xref: /linux/net/tls/tls_device.c (revision 09b1704f5b02c18dd02b21343530463fcfc92c54)
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40 #include <linux/skbuff_ref.h>
41 
42 #include "tls.h"
43 #include "trace.h"
44 
45 /* device_offload_lock is used to synchronize tls_dev_add
46  * against NETDEV_DOWN notifications.
47  */
48 static DECLARE_RWSEM(device_offload_lock);
49 
50 static struct workqueue_struct *destruct_wq __read_mostly;
51 
52 static LIST_HEAD(tls_device_list);
53 static LIST_HEAD(tls_device_down_list);
54 static DEFINE_SPINLOCK(tls_device_lock);
55 
56 static struct page *dummy_page;
57 
58 static void tls_device_free_ctx(struct tls_context *ctx)
59 {
60 	if (ctx->tx_conf == TLS_HW)
61 		kfree(tls_offload_ctx_tx(ctx));
62 
63 	if (ctx->rx_conf == TLS_HW)
64 		kfree(tls_offload_ctx_rx(ctx));
65 
66 	tls_ctx_free(NULL, ctx);
67 }
68 
69 static void tls_device_tx_del_task(struct work_struct *work)
70 {
71 	struct tls_offload_context_tx *offload_ctx =
72 		container_of(work, struct tls_offload_context_tx, destruct_work);
73 	struct tls_context *ctx = offload_ctx->ctx;
74 	struct net_device *netdev;
75 
76 	/* Safe, because this is the destroy flow, refcount is 0, so
77 	 * tls_device_down can't store this field in parallel.
78 	 */
79 	netdev = rcu_dereference_protected(ctx->netdev,
80 					   !refcount_read(&ctx->refcount));
81 
82 	netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
83 	dev_put(netdev);
84 	ctx->netdev = NULL;
85 	tls_device_free_ctx(ctx);
86 }
87 
88 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
89 {
90 	struct net_device *netdev;
91 	unsigned long flags;
92 	bool async_cleanup;
93 
94 	spin_lock_irqsave(&tls_device_lock, flags);
95 	if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
96 		spin_unlock_irqrestore(&tls_device_lock, flags);
97 		return;
98 	}
99 
100 	list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
101 
102 	/* Safe, because this is the destroy flow, refcount is 0, so
103 	 * tls_device_down can't store this field in parallel.
104 	 */
105 	netdev = rcu_dereference_protected(ctx->netdev,
106 					   !refcount_read(&ctx->refcount));
107 
108 	async_cleanup = netdev && ctx->tx_conf == TLS_HW;
109 	if (async_cleanup) {
110 		struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
111 
112 		/* queue_work inside the spinlock
113 		 * to make sure tls_device_down waits for that work.
114 		 */
115 		queue_work(destruct_wq, &offload_ctx->destruct_work);
116 	}
117 	spin_unlock_irqrestore(&tls_device_lock, flags);
118 
119 	if (!async_cleanup)
120 		tls_device_free_ctx(ctx);
121 }
122 
123 /* We assume that the socket is already connected */
124 static struct net_device *get_netdev_for_sock(struct sock *sk)
125 {
126 	struct net_device *dev, *lowest_dev = NULL;
127 	struct dst_entry *dst;
128 
129 	rcu_read_lock();
130 	dst = __sk_dst_get(sk);
131 	dev = dst ? dst_dev_rcu(dst) : NULL;
132 	if (likely(dev)) {
133 		lowest_dev = netdev_sk_get_lowest_dev(dev, sk);
134 		dev_hold(lowest_dev);
135 	}
136 	rcu_read_unlock();
137 
138 	return lowest_dev;
139 }
140 
141 static void destroy_record(struct tls_record_info *record)
142 {
143 	int i;
144 
145 	for (i = 0; i < record->num_frags; i++)
146 		__skb_frag_unref(&record->frags[i], false);
147 	kfree(record);
148 }
149 
150 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
151 {
152 	struct tls_record_info *info, *temp;
153 
154 	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
155 		list_del(&info->list);
156 		destroy_record(info);
157 	}
158 
159 	offload_ctx->retransmit_hint = NULL;
160 }
161 
162 static void tls_tcp_clean_acked(struct sock *sk, u32 acked_seq)
163 {
164 	struct tls_context *tls_ctx = tls_get_ctx(sk);
165 	struct tls_record_info *info, *temp;
166 	struct tls_offload_context_tx *ctx;
167 	u64 deleted_records = 0;
168 	unsigned long flags;
169 
170 	if (!tls_ctx)
171 		return;
172 
173 	ctx = tls_offload_ctx_tx(tls_ctx);
174 
175 	spin_lock_irqsave(&ctx->lock, flags);
176 	info = ctx->retransmit_hint;
177 	if (info && !before(acked_seq, info->end_seq))
178 		ctx->retransmit_hint = NULL;
179 
180 	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
181 		if (before(acked_seq, info->end_seq))
182 			break;
183 		list_del(&info->list);
184 
185 		destroy_record(info);
186 		deleted_records++;
187 	}
188 
189 	ctx->unacked_record_sn += deleted_records;
190 	spin_unlock_irqrestore(&ctx->lock, flags);
191 }
192 
193 /* At this point, there should be no references on this
194  * socket and no in-flight SKBs associated with this
195  * socket, so it is safe to free all the resources.
196  */
197 void tls_device_sk_destruct(struct sock *sk)
198 {
199 	struct tls_context *tls_ctx = tls_get_ctx(sk);
200 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
201 
202 	tls_ctx->sk_destruct(sk);
203 
204 	if (tls_ctx->tx_conf == TLS_HW) {
205 		if (ctx->open_record)
206 			destroy_record(ctx->open_record);
207 		delete_all_records(ctx);
208 		crypto_free_aead(ctx->aead_send);
209 		clean_acked_data_disable(tcp_sk(sk));
210 	}
211 
212 	tls_device_queue_ctx_destruction(tls_ctx);
213 }
214 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
215 
216 void tls_device_free_resources_tx(struct sock *sk)
217 {
218 	struct tls_context *tls_ctx = tls_get_ctx(sk);
219 
220 	tls_free_partial_record(sk, tls_ctx);
221 }
222 
223 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
224 {
225 	struct tls_context *tls_ctx = tls_get_ctx(sk);
226 
227 	trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
228 	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
229 }
230 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
231 
232 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
233 				 u32 seq)
234 {
235 	struct net_device *netdev;
236 	int err = 0;
237 	u8 *rcd_sn;
238 
239 	tcp_write_collapse_fence(sk);
240 	rcd_sn = tls_ctx->tx.rec_seq;
241 
242 	trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
243 	down_read(&device_offload_lock);
244 	netdev = rcu_dereference_protected(tls_ctx->netdev,
245 					   lockdep_is_held(&device_offload_lock));
246 	if (netdev)
247 		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
248 							 rcd_sn,
249 							 TLS_OFFLOAD_CTX_DIR_TX);
250 	up_read(&device_offload_lock);
251 	if (err)
252 		return;
253 
254 	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
255 }
256 
257 static void tls_append_frag(struct tls_record_info *record,
258 			    struct page_frag *pfrag,
259 			    int size)
260 {
261 	skb_frag_t *frag;
262 
263 	frag = &record->frags[record->num_frags - 1];
264 	if (skb_frag_page(frag) == pfrag->page &&
265 	    skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
266 		skb_frag_size_add(frag, size);
267 	} else {
268 		++frag;
269 		skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
270 					size);
271 		++record->num_frags;
272 		get_page(pfrag->page);
273 	}
274 
275 	pfrag->offset += size;
276 	record->len += size;
277 }
278 
279 static int tls_push_record(struct sock *sk,
280 			   struct tls_context *ctx,
281 			   struct tls_offload_context_tx *offload_ctx,
282 			   struct tls_record_info *record,
283 			   int flags)
284 {
285 	struct tls_prot_info *prot = &ctx->prot_info;
286 	struct tcp_sock *tp = tcp_sk(sk);
287 	skb_frag_t *frag;
288 	int i;
289 
290 	record->end_seq = tp->write_seq + record->len;
291 	list_add_tail_rcu(&record->list, &offload_ctx->records_list);
292 	offload_ctx->open_record = NULL;
293 
294 	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
295 		tls_device_resync_tx(sk, ctx, tp->write_seq);
296 
297 	tls_advance_record_sn(sk, prot, &ctx->tx);
298 
299 	for (i = 0; i < record->num_frags; i++) {
300 		frag = &record->frags[i];
301 		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
302 		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
303 			    skb_frag_size(frag), skb_frag_off(frag));
304 		sk_mem_charge(sk, skb_frag_size(frag));
305 		get_page(skb_frag_page(frag));
306 	}
307 	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
308 
309 	/* all ready, send */
310 	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
311 }
312 
313 static void tls_device_record_close(struct sock *sk,
314 				    struct tls_context *ctx,
315 				    struct tls_record_info *record,
316 				    struct page_frag *pfrag,
317 				    unsigned char record_type)
318 {
319 	struct tls_prot_info *prot = &ctx->prot_info;
320 	struct page_frag dummy_tag_frag;
321 
322 	/* append tag
323 	 * device will fill in the tag, we just need to append a placeholder
324 	 * use socket memory to improve coalescing (re-using a single buffer
325 	 * increases frag count)
326 	 * if we can't allocate memory now use the dummy page
327 	 */
328 	if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) &&
329 	    !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) {
330 		dummy_tag_frag.page = dummy_page;
331 		dummy_tag_frag.offset = 0;
332 		pfrag = &dummy_tag_frag;
333 	}
334 	tls_append_frag(record, pfrag, prot->tag_size);
335 
336 	/* fill prepend */
337 	tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
338 			 record->len - prot->overhead_size,
339 			 record_type);
340 }
341 
342 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
343 				 struct page_frag *pfrag,
344 				 size_t prepend_size)
345 {
346 	struct tls_record_info *record;
347 	skb_frag_t *frag;
348 
349 	record = kmalloc(sizeof(*record), GFP_KERNEL);
350 	if (!record)
351 		return -ENOMEM;
352 
353 	frag = &record->frags[0];
354 	skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
355 				prepend_size);
356 
357 	get_page(pfrag->page);
358 	pfrag->offset += prepend_size;
359 
360 	record->num_frags = 1;
361 	record->len = prepend_size;
362 	offload_ctx->open_record = record;
363 	return 0;
364 }
365 
366 static int tls_do_allocation(struct sock *sk,
367 			     struct tls_offload_context_tx *offload_ctx,
368 			     struct page_frag *pfrag,
369 			     size_t prepend_size)
370 {
371 	int ret;
372 
373 	if (!offload_ctx->open_record) {
374 		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
375 						   sk->sk_allocation))) {
376 			READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
377 			sk_stream_moderate_sndbuf(sk);
378 			return -ENOMEM;
379 		}
380 
381 		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
382 		if (ret)
383 			return ret;
384 
385 		if (pfrag->size > pfrag->offset)
386 			return 0;
387 	}
388 
389 	if (!sk_page_frag_refill(sk, pfrag))
390 		return -ENOMEM;
391 
392 	return 0;
393 }
394 
395 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
396 {
397 	size_t pre_copy, nocache;
398 
399 	pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
400 	if (pre_copy) {
401 		pre_copy = min(pre_copy, bytes);
402 		if (copy_from_iter(addr, pre_copy, i) != pre_copy)
403 			return -EFAULT;
404 		bytes -= pre_copy;
405 		addr += pre_copy;
406 	}
407 
408 	nocache = round_down(bytes, SMP_CACHE_BYTES);
409 	if (copy_from_iter_nocache(addr, nocache, i) != nocache)
410 		return -EFAULT;
411 	bytes -= nocache;
412 	addr += nocache;
413 
414 	if (bytes && copy_from_iter(addr, bytes, i) != bytes)
415 		return -EFAULT;
416 
417 	return 0;
418 }
419 
420 static int tls_push_data(struct sock *sk,
421 			 struct iov_iter *iter,
422 			 size_t size, int flags,
423 			 unsigned char record_type)
424 {
425 	struct tls_context *tls_ctx = tls_get_ctx(sk);
426 	struct tls_prot_info *prot = &tls_ctx->prot_info;
427 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
428 	struct tls_record_info *record;
429 	int tls_push_record_flags;
430 	struct page_frag *pfrag;
431 	size_t orig_size = size;
432 	u32 max_open_record_len;
433 	bool more = false;
434 	bool done = false;
435 	int copy, rc = 0;
436 	long timeo;
437 
438 	if (flags &
439 	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
440 	      MSG_SPLICE_PAGES | MSG_EOR))
441 		return -EOPNOTSUPP;
442 
443 	if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR))
444 		return -EINVAL;
445 
446 	if (unlikely(sk->sk_err))
447 		return -sk->sk_err;
448 
449 	flags |= MSG_SENDPAGE_DECRYPTED;
450 	tls_push_record_flags = flags | MSG_MORE;
451 
452 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
453 	if (tls_is_partially_sent_record(tls_ctx)) {
454 		rc = tls_push_partial_record(sk, tls_ctx, flags);
455 		if (rc < 0)
456 			return rc;
457 	}
458 
459 	pfrag = sk_page_frag(sk);
460 
461 	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
462 	 * we need to leave room for an authentication tag.
463 	 */
464 	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
465 			      prot->prepend_size;
466 	do {
467 		rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
468 		if (unlikely(rc)) {
469 			rc = sk_stream_wait_memory(sk, &timeo);
470 			if (!rc)
471 				continue;
472 
473 			record = ctx->open_record;
474 			if (!record)
475 				break;
476 handle_error:
477 			if (record_type != TLS_RECORD_TYPE_DATA) {
478 				/* avoid sending partial
479 				 * record with type !=
480 				 * application_data
481 				 */
482 				size = orig_size;
483 				destroy_record(record);
484 				ctx->open_record = NULL;
485 			} else if (record->len > prot->prepend_size) {
486 				goto last_record;
487 			}
488 
489 			break;
490 		}
491 
492 		record = ctx->open_record;
493 
494 		copy = min_t(size_t, size, max_open_record_len - record->len);
495 		if (copy && (flags & MSG_SPLICE_PAGES)) {
496 			struct page_frag zc_pfrag;
497 			struct page **pages = &zc_pfrag.page;
498 			size_t off;
499 
500 			rc = iov_iter_extract_pages(iter, &pages,
501 						    copy, 1, 0, &off);
502 			if (rc <= 0) {
503 				if (rc == 0)
504 					rc = -EIO;
505 				goto handle_error;
506 			}
507 			copy = rc;
508 
509 			if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) {
510 				iov_iter_revert(iter, copy);
511 				rc = -EIO;
512 				goto handle_error;
513 			}
514 
515 			zc_pfrag.offset = off;
516 			zc_pfrag.size = copy;
517 			tls_append_frag(record, &zc_pfrag, copy);
518 		} else if (copy) {
519 			copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
520 
521 			rc = tls_device_copy_data(page_address(pfrag->page) +
522 						  pfrag->offset, copy,
523 						  iter);
524 			if (rc)
525 				goto handle_error;
526 			tls_append_frag(record, pfrag, copy);
527 		}
528 
529 		size -= copy;
530 		if (!size) {
531 last_record:
532 			tls_push_record_flags = flags;
533 			if (flags & MSG_MORE) {
534 				more = true;
535 				break;
536 			}
537 
538 			done = true;
539 		}
540 
541 		if (done || record->len >= max_open_record_len ||
542 		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
543 			tls_device_record_close(sk, tls_ctx, record,
544 						pfrag, record_type);
545 
546 			rc = tls_push_record(sk,
547 					     tls_ctx,
548 					     ctx,
549 					     record,
550 					     tls_push_record_flags);
551 			if (rc < 0)
552 				break;
553 		}
554 	} while (!done);
555 
556 	tls_ctx->pending_open_record_frags = more;
557 
558 	if (orig_size - size > 0)
559 		rc = orig_size - size;
560 
561 	return rc;
562 }
563 
564 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
565 {
566 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
567 	struct tls_context *tls_ctx = tls_get_ctx(sk);
568 	int rc;
569 
570 	if (!tls_ctx->zerocopy_sendfile)
571 		msg->msg_flags &= ~MSG_SPLICE_PAGES;
572 
573 	mutex_lock(&tls_ctx->tx_lock);
574 	lock_sock(sk);
575 
576 	if (unlikely(msg->msg_controllen)) {
577 		rc = tls_process_cmsg(sk, msg, &record_type);
578 		if (rc)
579 			goto out;
580 	}
581 
582 	rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags,
583 			   record_type);
584 
585 out:
586 	release_sock(sk);
587 	mutex_unlock(&tls_ctx->tx_lock);
588 	return rc;
589 }
590 
591 void tls_device_splice_eof(struct socket *sock)
592 {
593 	struct sock *sk = sock->sk;
594 	struct tls_context *tls_ctx = tls_get_ctx(sk);
595 	struct iov_iter iter = {};
596 
597 	if (!tls_is_partially_sent_record(tls_ctx))
598 		return;
599 
600 	mutex_lock(&tls_ctx->tx_lock);
601 	lock_sock(sk);
602 
603 	if (tls_is_partially_sent_record(tls_ctx)) {
604 		iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0);
605 		tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA);
606 	}
607 
608 	release_sock(sk);
609 	mutex_unlock(&tls_ctx->tx_lock);
610 }
611 
612 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
613 				       u32 seq, u64 *p_record_sn)
614 {
615 	u64 record_sn = context->hint_record_sn;
616 	struct tls_record_info *info, *last;
617 
618 	info = context->retransmit_hint;
619 	if (!info ||
620 	    before(seq, info->end_seq - info->len)) {
621 		/* if retransmit_hint is irrelevant start
622 		 * from the beginning of the list
623 		 */
624 		info = list_first_entry_or_null(&context->records_list,
625 						struct tls_record_info, list);
626 		if (!info)
627 			return NULL;
628 		/* send the start_marker record if seq number is before the
629 		 * tls offload start marker sequence number. This record is
630 		 * required to handle TCP packets which are before TLS offload
631 		 * started.
632 		 *  And if it's not start marker, look if this seq number
633 		 * belongs to the list.
634 		 */
635 		if (likely(!tls_record_is_start_marker(info))) {
636 			/* we have the first record, get the last record to see
637 			 * if this seq number belongs to the list.
638 			 */
639 			last = list_last_entry(&context->records_list,
640 					       struct tls_record_info, list);
641 
642 			if (!between(seq, tls_record_start_seq(info),
643 				     last->end_seq))
644 				return NULL;
645 		}
646 		record_sn = context->unacked_record_sn;
647 	}
648 
649 	/* We just need the _rcu for the READ_ONCE() */
650 	rcu_read_lock();
651 	list_for_each_entry_from_rcu(info, &context->records_list, list) {
652 		if (before(seq, info->end_seq)) {
653 			if (!context->retransmit_hint ||
654 			    after(info->end_seq,
655 				  context->retransmit_hint->end_seq)) {
656 				context->hint_record_sn = record_sn;
657 				context->retransmit_hint = info;
658 			}
659 			*p_record_sn = record_sn;
660 			goto exit_rcu_unlock;
661 		}
662 		record_sn++;
663 	}
664 	info = NULL;
665 
666 exit_rcu_unlock:
667 	rcu_read_unlock();
668 	return info;
669 }
670 EXPORT_SYMBOL(tls_get_record);
671 
672 static int tls_device_push_pending_record(struct sock *sk, int flags)
673 {
674 	struct iov_iter iter;
675 
676 	iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0);
677 	return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA);
678 }
679 
680 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
681 {
682 	if (tls_is_partially_sent_record(ctx)) {
683 		gfp_t sk_allocation = sk->sk_allocation;
684 
685 		WARN_ON_ONCE(sk->sk_write_pending);
686 
687 		sk->sk_allocation = GFP_ATOMIC;
688 		tls_push_partial_record(sk, ctx,
689 					MSG_DONTWAIT | MSG_NOSIGNAL |
690 					MSG_SENDPAGE_DECRYPTED);
691 		sk->sk_allocation = sk_allocation;
692 	}
693 }
694 
695 static void tls_device_resync_rx(struct tls_context *tls_ctx,
696 				 struct sock *sk, u32 seq, u8 *rcd_sn)
697 {
698 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
699 	struct net_device *netdev;
700 
701 	trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
702 	rcu_read_lock();
703 	netdev = rcu_dereference(tls_ctx->netdev);
704 	if (netdev)
705 		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
706 						   TLS_OFFLOAD_CTX_DIR_RX);
707 	rcu_read_unlock();
708 	TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
709 }
710 
711 static bool
712 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
713 			   s64 resync_req, u32 *seq, u16 *rcd_delta)
714 {
715 	u32 is_async = resync_req & RESYNC_REQ_ASYNC;
716 	u32 req_seq = resync_req >> 32;
717 	u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
718 	u16 i;
719 
720 	*rcd_delta = 0;
721 
722 	if (is_async) {
723 		/* shouldn't get to wraparound:
724 		 * too long in async stage, something bad happened
725 		 */
726 		if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) {
727 			tls_offload_rx_resync_async_request_cancel(resync_async);
728 			return false;
729 		}
730 
731 		/* asynchronous stage: log all headers seq such that
732 		 * req_seq <= seq <= end_seq, and wait for real resync request
733 		 */
734 		if (before(*seq, req_seq))
735 			return false;
736 		if (!after(*seq, req_end) &&
737 		    resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
738 			resync_async->log[resync_async->loglen++] = *seq;
739 
740 		resync_async->rcd_delta++;
741 
742 		return false;
743 	}
744 
745 	/* synchronous stage: check against the logged entries and
746 	 * proceed to check the next entries if no match was found
747 	 */
748 	for (i = 0; i < resync_async->loglen; i++)
749 		if (req_seq == resync_async->log[i] &&
750 		    atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
751 			*rcd_delta = resync_async->rcd_delta - i;
752 			*seq = req_seq;
753 			resync_async->loglen = 0;
754 			resync_async->rcd_delta = 0;
755 			return true;
756 		}
757 
758 	resync_async->loglen = 0;
759 	resync_async->rcd_delta = 0;
760 
761 	if (req_seq == *seq &&
762 	    atomic64_try_cmpxchg(&resync_async->req,
763 				 &resync_req, 0))
764 		return true;
765 
766 	return false;
767 }
768 
769 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
770 {
771 	struct tls_context *tls_ctx = tls_get_ctx(sk);
772 	struct tls_offload_context_rx *rx_ctx;
773 	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
774 	u32 sock_data, is_req_pending;
775 	struct tls_prot_info *prot;
776 	s64 resync_req;
777 	u16 rcd_delta;
778 	u32 req_seq;
779 
780 	if (tls_ctx->rx_conf != TLS_HW)
781 		return;
782 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
783 		return;
784 
785 	prot = &tls_ctx->prot_info;
786 	rx_ctx = tls_offload_ctx_rx(tls_ctx);
787 	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
788 
789 	switch (rx_ctx->resync_type) {
790 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
791 		resync_req = atomic64_read(&rx_ctx->resync_req);
792 		req_seq = resync_req >> 32;
793 		seq += TLS_HEADER_SIZE - 1;
794 		is_req_pending = resync_req;
795 
796 		if (likely(!is_req_pending) || req_seq != seq ||
797 		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
798 			return;
799 		break;
800 	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
801 		if (likely(!rx_ctx->resync_nh_do_now))
802 			return;
803 
804 		/* head of next rec is already in, note that the sock_inq will
805 		 * include the currently parsed message when called from parser
806 		 */
807 		sock_data = tcp_inq(sk);
808 		if (sock_data > rcd_len) {
809 			trace_tls_device_rx_resync_nh_delay(sk, sock_data,
810 							    rcd_len);
811 			return;
812 		}
813 
814 		rx_ctx->resync_nh_do_now = 0;
815 		seq += rcd_len;
816 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
817 		break;
818 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
819 		resync_req = atomic64_read(&rx_ctx->resync_async->req);
820 		is_req_pending = resync_req;
821 		if (likely(!is_req_pending))
822 			return;
823 
824 		if (!tls_device_rx_resync_async(rx_ctx->resync_async,
825 						resync_req, &seq, &rcd_delta))
826 			return;
827 		tls_bigint_subtract(rcd_sn, rcd_delta);
828 		break;
829 	}
830 
831 	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
832 }
833 
834 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
835 					   struct tls_offload_context_rx *ctx,
836 					   struct sock *sk, struct sk_buff *skb)
837 {
838 	struct strp_msg *rxm;
839 
840 	/* device will request resyncs by itself based on stream scan */
841 	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
842 		return;
843 	/* already scheduled */
844 	if (ctx->resync_nh_do_now)
845 		return;
846 	/* seen decrypted fragments since last fully-failed record */
847 	if (ctx->resync_nh_reset) {
848 		ctx->resync_nh_reset = 0;
849 		ctx->resync_nh.decrypted_failed = 1;
850 		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
851 		return;
852 	}
853 
854 	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
855 		return;
856 
857 	/* doing resync, bump the next target in case it fails */
858 	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
859 		ctx->resync_nh.decrypted_tgt *= 2;
860 	else
861 		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
862 
863 	rxm = strp_msg(skb);
864 
865 	/* head of next rec is already in, parser will sync for us */
866 	if (tcp_inq(sk) > rxm->full_len) {
867 		trace_tls_device_rx_resync_nh_schedule(sk);
868 		ctx->resync_nh_do_now = 1;
869 	} else {
870 		struct tls_prot_info *prot = &tls_ctx->prot_info;
871 		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
872 
873 		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
874 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
875 
876 		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
877 				     rcd_sn);
878 	}
879 }
880 
881 static int
882 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
883 {
884 	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
885 	const struct tls_cipher_desc *cipher_desc;
886 	int err, offset, copy, data_len, pos;
887 	struct sk_buff *skb, *skb_iter;
888 	struct scatterlist sg[1];
889 	struct strp_msg *rxm;
890 	char *orig_buf, *buf;
891 
892 	cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type);
893 	DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable);
894 
895 	rxm = strp_msg(tls_strp_msg(sw_ctx));
896 	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv,
897 			   sk->sk_allocation);
898 	if (!orig_buf)
899 		return -ENOMEM;
900 	buf = orig_buf;
901 
902 	err = tls_strp_msg_cow(sw_ctx);
903 	if (unlikely(err))
904 		goto free_buf;
905 
906 	skb = tls_strp_msg(sw_ctx);
907 	rxm = strp_msg(skb);
908 	offset = rxm->offset;
909 
910 	sg_init_table(sg, 1);
911 	sg_set_buf(&sg[0], buf,
912 		   rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv);
913 	err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv);
914 	if (err)
915 		goto free_buf;
916 
917 	/* We are interested only in the decrypted data not the auth */
918 	err = decrypt_skb(sk, sg);
919 	if (err != -EBADMSG)
920 		goto free_buf;
921 	else
922 		err = 0;
923 
924 	data_len = rxm->full_len - cipher_desc->tag;
925 
926 	if (skb_pagelen(skb) > offset) {
927 		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
928 
929 		if (skb->decrypted) {
930 			err = skb_store_bits(skb, offset, buf, copy);
931 			if (err)
932 				goto free_buf;
933 		}
934 
935 		offset += copy;
936 		buf += copy;
937 	}
938 
939 	pos = skb_pagelen(skb);
940 	skb_walk_frags(skb, skb_iter) {
941 		int frag_pos;
942 
943 		/* Practically all frags must belong to msg if reencrypt
944 		 * is needed with current strparser and coalescing logic,
945 		 * but strparser may "get optimized", so let's be safe.
946 		 */
947 		if (pos + skb_iter->len <= offset)
948 			goto done_with_frag;
949 		if (pos >= data_len + rxm->offset)
950 			break;
951 
952 		frag_pos = offset - pos;
953 		copy = min_t(int, skb_iter->len - frag_pos,
954 			     data_len + rxm->offset - offset);
955 
956 		if (skb_iter->decrypted) {
957 			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
958 			if (err)
959 				goto free_buf;
960 		}
961 
962 		offset += copy;
963 		buf += copy;
964 done_with_frag:
965 		pos += skb_iter->len;
966 	}
967 
968 free_buf:
969 	kfree(orig_buf);
970 	return err;
971 }
972 
973 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
974 {
975 	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
976 	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
977 	struct sk_buff *skb = tls_strp_msg(sw_ctx);
978 	struct strp_msg *rxm = strp_msg(skb);
979 	int is_decrypted, is_encrypted;
980 
981 	if (!tls_strp_msg_mixed_decrypted(sw_ctx)) {
982 		is_decrypted = skb->decrypted;
983 		is_encrypted = !is_decrypted;
984 	} else {
985 		is_decrypted = 0;
986 		is_encrypted = 0;
987 	}
988 
989 	trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
990 				   tls_ctx->rx.rec_seq, rxm->full_len,
991 				   is_encrypted, is_decrypted);
992 
993 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
994 		if (likely(is_encrypted || is_decrypted))
995 			return is_decrypted;
996 
997 		/* After tls_device_down disables the offload, the next SKB will
998 		 * likely have initial fragments decrypted, and final ones not
999 		 * decrypted. We need to reencrypt that single SKB.
1000 		 */
1001 		return tls_device_reencrypt(sk, tls_ctx);
1002 	}
1003 
1004 	/* Return immediately if the record is either entirely plaintext or
1005 	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1006 	 * record.
1007 	 */
1008 	if (is_decrypted) {
1009 		ctx->resync_nh_reset = 1;
1010 		return is_decrypted;
1011 	}
1012 	if (is_encrypted) {
1013 		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1014 		return 0;
1015 	}
1016 
1017 	ctx->resync_nh_reset = 1;
1018 	return tls_device_reencrypt(sk, tls_ctx);
1019 }
1020 
1021 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1022 			      struct net_device *netdev)
1023 {
1024 	if (sk->sk_destruct != tls_device_sk_destruct) {
1025 		refcount_set(&ctx->refcount, 1);
1026 		dev_hold(netdev);
1027 		RCU_INIT_POINTER(ctx->netdev, netdev);
1028 		spin_lock_irq(&tls_device_lock);
1029 		list_add_tail(&ctx->list, &tls_device_list);
1030 		spin_unlock_irq(&tls_device_lock);
1031 
1032 		ctx->sk_destruct = sk->sk_destruct;
1033 		smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1034 	}
1035 }
1036 
1037 static struct tls_offload_context_tx *alloc_offload_ctx_tx(struct tls_context *ctx)
1038 {
1039 	struct tls_offload_context_tx *offload_ctx;
1040 	__be64 rcd_sn;
1041 
1042 	offload_ctx = kzalloc(sizeof(*offload_ctx), GFP_KERNEL);
1043 	if (!offload_ctx)
1044 		return NULL;
1045 
1046 	INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1047 	INIT_LIST_HEAD(&offload_ctx->records_list);
1048 	spin_lock_init(&offload_ctx->lock);
1049 	sg_init_table(offload_ctx->sg_tx_data,
1050 		      ARRAY_SIZE(offload_ctx->sg_tx_data));
1051 
1052 	/* start at rec_seq - 1 to account for the start marker record */
1053 	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1054 	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1055 
1056 	offload_ctx->ctx = ctx;
1057 
1058 	return offload_ctx;
1059 }
1060 
1061 int tls_set_device_offload(struct sock *sk)
1062 {
1063 	struct tls_record_info *start_marker_record;
1064 	struct tls_offload_context_tx *offload_ctx;
1065 	const struct tls_cipher_desc *cipher_desc;
1066 	struct tls_crypto_info *crypto_info;
1067 	struct tls_prot_info *prot;
1068 	struct net_device *netdev;
1069 	struct tls_context *ctx;
1070 	char *iv, *rec_seq;
1071 	int rc;
1072 
1073 	ctx = tls_get_ctx(sk);
1074 	prot = &ctx->prot_info;
1075 
1076 	if (ctx->priv_ctx_tx)
1077 		return -EEXIST;
1078 
1079 	netdev = get_netdev_for_sock(sk);
1080 	if (!netdev) {
1081 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1082 		return -EINVAL;
1083 	}
1084 
1085 	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1086 		rc = -EOPNOTSUPP;
1087 		goto release_netdev;
1088 	}
1089 
1090 	crypto_info = &ctx->crypto_send.info;
1091 	if (crypto_info->version != TLS_1_2_VERSION) {
1092 		rc = -EOPNOTSUPP;
1093 		goto release_netdev;
1094 	}
1095 
1096 	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
1097 	if (!cipher_desc || !cipher_desc->offloadable) {
1098 		rc = -EINVAL;
1099 		goto release_netdev;
1100 	}
1101 
1102 	rc = init_prot_info(prot, crypto_info, cipher_desc);
1103 	if (rc)
1104 		goto release_netdev;
1105 
1106 	iv = crypto_info_iv(crypto_info, cipher_desc);
1107 	rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
1108 
1109 	memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv);
1110 	memcpy(ctx->tx.rec_seq, rec_seq, cipher_desc->rec_seq);
1111 
1112 	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1113 	if (!start_marker_record) {
1114 		rc = -ENOMEM;
1115 		goto release_netdev;
1116 	}
1117 
1118 	offload_ctx = alloc_offload_ctx_tx(ctx);
1119 	if (!offload_ctx) {
1120 		rc = -ENOMEM;
1121 		goto free_marker_record;
1122 	}
1123 
1124 	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1125 	if (rc)
1126 		goto free_offload_ctx;
1127 
1128 	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1129 	start_marker_record->len = 0;
1130 	start_marker_record->num_frags = 0;
1131 	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1132 
1133 	clean_acked_data_enable(tcp_sk(sk), &tls_tcp_clean_acked);
1134 	ctx->push_pending_record = tls_device_push_pending_record;
1135 
1136 	/* TLS offload is greatly simplified if we don't send
1137 	 * SKBs where only part of the payload needs to be encrypted.
1138 	 * So mark the last skb in the write queue as end of record.
1139 	 */
1140 	tcp_write_collapse_fence(sk);
1141 
1142 	/* Avoid offloading if the device is down
1143 	 * We don't want to offload new flows after
1144 	 * the NETDEV_DOWN event
1145 	 *
1146 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1147 	 * handler thus protecting from the device going down before
1148 	 * ctx was added to tls_device_list.
1149 	 */
1150 	down_read(&device_offload_lock);
1151 	if (!(netdev->flags & IFF_UP)) {
1152 		rc = -EINVAL;
1153 		goto release_lock;
1154 	}
1155 
1156 	ctx->priv_ctx_tx = offload_ctx;
1157 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1158 					     &ctx->crypto_send.info,
1159 					     tcp_sk(sk)->write_seq);
1160 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1161 				     tcp_sk(sk)->write_seq, rec_seq, rc);
1162 	if (rc)
1163 		goto release_lock;
1164 
1165 	tls_device_attach(ctx, sk, netdev);
1166 	up_read(&device_offload_lock);
1167 
1168 	/* following this assignment tls_is_skb_tx_device_offloaded
1169 	 * will return true and the context might be accessed
1170 	 * by the netdev's xmit function.
1171 	 */
1172 	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1173 	dev_put(netdev);
1174 
1175 	return 0;
1176 
1177 release_lock:
1178 	up_read(&device_offload_lock);
1179 	clean_acked_data_disable(tcp_sk(sk));
1180 	crypto_free_aead(offload_ctx->aead_send);
1181 free_offload_ctx:
1182 	kfree(offload_ctx);
1183 	ctx->priv_ctx_tx = NULL;
1184 free_marker_record:
1185 	kfree(start_marker_record);
1186 release_netdev:
1187 	dev_put(netdev);
1188 	return rc;
1189 }
1190 
1191 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1192 {
1193 	struct tls12_crypto_info_aes_gcm_128 *info;
1194 	struct tls_offload_context_rx *context;
1195 	struct net_device *netdev;
1196 	int rc = 0;
1197 
1198 	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1199 		return -EOPNOTSUPP;
1200 
1201 	netdev = get_netdev_for_sock(sk);
1202 	if (!netdev) {
1203 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1204 		return -EINVAL;
1205 	}
1206 
1207 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1208 		rc = -EOPNOTSUPP;
1209 		goto release_netdev;
1210 	}
1211 
1212 	/* Avoid offloading if the device is down
1213 	 * We don't want to offload new flows after
1214 	 * the NETDEV_DOWN event
1215 	 *
1216 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1217 	 * handler thus protecting from the device going down before
1218 	 * ctx was added to tls_device_list.
1219 	 */
1220 	down_read(&device_offload_lock);
1221 	if (!(netdev->flags & IFF_UP)) {
1222 		rc = -EINVAL;
1223 		goto release_lock;
1224 	}
1225 
1226 	context = kzalloc(sizeof(*context), GFP_KERNEL);
1227 	if (!context) {
1228 		rc = -ENOMEM;
1229 		goto release_lock;
1230 	}
1231 	context->resync_nh_reset = 1;
1232 
1233 	ctx->priv_ctx_rx = context;
1234 	rc = tls_set_sw_offload(sk, 0, NULL);
1235 	if (rc)
1236 		goto release_ctx;
1237 
1238 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1239 					     &ctx->crypto_recv.info,
1240 					     tcp_sk(sk)->copied_seq);
1241 	info = (void *)&ctx->crypto_recv.info;
1242 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1243 				     tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1244 	if (rc)
1245 		goto free_sw_resources;
1246 
1247 	tls_device_attach(ctx, sk, netdev);
1248 	up_read(&device_offload_lock);
1249 
1250 	dev_put(netdev);
1251 
1252 	return 0;
1253 
1254 free_sw_resources:
1255 	up_read(&device_offload_lock);
1256 	tls_sw_free_resources_rx(sk);
1257 	down_read(&device_offload_lock);
1258 release_ctx:
1259 	ctx->priv_ctx_rx = NULL;
1260 release_lock:
1261 	up_read(&device_offload_lock);
1262 release_netdev:
1263 	dev_put(netdev);
1264 	return rc;
1265 }
1266 
1267 void tls_device_offload_cleanup_rx(struct sock *sk)
1268 {
1269 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1270 	struct net_device *netdev;
1271 
1272 	down_read(&device_offload_lock);
1273 	netdev = rcu_dereference_protected(tls_ctx->netdev,
1274 					   lockdep_is_held(&device_offload_lock));
1275 	if (!netdev)
1276 		goto out;
1277 
1278 	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1279 					TLS_OFFLOAD_CTX_DIR_RX);
1280 
1281 	if (tls_ctx->tx_conf != TLS_HW) {
1282 		dev_put(netdev);
1283 		rcu_assign_pointer(tls_ctx->netdev, NULL);
1284 	} else {
1285 		set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1286 	}
1287 out:
1288 	up_read(&device_offload_lock);
1289 	tls_sw_release_resources_rx(sk);
1290 }
1291 
1292 static int tls_device_down(struct net_device *netdev)
1293 {
1294 	struct tls_context *ctx, *tmp;
1295 	unsigned long flags;
1296 	LIST_HEAD(list);
1297 
1298 	/* Request a write lock to block new offload attempts */
1299 	down_write(&device_offload_lock);
1300 
1301 	spin_lock_irqsave(&tls_device_lock, flags);
1302 	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1303 		struct net_device *ctx_netdev =
1304 			rcu_dereference_protected(ctx->netdev,
1305 						  lockdep_is_held(&device_offload_lock));
1306 
1307 		if (ctx_netdev != netdev ||
1308 		    !refcount_inc_not_zero(&ctx->refcount))
1309 			continue;
1310 
1311 		list_move(&ctx->list, &list);
1312 	}
1313 	spin_unlock_irqrestore(&tls_device_lock, flags);
1314 
1315 	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1316 		/* Stop offloaded TX and switch to the fallback.
1317 		 * tls_is_skb_tx_device_offloaded will return false.
1318 		 */
1319 		WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1320 
1321 		/* Stop the RX and TX resync.
1322 		 * tls_dev_resync must not be called after tls_dev_del.
1323 		 */
1324 		rcu_assign_pointer(ctx->netdev, NULL);
1325 
1326 		/* Start skipping the RX resync logic completely. */
1327 		set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1328 
1329 		/* Sync with inflight packets. After this point:
1330 		 * TX: no non-encrypted packets will be passed to the driver.
1331 		 * RX: resync requests from the driver will be ignored.
1332 		 */
1333 		synchronize_net();
1334 
1335 		/* Release the offload context on the driver side. */
1336 		if (ctx->tx_conf == TLS_HW)
1337 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1338 							TLS_OFFLOAD_CTX_DIR_TX);
1339 		if (ctx->rx_conf == TLS_HW &&
1340 		    !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1341 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1342 							TLS_OFFLOAD_CTX_DIR_RX);
1343 
1344 		dev_put(netdev);
1345 
1346 		/* Move the context to a separate list for two reasons:
1347 		 * 1. When the context is deallocated, list_del is called.
1348 		 * 2. It's no longer an offloaded context, so we don't want to
1349 		 *    run offload-specific code on this context.
1350 		 */
1351 		spin_lock_irqsave(&tls_device_lock, flags);
1352 		list_move_tail(&ctx->list, &tls_device_down_list);
1353 		spin_unlock_irqrestore(&tls_device_lock, flags);
1354 
1355 		/* Device contexts for RX and TX will be freed in on sk_destruct
1356 		 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1357 		 * Now release the ref taken above.
1358 		 */
1359 		if (refcount_dec_and_test(&ctx->refcount)) {
1360 			/* sk_destruct ran after tls_device_down took a ref, and
1361 			 * it returned early. Complete the destruction here.
1362 			 */
1363 			list_del(&ctx->list);
1364 			tls_device_free_ctx(ctx);
1365 		}
1366 	}
1367 
1368 	up_write(&device_offload_lock);
1369 
1370 	flush_workqueue(destruct_wq);
1371 
1372 	return NOTIFY_DONE;
1373 }
1374 
1375 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1376 			 void *ptr)
1377 {
1378 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1379 
1380 	if (!dev->tlsdev_ops &&
1381 	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1382 		return NOTIFY_DONE;
1383 
1384 	switch (event) {
1385 	case NETDEV_REGISTER:
1386 	case NETDEV_FEAT_CHANGE:
1387 		if (netif_is_bond_master(dev))
1388 			return NOTIFY_DONE;
1389 		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1390 		    !dev->tlsdev_ops->tls_dev_resync)
1391 			return NOTIFY_BAD;
1392 
1393 		if  (dev->tlsdev_ops &&
1394 		     dev->tlsdev_ops->tls_dev_add &&
1395 		     dev->tlsdev_ops->tls_dev_del)
1396 			return NOTIFY_DONE;
1397 		else
1398 			return NOTIFY_BAD;
1399 	case NETDEV_DOWN:
1400 		return tls_device_down(dev);
1401 	}
1402 	return NOTIFY_DONE;
1403 }
1404 
1405 static struct notifier_block tls_dev_notifier = {
1406 	.notifier_call	= tls_dev_event,
1407 };
1408 
1409 int __init tls_device_init(void)
1410 {
1411 	int err;
1412 
1413 	dummy_page = alloc_page(GFP_KERNEL);
1414 	if (!dummy_page)
1415 		return -ENOMEM;
1416 
1417 	destruct_wq = alloc_workqueue("ktls_device_destruct", WQ_PERCPU, 0);
1418 	if (!destruct_wq) {
1419 		err = -ENOMEM;
1420 		goto err_free_dummy;
1421 	}
1422 
1423 	err = register_netdevice_notifier(&tls_dev_notifier);
1424 	if (err)
1425 		goto err_destroy_wq;
1426 
1427 	return 0;
1428 
1429 err_destroy_wq:
1430 	destroy_workqueue(destruct_wq);
1431 err_free_dummy:
1432 	put_page(dummy_page);
1433 	return err;
1434 }
1435 
1436 void __exit tls_device_cleanup(void)
1437 {
1438 	unregister_netdevice_notifier(&tls_dev_notifier);
1439 	destroy_workqueue(destruct_wq);
1440 	clean_acked_data_flush();
1441 	put_page(dummy_page);
1442 }
1443