	 * handler thus protecting from the device going down before
1142 	 * ctx was added to tls_device_list.
1143 	 */
1144 	down_read(&device_offload_lock);
1145 	if (!(netdev->flags & IFF_UP)) {
1146 		rc = -EINVAL;
1147 		goto release_lock;
1148 	}
1149 
1150 	ctx->priv_ctx_tx = offload_ctx;
1151 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1152 					     &ctx->crypto_send.info,
1153 					     tcp_sk(sk)->write_seq);
1154 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1155 				     tcp_sk(sk)->write_seq, rec_seq, rc);
1156 	if (rc)
1157 		goto release_lock;
1158 
1159 	tls_device_attach(ctx, sk, netdev);
1160 	up_read(&device_offload_lock);
1161 
1162 	/* following this assignment tls_is_sk_tx_device_offloaded
1163 	 * will return true and the context might be accessed
1164 	 * by the netdev's xmit function.
1165 	 */
1166 	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1167 	dev_put(netdev);
1168 
1169 	return 0;
1170 
1171 release_lock:
1172 	up_read(&device_offload_lock);
1173 	clean_acked_data_disable(inet_csk(sk));
1174 	crypto_free_aead(offload_ctx->aead_send);
1175 free_offload_ctx:
1176 	kfree(offload_ctx);
1177 	ctx->priv_ctx_tx = NULL;
1178 free_marker_record:
1179 	kfree(start_marker_record);
1180 free_rec_seq:
1181 	kfree(ctx->tx.rec_seq);
1182 free_iv:
1183 	kfree(ctx->tx.iv);
1184 release_netdev:
1185 	dev_put(netdev);
1186 	return rc;
1187 }
1188 
1189 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1190 {
1191 	struct tls12_crypto_info_aes_gcm_128 *info;
1192 	struct tls_offload_context_rx *context;
1193 	struct net_device *netdev;
1194 	int rc = 0;
1195 
1196 	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1197 		return -EOPNOTSUPP;
1198 
1199 	netdev = get_netdev_for_sock(sk);
1200 	if (!netdev) {
1201 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1202 		return -EINVAL;
1203 	}
1204 
1205 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1206 		rc = -EOPNOTSUPP;
1207 		goto release_netdev;
1208 	}
1209 
1210 	/* Avoid offloading if the device is down
1211 	 * We don't want to offload new flows after
1212 	 * the NETDEV_DOWN event
1213 	 *
1214 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1215 	 * handler thus protecting from the device going down before
1216 	 * ctx was added to tls_device_list.
1217 	 */
1218 	down_read(&device_offload_lock);
1219 	if (!(netdev->flags & IFF_UP)) {
1220 		rc = -EINVAL;
1221 		goto release_lock;
1222 	}
1223 
1224 	context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1225 	if (!context) {
1226 		rc = -ENOMEM;
1227 		goto release_lock;
1228 	}
1229 	context->resync_nh_reset = 1;
1230 
1231 	ctx->priv_ctx_rx = context;
1232 	rc = tls_set_sw_offload(sk, ctx, 0);
1233 	if (rc)
1234 		goto release_ctx;
1235 
1236 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1237 					     &ctx->crypto_recv.info,
1238 					     tcp_sk(sk)->copied_seq);
1239 	info = (void *)&ctx->crypto_recv.info;
1240 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1241 				     tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1242 	if (rc)
1243 		goto free_sw_resources;
1244 
1245 	tls_device_attach(ctx, sk, netdev);
1246 	up_read(&device_offload_lock);
1247 
1248 	dev_put(netdev);
1249 
1250 	return 0;
1251 
1252 free_sw_resources:
1253 	up_read(&device_offload_lock);
1254 	tls_sw_free_resources_rx(sk);
1255 	down_read(&device_offload_lock);
1256 release_ctx:
1257 	ctx->priv_ctx_rx = NULL;
1258 release_lock:
1259 	up_read(&device_offload_lock);
1260 release_netdev:
1261 	dev_put(netdev);
1262 	return rc;
1263 }
1264 
1265 void tls_device_offload_cleanup_rx(struct sock *sk)
1266 {
1267 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1268 	struct net_device *netdev;
1269 
1270 	down_read(&device_offload_lock);
1271 	netdev = tls_ctx->netdev;
1272 	if (!netdev)
1273 		goto out;
1274 
1275 	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1276 					TLS_OFFLOAD_CTX_DIR_RX);
1277 
1278 	if (tls_ctx->tx_conf != TLS_HW) {
1279 		dev_put(netdev);
1280 		tls_ctx->netdev = NULL;
1281 	} else {
1282 		set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1283 	}
1284 out:
1285 	up_read(&device_offload_lock);
1286 	tls_sw_release_resources_rx(sk);
1287 }
1288 
1289 static int tls_device_down(struct net_device *netdev)
1290 {
1291 	struct tls_context *ctx, *tmp;
1292 	unsigned long flags;
1293 	LIST_HEAD(list);
1294 
1295 	/* Request a write lock to block new offload attempts */
1296 	down_write(&device_offload_lock);
1297 
1298 	spin_lock_irqsave(&tls_device_lock, flags);
1299 	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1300 		if (ctx->netdev != netdev ||
1301 		    !refcount_inc_not_zero(&ctx->refcount))
1302 			continue;
1303 
1304 		list_move(&ctx->list, &list);
1305 	}
1306 	spin_unlock_irqrestore(&tls_device_lock, flags);
1307 
1308 	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1309 		/* Stop offloaded TX and switch to the fallback.
1310 		 * tls_is_sk_tx_device_offloaded will return false.
1311 		 */
1312 		WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1313 
1314 		/* Stop the RX and TX resync.
1315 		 * tls_dev_resync must not be called after tls_dev_del.
1316 		 */
1317 		WRITE_ONCE(ctx->netdev, NULL);
1318 
1319 		/* Start skipping the RX resync logic completely. */
1320 		set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1321 
1322 		/* Sync with inflight packets. After this point:
1323 		 * TX: no non-encrypted packets will be passed to the driver.
1324 		 * RX: resync requests from the driver will be ignored.
1325 		 */
1326 		synchronize_net();
1327 
1328 		/* Release the offload context on the driver side. */
1329 		if (ctx->tx_conf == TLS_HW)
1330 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1331 							TLS_OFFLOAD_CTX_DIR_TX);
1332 		if (ctx->rx_conf == TLS_HW &&
1333 		    !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1334 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1335 							TLS_OFFLOAD_CTX_DIR_RX);
1336 
1337 		dev_put(netdev);
1338 
1339 		/* Move the context to a separate list for two reasons:
1340 		 * 1. When the context is deallocated, list_del is called.
1341 		 * 2. It's no longer an offloaded context, so we don't want to
1342 		 *    run offload-specific code on this context.
1343 		 */
1344 		spin_lock_irqsave(&tls_device_lock, flags);
1345 		list_move_tail(&ctx->list, &tls_device_down_list);
1346 		spin_unlock_irqrestore(&tls_device_lock, flags);
1347 
1348 		/* Device contexts for RX and TX will be freed in on sk_destruct
1349 		 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1350 		 */
1351 	}
1352 
1353 	up_write(&device_offload_lock);
1354 
1355 	flush_work(&tls_device_gc_work);
1356 
1357 	return NOTIFY_DONE;
1358 }
1359 
1360 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1361 			 void *ptr)
1362 {
1363 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1364 
1365 	if (!dev->tlsdev_ops &&
1366 	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1367 		return NOTIFY_DONE;
1368 
1369 	switch (event) {
1370 	case NETDEV_REGISTER:
1371 	case NETDEV_FEAT_CHANGE:
1372 		if (netif_is_bond_master(dev))
1373 			return NOTIFY_DONE;
1374 		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1375 		    !dev->tlsdev_ops->tls_dev_resync)
1376 			return NOTIFY_BAD;
1377 
1378 		if  (dev->tlsdev_ops &&
1379 		     dev->tlsdev_ops->tls_dev_add &&
1380 		     dev->tlsdev_ops->tls_dev_del)
1381 			return NOTIFY_DONE;
1382 		else
1383 			return NOTIFY_BAD;
1384 	case NETDEV_DOWN:
1385 		return tls_device_down(dev);
1386 	}
1387 	return NOTIFY_DONE;
1388 }
1389 
1390 static struct notifier_block tls_dev_notifier = {
1391 	.notifier_call	= tls_dev_event,
1392 };
1393 
1394 void __init tls_device_init(void)
1395 {
1396 	register_netdevice_notifier(&tls_dev_notifier);
1397 }
1398 
1399 void __exit tls_device_cleanup(void)
1400 {
1401 	unregister_netdevice_notifier(&tls_dev_notifier);
1402 	flush_work(&tls_device_gc_work);
1403 	clean_acked_data_flush();
1404 }
1405