1 /* 2 * Copyright (c) 2016 Tom Herbert <tom@herbertland.com> 3 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 4 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #ifndef _TLS_INT_H 36 #define _TLS_INT_H 37 38 #include <asm/byteorder.h> 39 #include <linux/types.h> 40 #include <linux/skmsg.h> 41 #include <net/tls.h> 42 #include <net/tls_prot.h> 43 44 #define TLS_PAGE_ORDER (min_t(unsigned int, PAGE_ALLOC_COSTLY_ORDER, \ 45 TLS_MAX_PAYLOAD_SIZE >> PAGE_SHIFT)) 46 47 #define __TLS_INC_STATS(net, field) \ 48 __SNMP_INC_STATS((net)->mib.tls_statistics, field) 49 #define TLS_INC_STATS(net, field) \ 50 SNMP_INC_STATS((net)->mib.tls_statistics, field) 51 #define TLS_DEC_STATS(net, field) \ 52 SNMP_DEC_STATS((net)->mib.tls_statistics, field) 53 54 struct tls_cipher_desc { 55 unsigned int nonce; 56 unsigned int iv; 57 unsigned int key; 58 unsigned int salt; 59 unsigned int tag; 60 unsigned int rec_seq; 61 unsigned int iv_offset; 62 unsigned int key_offset; 63 unsigned int salt_offset; 64 unsigned int rec_seq_offset; 65 char *cipher_name; 66 bool offloadable; 67 size_t crypto_info; 68 }; 69 70 #define TLS_CIPHER_MIN TLS_CIPHER_AES_GCM_128 71 #define TLS_CIPHER_MAX TLS_CIPHER_ARIA_GCM_256 72 extern const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN]; 73 74 static inline const struct tls_cipher_desc *get_cipher_desc(u16 cipher_type) 75 { 76 if (cipher_type < TLS_CIPHER_MIN || cipher_type > TLS_CIPHER_MAX) 77 return NULL; 78 79 return &tls_cipher_desc[cipher_type - TLS_CIPHER_MIN]; 80 } 81 82 static inline char *crypto_info_iv(struct tls_crypto_info *crypto_info, 83 const struct tls_cipher_desc *cipher_desc) 84 { 85 return (char *)crypto_info + cipher_desc->iv_offset; 86 } 87 88 static inline char *crypto_info_key(struct tls_crypto_info *crypto_info, 89 const struct tls_cipher_desc *cipher_desc) 90 { 91 return (char *)crypto_info + cipher_desc->key_offset; 92 } 93 94 static inline char *crypto_info_salt(struct tls_crypto_info *crypto_info, 95 const struct tls_cipher_desc *cipher_desc) 96 { 97 return (char *)crypto_info + cipher_desc->salt_offset; 98 } 99 100 static inline char *crypto_info_rec_seq(struct tls_crypto_info *crypto_info, 101 const struct tls_cipher_desc *cipher_desc) 102 { 103 return (char *)crypto_info + cipher_desc->rec_seq_offset; 104 } 105 106 107 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 108 * allocated or mapped for each TLS record. After encryption, the records are 109 * stores in a linked list. 110 */ 111 struct tls_rec { 112 struct list_head list; 113 int tx_ready; 114 int tx_flags; 115 116 struct sk_msg msg_plaintext; 117 struct sk_msg msg_encrypted; 118 119 /* AAD | msg_plaintext.sg.data | sg_tag */ 120 struct scatterlist sg_aead_in[2]; 121 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 122 struct scatterlist sg_aead_out[2]; 123 124 char content_type; 125 struct scatterlist sg_content_type; 126 127 struct sock *sk; 128 129 char aad_space[TLS_AAD_SPACE_SIZE]; 130 u8 iv_data[TLS_MAX_IV_SIZE]; 131 struct aead_request aead_req; 132 u8 aead_req_ctx[]; 133 }; 134 135 int __net_init tls_proc_init(struct net *net); 136 void __net_exit tls_proc_fini(struct net *net); 137 138 struct tls_context *tls_ctx_create(struct sock *sk); 139 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 140 void update_sk_prot(struct sock *sk, struct tls_context *ctx); 141 142 int wait_on_pending_writer(struct sock *sk, long *timeo); 143 void tls_err_abort(struct sock *sk, int err); 144 145 int init_prot_info(struct tls_prot_info *prot, 146 const struct tls_crypto_info *crypto_info, 147 const struct tls_cipher_desc *cipher_desc); 148 int tls_set_sw_offload(struct sock *sk, int tx, 149 struct tls_crypto_info *new_crypto_info); 150 void tls_update_rx_zc_capable(struct tls_context *tls_ctx); 151 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 152 void tls_sw_strparser_done(struct tls_context *tls_ctx); 153 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 154 void tls_sw_splice_eof(struct socket *sock); 155 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 156 void tls_sw_release_resources_tx(struct sock *sk); 157 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 158 void tls_sw_free_resources_rx(struct sock *sk); 159 void tls_sw_release_resources_rx(struct sock *sk); 160 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 161 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 162 int flags, int *addr_len); 163 bool tls_sw_sock_is_readable(struct sock *sk); 164 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 165 struct pipe_inode_info *pipe, 166 size_t len, unsigned int flags); 167 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, 168 sk_read_actor_t read_actor); 169 170 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 171 void tls_device_splice_eof(struct socket *sock); 172 int tls_tx_records(struct sock *sk, int flags); 173 174 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 175 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 176 177 int tls_process_cmsg(struct sock *sk, struct msghdr *msg, 178 unsigned char *record_type); 179 int decrypt_skb(struct sock *sk, struct scatterlist *sgout); 180 181 int tls_sw_fallback_init(struct sock *sk, 182 struct tls_offload_context_tx *offload_ctx, 183 struct tls_crypto_info *crypto_info); 184 185 int tls_strp_dev_init(void); 186 void tls_strp_dev_exit(void); 187 188 void tls_strp_done(struct tls_strparser *strp); 189 void tls_strp_stop(struct tls_strparser *strp); 190 int tls_strp_init(struct tls_strparser *strp, struct sock *sk); 191 void tls_strp_data_ready(struct tls_strparser *strp); 192 193 void tls_strp_check_rcv(struct tls_strparser *strp); 194 void tls_strp_msg_done(struct tls_strparser *strp); 195 196 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb); 197 void tls_rx_msg_ready(struct tls_strparser *strp); 198 199 void tls_strp_msg_load(struct tls_strparser *strp, bool force_refresh); 200 int tls_strp_msg_cow(struct tls_sw_context_rx *ctx); 201 struct sk_buff *tls_strp_msg_detach(struct tls_sw_context_rx *ctx); 202 int tls_strp_msg_hold(struct tls_strparser *strp, struct sk_buff_head *dst); 203 204 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 205 { 206 struct sk_skb_cb *scb = (struct sk_skb_cb *)skb->cb; 207 208 return &scb->tls; 209 } 210 211 static inline struct sk_buff *tls_strp_msg(struct tls_sw_context_rx *ctx) 212 { 213 DEBUG_NET_WARN_ON_ONCE(!ctx->strp.msg_ready || !ctx->strp.anchor->len); 214 return ctx->strp.anchor; 215 } 216 217 static inline bool tls_strp_msg_ready(struct tls_sw_context_rx *ctx) 218 { 219 return READ_ONCE(ctx->strp.msg_ready); 220 } 221 222 static inline bool tls_strp_msg_mixed_decrypted(struct tls_sw_context_rx *ctx) 223 { 224 return ctx->strp.mixed_decrypted; 225 } 226 227 #ifdef CONFIG_TLS_DEVICE 228 int tls_device_init(void); 229 void tls_device_cleanup(void); 230 int tls_set_device_offload(struct sock *sk); 231 void tls_device_free_resources_tx(struct sock *sk); 232 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 233 void tls_device_offload_cleanup_rx(struct sock *sk); 234 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 235 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx); 236 #else 237 static inline int tls_device_init(void) { return 0; } 238 static inline void tls_device_cleanup(void) {} 239 240 static inline int 241 tls_set_device_offload(struct sock *sk) 242 { 243 return -EOPNOTSUPP; 244 } 245 246 static inline void tls_device_free_resources_tx(struct sock *sk) {} 247 248 static inline int 249 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 250 { 251 return -EOPNOTSUPP; 252 } 253 254 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} 255 static inline void 256 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} 257 258 static inline int 259 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) 260 { 261 return 0; 262 } 263 #endif 264 265 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 266 struct scatterlist *sg, u16 first_offset, 267 int flags); 268 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 269 int flags); 270 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 271 272 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 273 { 274 return !!ctx->partially_sent_record; 275 } 276 277 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 278 { 279 return tls_ctx->pending_open_record_frags; 280 } 281 282 static inline bool tls_bigint_increment(unsigned char *seq, int len) 283 { 284 int i; 285 286 for (i = len - 1; i >= 0; i--) { 287 ++seq[i]; 288 if (seq[i] != 0) 289 break; 290 } 291 292 return (i == -1); 293 } 294 295 static inline void tls_bigint_subtract(unsigned char *seq, int n) 296 { 297 u64 rcd_sn; 298 __be64 *p; 299 300 BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8); 301 302 p = (__be64 *)seq; 303 rcd_sn = be64_to_cpu(*p); 304 *p = cpu_to_be64(rcd_sn - n); 305 } 306 307 static inline void 308 tls_advance_record_sn(struct sock *sk, struct tls_prot_info *prot, 309 struct cipher_context *ctx) 310 { 311 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 312 tls_err_abort(sk, -EBADMSG); 313 314 if (prot->version != TLS_1_3_VERSION && 315 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 316 tls_bigint_increment(ctx->iv + prot->salt_size, 317 prot->iv_size); 318 } 319 320 static inline void 321 tls_xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq) 322 { 323 int i; 324 325 if (prot->version == TLS_1_3_VERSION || 326 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 327 for (i = 0; i < 8; i++) 328 iv[i + 4] ^= seq[i]; 329 } 330 } 331 332 static inline void 333 tls_fill_prepend(struct tls_context *ctx, char *buf, size_t plaintext_len, 334 unsigned char record_type) 335 { 336 struct tls_prot_info *prot = &ctx->prot_info; 337 size_t pkt_len, iv_size = prot->iv_size; 338 339 pkt_len = plaintext_len + prot->tag_size; 340 if (prot->version != TLS_1_3_VERSION && 341 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) { 342 pkt_len += iv_size; 343 344 memcpy(buf + TLS_NONCE_OFFSET, 345 ctx->tx.iv + prot->salt_size, iv_size); 346 } 347 348 /* we cover nonce explicit here as well, so buf should be of 349 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 350 */ 351 buf[0] = prot->version == TLS_1_3_VERSION ? 352 TLS_RECORD_TYPE_DATA : record_type; 353 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 354 buf[1] = TLS_1_2_VERSION_MINOR; 355 buf[2] = TLS_1_2_VERSION_MAJOR; 356 /* we can use IV for nonce explicit according to spec */ 357 buf[3] = pkt_len >> 8; 358 buf[4] = pkt_len & 0xFF; 359 } 360 361 static inline 362 void tls_make_aad(char *buf, size_t size, char *record_sequence, 363 unsigned char record_type, struct tls_prot_info *prot) 364 { 365 if (prot->version != TLS_1_3_VERSION) { 366 memcpy(buf, record_sequence, prot->rec_seq_size); 367 buf += 8; 368 } else { 369 size += prot->tag_size; 370 } 371 372 buf[0] = prot->version == TLS_1_3_VERSION ? 373 TLS_RECORD_TYPE_DATA : record_type; 374 buf[1] = TLS_1_2_VERSION_MAJOR; 375 buf[2] = TLS_1_2_VERSION_MINOR; 376 buf[3] = size >> 8; 377 buf[4] = size & 0xFF; 378 } 379 380 #endif 381