1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption 4 * 5 * Copyright (c) 2019, Ericsson AB 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the names of the copyright holders nor the names of its 17 * contributors may be used to endorse or promote products derived from 18 * this software without specific prior written permission. 19 * 20 * Alternatively, this software may be distributed under the terms of the 21 * GNU General Public License ("GPL") version 2 as published by the Free 22 * Software Foundation. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * POSSIBILITY OF SUCH DAMAGE. 35 */ 36 37 #include <crypto/aead.h> 38 #include <crypto/aes.h> 39 #include <crypto/rng.h> 40 #include "crypto.h" 41 #include "msg.h" 42 #include "bcast.h" 43 44 #define TIPC_TX_GRACE_PERIOD msecs_to_jiffies(5000) /* 5s */ 45 #define TIPC_TX_LASTING_TIME msecs_to_jiffies(10000) /* 10s */ 46 #define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */ 47 #define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(15000) /* 15s */ 48 49 #define TIPC_MAX_TFMS_DEF 10 50 #define TIPC_MAX_TFMS_LIM 1000 51 52 #define TIPC_REKEYING_INTV_DEF (60 * 24) /* default: 1 day */ 53 54 /* 55 * TIPC Key ids 56 */ 57 enum { 58 KEY_MASTER = 0, 59 KEY_MIN = KEY_MASTER, 60 KEY_1 = 1, 61 KEY_2, 62 KEY_3, 63 KEY_MAX = KEY_3, 64 }; 65 66 /* 67 * TIPC Crypto statistics 68 */ 69 enum { 70 STAT_OK, 71 STAT_NOK, 72 STAT_ASYNC, 73 STAT_ASYNC_OK, 74 STAT_ASYNC_NOK, 75 STAT_BADKEYS, /* tx only */ 76 STAT_BADMSGS = STAT_BADKEYS, /* rx only */ 77 STAT_NOKEYS, 78 STAT_SWITCHES, 79 80 MAX_STATS, 81 }; 82 83 /* TIPC crypto statistics' header */ 84 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok", 85 "async_nok", "badmsgs", "nokeys", 86 "switches"}; 87 88 /* Max TFMs number per key */ 89 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF; 90 /* Key exchange switch, default: on */ 91 int sysctl_tipc_key_exchange_enabled __read_mostly = 1; 92 93 /* 94 * struct tipc_key - TIPC keys' status indicator 95 * 96 * 7 6 5 4 3 2 1 0 97 * +-----+-----+-----+-----+-----+-----+-----+-----+ 98 * key: | (reserved)|passive idx| active idx|pending idx| 99 * +-----+-----+-----+-----+-----+-----+-----+-----+ 100 */ 101 struct tipc_key { 102 #define KEY_BITS (2) 103 #define KEY_MASK ((1 << KEY_BITS) - 1) 104 union { 105 struct { 106 #if defined(__LITTLE_ENDIAN_BITFIELD) 107 u8 pending:2, 108 active:2, 109 passive:2, /* rx only */ 110 reserved:2; 111 #elif defined(__BIG_ENDIAN_BITFIELD) 112 u8 reserved:2, 113 passive:2, /* rx only */ 114 active:2, 115 pending:2; 116 #else 117 #error "Please fix <asm/byteorder.h>" 118 #endif 119 } __packed; 120 u8 keys; 121 }; 122 }; 123 124 /** 125 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs 126 * @tfm: cipher handle/key 127 * @list: linked list of TFMs 128 */ 129 struct tipc_tfm { 130 struct crypto_aead *tfm; 131 struct list_head list; 132 }; 133 134 /** 135 * struct tipc_aead - TIPC AEAD key structure 136 * @tfm_entry: per-cpu pointer to one entry in TFM list 137 * @crypto: TIPC crypto owns this key 138 * @cloned: reference to the source key in case cloning 139 * @users: the number of the key users (TX/RX) 140 * @salt: the key's SALT value 141 * @authsize: authentication tag size (max = 16) 142 * @mode: crypto mode is applied to the key 143 * @hint: a hint for user key 144 * @rcu: struct rcu_head 145 * @key: the aead key 146 * @gen: the key's generation 147 * @seqno: the key seqno (cluster scope) 148 * @refcnt: the key reference counter 149 */ 150 struct tipc_aead { 151 #define TIPC_AEAD_HINT_LEN (5) 152 struct tipc_tfm * __percpu *tfm_entry; 153 struct tipc_crypto *crypto; 154 struct tipc_aead *cloned; 155 atomic_t users; 156 u32 salt; 157 u8 authsize; 158 u8 mode; 159 char hint[2 * TIPC_AEAD_HINT_LEN + 1]; 160 struct rcu_head rcu; 161 struct tipc_aead_key *key; 162 u16 gen; 163 164 atomic64_t seqno ____cacheline_aligned; 165 refcount_t refcnt ____cacheline_aligned; 166 167 } ____cacheline_aligned; 168 169 /** 170 * struct tipc_crypto_stats - TIPC Crypto statistics 171 * @stat: array of crypto statistics 172 */ 173 struct tipc_crypto_stats { 174 unsigned int stat[MAX_STATS]; 175 }; 176 177 /** 178 * struct tipc_crypto - TIPC TX/RX crypto structure 179 * @net: struct net 180 * @node: TIPC node (RX) 181 * @aead: array of pointers to AEAD keys for encryption/decryption 182 * @peer_rx_active: replicated peer RX active key index 183 * @key_gen: TX/RX key generation 184 * @key: the key states 185 * @skey_mode: session key's mode 186 * @skey: received session key 187 * @wq: common workqueue on TX crypto 188 * @work: delayed work sched for TX/RX 189 * @key_distr: key distributing state 190 * @rekeying_intv: rekeying interval (in minutes) 191 * @stats: the crypto statistics 192 * @name: the crypto name 193 * @sndnxt: the per-peer sndnxt (TX) 194 * @timer1: general timer 1 (jiffies) 195 * @timer2: general timer 2 (jiffies) 196 * @working: the crypto is working or not 197 * @key_master: flag indicates if master key exists 198 * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.) 199 * @nokey: no key indication 200 * @flags: combined flags field 201 * @lock: tipc_key lock 202 */ 203 struct tipc_crypto { 204 struct net *net; 205 struct tipc_node *node; 206 struct tipc_aead __rcu *aead[KEY_MAX + 1]; 207 atomic_t peer_rx_active; 208 u16 key_gen; 209 struct tipc_key key; 210 u8 skey_mode; 211 struct tipc_aead_key *skey; 212 struct workqueue_struct *wq; 213 struct delayed_work work; 214 #define KEY_DISTR_SCHED 1 215 #define KEY_DISTR_COMPL 2 216 atomic_t key_distr; 217 u32 rekeying_intv; 218 219 struct tipc_crypto_stats __percpu *stats; 220 char name[48]; 221 222 atomic64_t sndnxt ____cacheline_aligned; 223 unsigned long timer1; 224 unsigned long timer2; 225 union { 226 struct { 227 u8 working:1; 228 u8 key_master:1; 229 u8 legacy_user:1; 230 u8 nokey: 1; 231 }; 232 u8 flags; 233 }; 234 spinlock_t lock; /* crypto lock */ 235 236 } ____cacheline_aligned; 237 238 /* struct tipc_crypto_tx_ctx - TX context for callbacks */ 239 struct tipc_crypto_tx_ctx { 240 struct tipc_aead *aead; 241 struct tipc_bearer *bearer; 242 struct tipc_media_addr dst; 243 }; 244 245 /* struct tipc_crypto_rx_ctx - RX context for callbacks */ 246 struct tipc_crypto_rx_ctx { 247 struct tipc_aead *aead; 248 struct tipc_bearer *bearer; 249 }; 250 251 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead); 252 static inline void tipc_aead_put(struct tipc_aead *aead); 253 static void tipc_aead_free(struct rcu_head *rp); 254 static int tipc_aead_users(struct tipc_aead __rcu *aead); 255 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim); 256 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim); 257 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val); 258 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead); 259 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, 260 u8 mode); 261 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src); 262 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, 263 unsigned int crypto_ctx_size, 264 u8 **iv, struct aead_request **req, 265 struct scatterlist **sg, int nsg); 266 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, 267 struct tipc_bearer *b, 268 struct tipc_media_addr *dst, 269 struct tipc_node *__dnode); 270 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err); 271 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, 272 struct sk_buff *skb, struct tipc_bearer *b); 273 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err); 274 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr); 275 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, 276 u8 tx_key, struct sk_buff *skb, 277 struct tipc_crypto *__rx); 278 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, 279 u8 new_passive, 280 u8 new_active, 281 u8 new_pending); 282 static int tipc_crypto_key_attach(struct tipc_crypto *c, 283 struct tipc_aead *aead, u8 pos, 284 bool master_key); 285 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending); 286 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, 287 struct tipc_crypto *rx, 288 struct sk_buff *skb, 289 u8 tx_key); 290 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb); 291 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key); 292 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb, 293 struct tipc_bearer *b, 294 struct tipc_media_addr *dst, 295 struct tipc_node *__dnode, u8 type); 296 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, 297 struct tipc_bearer *b, 298 struct sk_buff **skb, int err); 299 static void tipc_crypto_do_cmd(struct net *net, int cmd); 300 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf); 301 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, 302 char *buf); 303 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey, 304 u16 gen, u8 mode, u32 dnode); 305 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr); 306 static void tipc_crypto_work_tx(struct work_struct *work); 307 static void tipc_crypto_work_rx(struct work_struct *work); 308 static int tipc_aead_key_generate(struct tipc_aead_key *skey); 309 310 #define is_tx(crypto) (!(crypto)->node) 311 #define is_rx(crypto) (!is_tx(crypto)) 312 313 #define key_next(cur) ((cur) % KEY_MAX + 1) 314 315 #define tipc_aead_rcu_ptr(rcu_ptr, lock) \ 316 rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock)) 317 318 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \ 319 do { \ 320 struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr), \ 321 lockdep_is_held(lock)); \ 322 rcu_assign_pointer((rcu_ptr), (ptr)); \ 323 tipc_aead_put(__tmp); \ 324 } while (0) 325 326 #define tipc_crypto_key_detach(rcu_ptr, lock) \ 327 tipc_aead_rcu_replace((rcu_ptr), NULL, lock) 328 329 /** 330 * tipc_aead_key_validate - Validate a AEAD user key 331 * @ukey: pointer to user key data 332 * @info: netlink info pointer 333 */ 334 int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info) 335 { 336 int keylen; 337 338 /* Check if algorithm exists */ 339 if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) { 340 GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)"); 341 return -ENODEV; 342 } 343 344 /* Currently, we only support the "gcm(aes)" cipher algorithm */ 345 if (strcmp(ukey->alg_name, "gcm(aes)")) { 346 GENL_SET_ERR_MSG(info, "not supported yet the algorithm"); 347 return -ENOTSUPP; 348 } 349 350 /* Check if key size is correct */ 351 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; 352 if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 && 353 keylen != TIPC_AES_GCM_KEY_SIZE_192 && 354 keylen != TIPC_AES_GCM_KEY_SIZE_256)) { 355 GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)"); 356 return -EKEYREJECTED; 357 } 358 359 return 0; 360 } 361 362 /** 363 * tipc_aead_key_generate - Generate new session key 364 * @skey: input/output key with new content 365 * 366 * Return: 0 in case of success, otherwise < 0 367 */ 368 static int tipc_aead_key_generate(struct tipc_aead_key *skey) 369 { 370 int rc = 0; 371 372 /* Fill the key's content with a random value via RNG cipher */ 373 rc = crypto_get_default_rng(); 374 if (likely(!rc)) { 375 rc = crypto_rng_get_bytes(crypto_default_rng, skey->key, 376 skey->keylen); 377 crypto_put_default_rng(); 378 } 379 380 return rc; 381 } 382 383 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead) 384 { 385 struct tipc_aead *tmp; 386 387 rcu_read_lock(); 388 tmp = rcu_dereference(aead); 389 if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt))) 390 tmp = NULL; 391 rcu_read_unlock(); 392 393 return tmp; 394 } 395 396 static inline void tipc_aead_put(struct tipc_aead *aead) 397 { 398 if (aead && refcount_dec_and_test(&aead->refcnt)) 399 call_rcu(&aead->rcu, tipc_aead_free); 400 } 401 402 /** 403 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list 404 * @rp: rcu head pointer 405 */ 406 static void tipc_aead_free(struct rcu_head *rp) 407 { 408 struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu); 409 struct tipc_tfm *tfm_entry, *head, *tmp; 410 411 if (aead->cloned) { 412 tipc_aead_put(aead->cloned); 413 } else { 414 head = *get_cpu_ptr(aead->tfm_entry); 415 put_cpu_ptr(aead->tfm_entry); 416 list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) { 417 crypto_free_aead(tfm_entry->tfm); 418 list_del(&tfm_entry->list); 419 kfree(tfm_entry); 420 } 421 /* Free the head */ 422 crypto_free_aead(head->tfm); 423 list_del(&head->list); 424 kfree(head); 425 } 426 free_percpu(aead->tfm_entry); 427 kfree_sensitive(aead->key); 428 kfree(aead); 429 } 430 431 static int tipc_aead_users(struct tipc_aead __rcu *aead) 432 { 433 struct tipc_aead *tmp; 434 int users = 0; 435 436 rcu_read_lock(); 437 tmp = rcu_dereference(aead); 438 if (tmp) 439 users = atomic_read(&tmp->users); 440 rcu_read_unlock(); 441 442 return users; 443 } 444 445 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim) 446 { 447 struct tipc_aead *tmp; 448 449 rcu_read_lock(); 450 tmp = rcu_dereference(aead); 451 if (tmp) 452 atomic_add_unless(&tmp->users, 1, lim); 453 rcu_read_unlock(); 454 } 455 456 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim) 457 { 458 struct tipc_aead *tmp; 459 460 rcu_read_lock(); 461 tmp = rcu_dereference(aead); 462 if (tmp) 463 atomic_add_unless(&rcu_dereference(aead)->users, -1, lim); 464 rcu_read_unlock(); 465 } 466 467 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val) 468 { 469 struct tipc_aead *tmp; 470 int cur; 471 472 rcu_read_lock(); 473 tmp = rcu_dereference(aead); 474 if (tmp) { 475 do { 476 cur = atomic_read(&tmp->users); 477 if (cur == val) 478 break; 479 } while (atomic_cmpxchg(&tmp->users, cur, val) != cur); 480 } 481 rcu_read_unlock(); 482 } 483 484 /** 485 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it 486 * @aead: the AEAD key pointer 487 */ 488 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead) 489 { 490 struct tipc_tfm **tfm_entry; 491 struct crypto_aead *tfm; 492 493 tfm_entry = get_cpu_ptr(aead->tfm_entry); 494 *tfm_entry = list_next_entry(*tfm_entry, list); 495 tfm = (*tfm_entry)->tfm; 496 put_cpu_ptr(tfm_entry); 497 498 return tfm; 499 } 500 501 /** 502 * tipc_aead_init - Initiate TIPC AEAD 503 * @aead: returned new TIPC AEAD key handle pointer 504 * @ukey: pointer to user key data 505 * @mode: the key mode 506 * 507 * Allocate a (list of) new cipher transformation (TFM) with the specific user 508 * key data if valid. The number of the allocated TFMs can be set via the sysfs 509 * "net/tipc/max_tfms" first. 510 * Also, all the other AEAD data are also initialized. 511 * 512 * Return: 0 if the initiation is successful, otherwise: < 0 513 */ 514 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, 515 u8 mode) 516 { 517 struct tipc_tfm *tfm_entry, *head; 518 struct crypto_aead *tfm; 519 struct tipc_aead *tmp; 520 int keylen, err, cpu; 521 int tfm_cnt = 0; 522 523 if (unlikely(*aead)) 524 return -EEXIST; 525 526 /* Allocate a new AEAD */ 527 tmp = kzalloc(sizeof(*tmp), GFP_KERNEL); 528 if (unlikely(!tmp)) 529 return -ENOMEM; 530 531 /* The key consists of two parts: [AES-KEY][SALT] */ 532 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; 533 534 /* Allocate per-cpu TFM entry pointer */ 535 tmp->tfm_entry = alloc_percpu(struct tipc_tfm *); 536 if (!tmp->tfm_entry) { 537 kfree_sensitive(tmp); 538 return -ENOMEM; 539 } 540 541 /* Make a list of TFMs with the user key data */ 542 do { 543 tfm = crypto_alloc_aead(ukey->alg_name, 0, 0); 544 if (IS_ERR(tfm)) { 545 err = PTR_ERR(tfm); 546 break; 547 } 548 549 if (unlikely(!tfm_cnt && 550 crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) { 551 crypto_free_aead(tfm); 552 err = -ENOTSUPP; 553 break; 554 } 555 556 err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE); 557 err |= crypto_aead_setkey(tfm, ukey->key, keylen); 558 if (unlikely(err)) { 559 crypto_free_aead(tfm); 560 break; 561 } 562 563 tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL); 564 if (unlikely(!tfm_entry)) { 565 crypto_free_aead(tfm); 566 err = -ENOMEM; 567 break; 568 } 569 INIT_LIST_HEAD(&tfm_entry->list); 570 tfm_entry->tfm = tfm; 571 572 /* First entry? */ 573 if (!tfm_cnt) { 574 head = tfm_entry; 575 for_each_possible_cpu(cpu) { 576 *per_cpu_ptr(tmp->tfm_entry, cpu) = head; 577 } 578 } else { 579 list_add_tail(&tfm_entry->list, &head->list); 580 } 581 582 } while (++tfm_cnt < sysctl_tipc_max_tfms); 583 584 /* Not any TFM is allocated? */ 585 if (!tfm_cnt) { 586 free_percpu(tmp->tfm_entry); 587 kfree_sensitive(tmp); 588 return err; 589 } 590 591 /* Form a hex string of some last bytes as the key's hint */ 592 bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN, 593 TIPC_AEAD_HINT_LEN); 594 595 /* Initialize the other data */ 596 tmp->mode = mode; 597 tmp->cloned = NULL; 598 tmp->authsize = TIPC_AES_GCM_TAG_SIZE; 599 tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL); 600 if (!tmp->key) { 601 tipc_aead_free(&tmp->rcu); 602 return -ENOMEM; 603 } 604 memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE); 605 atomic_set(&tmp->users, 0); 606 atomic64_set(&tmp->seqno, 0); 607 refcount_set(&tmp->refcnt, 1); 608 609 *aead = tmp; 610 return 0; 611 } 612 613 /** 614 * tipc_aead_clone - Clone a TIPC AEAD key 615 * @dst: dest key for the cloning 616 * @src: source key to clone from 617 * 618 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is 619 * common for the keys. 620 * A reference to the source is hold in the "cloned" pointer for the later 621 * freeing purposes. 622 * 623 * Note: this must be done in cluster-key mode only! 624 * Return: 0 in case of success, otherwise < 0 625 */ 626 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src) 627 { 628 struct tipc_aead *aead; 629 int cpu; 630 631 if (!src) 632 return -ENOKEY; 633 634 if (src->mode != CLUSTER_KEY) 635 return -EINVAL; 636 637 if (unlikely(*dst)) 638 return -EEXIST; 639 640 aead = kzalloc(sizeof(*aead), GFP_ATOMIC); 641 if (unlikely(!aead)) 642 return -ENOMEM; 643 644 aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC); 645 if (unlikely(!aead->tfm_entry)) { 646 kfree_sensitive(aead); 647 return -ENOMEM; 648 } 649 650 for_each_possible_cpu(cpu) { 651 *per_cpu_ptr(aead->tfm_entry, cpu) = 652 *per_cpu_ptr(src->tfm_entry, cpu); 653 } 654 655 memcpy(aead->hint, src->hint, sizeof(src->hint)); 656 aead->mode = src->mode; 657 aead->salt = src->salt; 658 aead->authsize = src->authsize; 659 atomic_set(&aead->users, 0); 660 atomic64_set(&aead->seqno, 0); 661 refcount_set(&aead->refcnt, 1); 662 663 WARN_ON(!refcount_inc_not_zero(&src->refcnt)); 664 aead->cloned = src; 665 666 *dst = aead; 667 return 0; 668 } 669 670 /** 671 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations 672 * @tfm: cipher handle to be registered with the request 673 * @crypto_ctx_size: size of crypto context for callback 674 * @iv: returned pointer to IV data 675 * @req: returned pointer to AEAD request data 676 * @sg: returned pointer to SG lists 677 * @nsg: number of SG lists to be allocated 678 * 679 * Allocate memory to store the crypto context data, AEAD request, IV and SG 680 * lists, the memory layout is as follows: 681 * crypto_ctx || iv || aead_req || sg[] 682 * 683 * Return: the pointer to the memory areas in case of success, otherwise NULL 684 */ 685 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, 686 unsigned int crypto_ctx_size, 687 u8 **iv, struct aead_request **req, 688 struct scatterlist **sg, int nsg) 689 { 690 unsigned int iv_size, req_size; 691 unsigned int len; 692 u8 *mem; 693 694 iv_size = crypto_aead_ivsize(tfm); 695 req_size = sizeof(**req) + crypto_aead_reqsize(tfm); 696 697 len = crypto_ctx_size; 698 len += iv_size; 699 len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1); 700 len = ALIGN(len, crypto_tfm_ctx_alignment()); 701 len += req_size; 702 len = ALIGN(len, __alignof__(struct scatterlist)); 703 len += nsg * sizeof(**sg); 704 705 mem = kmalloc(len, GFP_ATOMIC); 706 if (!mem) 707 return NULL; 708 709 *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size, 710 crypto_aead_alignmask(tfm) + 1); 711 *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size, 712 crypto_tfm_ctx_alignment()); 713 *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size, 714 __alignof__(struct scatterlist)); 715 716 return (void *)mem; 717 } 718 719 /** 720 * tipc_aead_encrypt - Encrypt a message 721 * @aead: TIPC AEAD key for the message encryption 722 * @skb: the input/output skb 723 * @b: TIPC bearer where the message will be delivered after the encryption 724 * @dst: the destination media address 725 * @__dnode: TIPC dest node if "known" 726 * 727 * Return: 728 * * 0 : if the encryption has completed 729 * * -EINPROGRESS/-EBUSY : if a callback will be performed 730 * * < 0 : the encryption has failed 731 */ 732 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, 733 struct tipc_bearer *b, 734 struct tipc_media_addr *dst, 735 struct tipc_node *__dnode) 736 { 737 struct crypto_aead *tfm = tipc_aead_tfm_next(aead); 738 struct tipc_crypto_tx_ctx *tx_ctx; 739 struct aead_request *req; 740 struct sk_buff *trailer; 741 struct scatterlist *sg; 742 struct tipc_ehdr *ehdr; 743 int ehsz, len, tailen, nsg, rc; 744 void *ctx; 745 u32 salt; 746 u8 *iv; 747 748 /* Make sure message len at least 4-byte aligned */ 749 len = ALIGN(skb->len, 4); 750 tailen = len - skb->len + aead->authsize; 751 752 /* Expand skb tail for authentication tag: 753 * As for simplicity, we'd have made sure skb having enough tailroom 754 * for authentication tag @skb allocation. Even when skb is nonlinear 755 * but there is no frag_list, it should be still fine! 756 * Otherwise, we must cow it to be a writable buffer with the tailroom. 757 */ 758 SKB_LINEAR_ASSERT(skb); 759 if (tailen > skb_tailroom(skb)) { 760 pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n", 761 skb_tailroom(skb), tailen); 762 } 763 764 if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) { 765 nsg = 1; 766 trailer = skb; 767 } else { 768 /* TODO: We could avoid skb_cow_data() if skb has no frag_list 769 * e.g. by skb_fill_page_desc() to add another page to the skb 770 * with the wanted tailen... However, page skbs look not often, 771 * so take it easy now! 772 * Cloned skbs e.g. from link_xmit() seems no choice though :( 773 */ 774 nsg = skb_cow_data(skb, tailen, &trailer); 775 if (unlikely(nsg < 0)) { 776 pr_err("TX: skb_cow_data() returned %d\n", nsg); 777 return nsg; 778 } 779 } 780 781 pskb_put(skb, trailer, tailen); 782 783 /* Allocate memory for the AEAD operation */ 784 ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg); 785 if (unlikely(!ctx)) 786 return -ENOMEM; 787 TIPC_SKB_CB(skb)->crypto_ctx = ctx; 788 789 /* Map skb to the sg lists */ 790 sg_init_table(sg, nsg); 791 rc = skb_to_sgvec(skb, sg, 0, skb->len); 792 if (unlikely(rc < 0)) { 793 pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg); 794 goto exit; 795 } 796 797 /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)] 798 * In case we're in cluster-key mode, SALT is varied by xor-ing with 799 * the source address (or w0 of id), otherwise with the dest address 800 * if dest is known. 801 */ 802 ehdr = (struct tipc_ehdr *)skb->data; 803 salt = aead->salt; 804 if (aead->mode == CLUSTER_KEY) 805 salt ^= __be32_to_cpu(ehdr->addr); 806 else if (__dnode) 807 salt ^= tipc_node_get_addr(__dnode); 808 memcpy(iv, &salt, 4); 809 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); 810 811 /* Prepare request */ 812 ehsz = tipc_ehdr_size(ehdr); 813 aead_request_set_tfm(req, tfm); 814 aead_request_set_ad(req, ehsz); 815 aead_request_set_crypt(req, sg, sg, len - ehsz, iv); 816 817 /* Set callback function & data */ 818 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 819 tipc_aead_encrypt_done, skb); 820 tx_ctx = (struct tipc_crypto_tx_ctx *)ctx; 821 tx_ctx->aead = aead; 822 tx_ctx->bearer = b; 823 memcpy(&tx_ctx->dst, dst, sizeof(*dst)); 824 825 /* Hold bearer */ 826 if (unlikely(!tipc_bearer_hold(b))) { 827 rc = -ENODEV; 828 goto exit; 829 } 830 831 /* Now, do encrypt */ 832 rc = crypto_aead_encrypt(req); 833 if (rc == -EINPROGRESS || rc == -EBUSY) 834 return rc; 835 836 tipc_bearer_put(b); 837 838 exit: 839 kfree(ctx); 840 TIPC_SKB_CB(skb)->crypto_ctx = NULL; 841 return rc; 842 } 843 844 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err) 845 { 846 struct sk_buff *skb = base->data; 847 struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; 848 struct tipc_bearer *b = tx_ctx->bearer; 849 struct tipc_aead *aead = tx_ctx->aead; 850 struct tipc_crypto *tx = aead->crypto; 851 struct net *net = tx->net; 852 853 switch (err) { 854 case 0: 855 this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]); 856 rcu_read_lock(); 857 if (likely(test_bit(0, &b->up))) 858 b->media->send_msg(net, skb, b, &tx_ctx->dst); 859 else 860 kfree_skb(skb); 861 rcu_read_unlock(); 862 break; 863 case -EINPROGRESS: 864 return; 865 default: 866 this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]); 867 kfree_skb(skb); 868 break; 869 } 870 871 kfree(tx_ctx); 872 tipc_bearer_put(b); 873 tipc_aead_put(aead); 874 } 875 876 /** 877 * tipc_aead_decrypt - Decrypt an encrypted message 878 * @net: struct net 879 * @aead: TIPC AEAD for the message decryption 880 * @skb: the input/output skb 881 * @b: TIPC bearer where the message has been received 882 * 883 * Return: 884 * * 0 : if the decryption has completed 885 * * -EINPROGRESS/-EBUSY : if a callback will be performed 886 * * < 0 : the decryption has failed 887 */ 888 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, 889 struct sk_buff *skb, struct tipc_bearer *b) 890 { 891 struct tipc_crypto_rx_ctx *rx_ctx; 892 struct aead_request *req; 893 struct crypto_aead *tfm; 894 struct sk_buff *unused; 895 struct scatterlist *sg; 896 struct tipc_ehdr *ehdr; 897 int ehsz, nsg, rc; 898 void *ctx; 899 u32 salt; 900 u8 *iv; 901 902 if (unlikely(!aead)) 903 return -ENOKEY; 904 905 nsg = skb_cow_data(skb, 0, &unused); 906 if (unlikely(nsg < 0)) { 907 pr_err("RX: skb_cow_data() returned %d\n", nsg); 908 return nsg; 909 } 910 911 /* Allocate memory for the AEAD operation */ 912 tfm = tipc_aead_tfm_next(aead); 913 ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg); 914 if (unlikely(!ctx)) 915 return -ENOMEM; 916 TIPC_SKB_CB(skb)->crypto_ctx = ctx; 917 918 /* Map skb to the sg lists */ 919 sg_init_table(sg, nsg); 920 rc = skb_to_sgvec(skb, sg, 0, skb->len); 921 if (unlikely(rc < 0)) { 922 pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg); 923 goto exit; 924 } 925 926 /* Reconstruct IV: */ 927 ehdr = (struct tipc_ehdr *)skb->data; 928 salt = aead->salt; 929 if (aead->mode == CLUSTER_KEY) 930 salt ^= __be32_to_cpu(ehdr->addr); 931 else if (ehdr->destined) 932 salt ^= tipc_own_addr(net); 933 memcpy(iv, &salt, 4); 934 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); 935 936 /* Prepare request */ 937 ehsz = tipc_ehdr_size(ehdr); 938 aead_request_set_tfm(req, tfm); 939 aead_request_set_ad(req, ehsz); 940 aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv); 941 942 /* Set callback function & data */ 943 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 944 tipc_aead_decrypt_done, skb); 945 rx_ctx = (struct tipc_crypto_rx_ctx *)ctx; 946 rx_ctx->aead = aead; 947 rx_ctx->bearer = b; 948 949 /* Hold bearer */ 950 if (unlikely(!tipc_bearer_hold(b))) { 951 rc = -ENODEV; 952 goto exit; 953 } 954 955 /* Now, do decrypt */ 956 rc = crypto_aead_decrypt(req); 957 if (rc == -EINPROGRESS || rc == -EBUSY) 958 return rc; 959 960 tipc_bearer_put(b); 961 962 exit: 963 kfree(ctx); 964 TIPC_SKB_CB(skb)->crypto_ctx = NULL; 965 return rc; 966 } 967 968 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err) 969 { 970 struct sk_buff *skb = base->data; 971 struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; 972 struct tipc_bearer *b = rx_ctx->bearer; 973 struct tipc_aead *aead = rx_ctx->aead; 974 struct tipc_crypto_stats __percpu *stats = aead->crypto->stats; 975 struct net *net = aead->crypto->net; 976 977 switch (err) { 978 case 0: 979 this_cpu_inc(stats->stat[STAT_ASYNC_OK]); 980 break; 981 case -EINPROGRESS: 982 return; 983 default: 984 this_cpu_inc(stats->stat[STAT_ASYNC_NOK]); 985 break; 986 } 987 988 kfree(rx_ctx); 989 tipc_crypto_rcv_complete(net, aead, b, &skb, err); 990 if (likely(skb)) { 991 if (likely(test_bit(0, &b->up))) 992 tipc_rcv(net, skb, b); 993 else 994 kfree_skb(skb); 995 } 996 997 tipc_bearer_put(b); 998 } 999 1000 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr) 1001 { 1002 return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; 1003 } 1004 1005 /** 1006 * tipc_ehdr_validate - Validate an encryption message 1007 * @skb: the message buffer 1008 * 1009 * Return: "true" if this is a valid encryption message, otherwise "false" 1010 */ 1011 bool tipc_ehdr_validate(struct sk_buff *skb) 1012 { 1013 struct tipc_ehdr *ehdr; 1014 int ehsz; 1015 1016 if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE))) 1017 return false; 1018 1019 ehdr = (struct tipc_ehdr *)skb->data; 1020 if (unlikely(ehdr->version != TIPC_EVERSION)) 1021 return false; 1022 ehsz = tipc_ehdr_size(ehdr); 1023 if (unlikely(!pskb_may_pull(skb, ehsz))) 1024 return false; 1025 if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE)) 1026 return false; 1027 1028 return true; 1029 } 1030 1031 /** 1032 * tipc_ehdr_build - Build TIPC encryption message header 1033 * @net: struct net 1034 * @aead: TX AEAD key to be used for the message encryption 1035 * @tx_key: key id used for the message encryption 1036 * @skb: input/output message skb 1037 * @__rx: RX crypto handle if dest is "known" 1038 * 1039 * Return: the header size if the building is successful, otherwise < 0 1040 */ 1041 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, 1042 u8 tx_key, struct sk_buff *skb, 1043 struct tipc_crypto *__rx) 1044 { 1045 struct tipc_msg *hdr = buf_msg(skb); 1046 struct tipc_ehdr *ehdr; 1047 u32 user = msg_user(hdr); 1048 u64 seqno; 1049 int ehsz; 1050 1051 /* Make room for encryption header */ 1052 ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; 1053 WARN_ON(skb_headroom(skb) < ehsz); 1054 ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz); 1055 1056 /* Obtain a seqno first: 1057 * Use the key seqno (= cluster wise) if dest is unknown or we're in 1058 * cluster key mode, otherwise it's better for a per-peer seqno! 1059 */ 1060 if (!__rx || aead->mode == CLUSTER_KEY) 1061 seqno = atomic64_inc_return(&aead->seqno); 1062 else 1063 seqno = atomic64_inc_return(&__rx->sndnxt); 1064 1065 /* Revoke the key if seqno is wrapped around */ 1066 if (unlikely(!seqno)) 1067 return tipc_crypto_key_revoke(net, tx_key); 1068 1069 /* Word 1-2 */ 1070 ehdr->seqno = cpu_to_be64(seqno); 1071 1072 /* Words 0, 3- */ 1073 ehdr->version = TIPC_EVERSION; 1074 ehdr->user = 0; 1075 ehdr->keepalive = 0; 1076 ehdr->tx_key = tx_key; 1077 ehdr->destined = (__rx) ? 1 : 0; 1078 ehdr->rx_key_active = (__rx) ? __rx->key.active : 0; 1079 ehdr->rx_nokey = (__rx) ? __rx->nokey : 0; 1080 ehdr->master_key = aead->crypto->key_master; 1081 ehdr->reserved_1 = 0; 1082 ehdr->reserved_2 = 0; 1083 1084 switch (user) { 1085 case LINK_CONFIG: 1086 ehdr->user = LINK_CONFIG; 1087 memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN); 1088 break; 1089 default: 1090 if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) { 1091 ehdr->user = LINK_PROTOCOL; 1092 ehdr->keepalive = msg_is_keepalive(hdr); 1093 } 1094 ehdr->addr = hdr->hdr[3]; 1095 break; 1096 } 1097 1098 return ehsz; 1099 } 1100 1101 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, 1102 u8 new_passive, 1103 u8 new_active, 1104 u8 new_pending) 1105 { 1106 struct tipc_key old = c->key; 1107 char buf[32]; 1108 1109 c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) | 1110 ((new_active & KEY_MASK) << (KEY_BITS)) | 1111 ((new_pending & KEY_MASK)); 1112 1113 pr_debug("%s: key changing %s ::%pS\n", c->name, 1114 tipc_key_change_dump(old, c->key, buf), 1115 __builtin_return_address(0)); 1116 } 1117 1118 /** 1119 * tipc_crypto_key_init - Initiate a new user / AEAD key 1120 * @c: TIPC crypto to which new key is attached 1121 * @ukey: the user key 1122 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY) 1123 * @master_key: specify this is a cluster master key 1124 * 1125 * A new TIPC AEAD key will be allocated and initiated with the specified user 1126 * key, then attached to the TIPC crypto. 1127 * 1128 * Return: new key id in case of success, otherwise: < 0 1129 */ 1130 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey, 1131 u8 mode, bool master_key) 1132 { 1133 struct tipc_aead *aead = NULL; 1134 int rc = 0; 1135 1136 /* Initiate with the new user key */ 1137 rc = tipc_aead_init(&aead, ukey, mode); 1138 1139 /* Attach it to the crypto */ 1140 if (likely(!rc)) { 1141 rc = tipc_crypto_key_attach(c, aead, 0, master_key); 1142 if (rc < 0) 1143 tipc_aead_free(&aead->rcu); 1144 } 1145 1146 return rc; 1147 } 1148 1149 /** 1150 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto 1151 * @c: TIPC crypto to which the new AEAD key is attached 1152 * @aead: the new AEAD key pointer 1153 * @pos: desired slot in the crypto key array, = 0 if any! 1154 * @master_key: specify this is a cluster master key 1155 * 1156 * Return: new key id in case of success, otherwise: -EBUSY 1157 */ 1158 static int tipc_crypto_key_attach(struct tipc_crypto *c, 1159 struct tipc_aead *aead, u8 pos, 1160 bool master_key) 1161 { 1162 struct tipc_key key; 1163 int rc = -EBUSY; 1164 u8 new_key; 1165 1166 spin_lock_bh(&c->lock); 1167 key = c->key; 1168 if (master_key) { 1169 new_key = KEY_MASTER; 1170 goto attach; 1171 } 1172 if (key.active && key.passive) 1173 goto exit; 1174 if (key.pending) { 1175 if (tipc_aead_users(c->aead[key.pending]) > 0) 1176 goto exit; 1177 /* if (pos): ok with replacing, will be aligned when needed */ 1178 /* Replace it */ 1179 new_key = key.pending; 1180 } else { 1181 if (pos) { 1182 if (key.active && pos != key_next(key.active)) { 1183 key.passive = pos; 1184 new_key = pos; 1185 goto attach; 1186 } else if (!key.active && !key.passive) { 1187 key.pending = pos; 1188 new_key = pos; 1189 goto attach; 1190 } 1191 } 1192 key.pending = key_next(key.active ?: key.passive); 1193 new_key = key.pending; 1194 } 1195 1196 attach: 1197 aead->crypto = c; 1198 aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen; 1199 tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock); 1200 if (likely(c->key.keys != key.keys)) 1201 tipc_crypto_key_set_state(c, key.passive, key.active, 1202 key.pending); 1203 c->working = 1; 1204 c->nokey = 0; 1205 c->key_master |= master_key; 1206 rc = new_key; 1207 1208 exit: 1209 spin_unlock_bh(&c->lock); 1210 return rc; 1211 } 1212 1213 void tipc_crypto_key_flush(struct tipc_crypto *c) 1214 { 1215 struct tipc_crypto *tx, *rx; 1216 int k; 1217 1218 spin_lock_bh(&c->lock); 1219 if (is_rx(c)) { 1220 /* Try to cancel pending work */ 1221 rx = c; 1222 tx = tipc_net(rx->net)->crypto_tx; 1223 if (cancel_delayed_work(&rx->work)) { 1224 kfree(rx->skey); 1225 rx->skey = NULL; 1226 atomic_xchg(&rx->key_distr, 0); 1227 tipc_node_put(rx->node); 1228 } 1229 /* RX stopping => decrease TX key users if any */ 1230 k = atomic_xchg(&rx->peer_rx_active, 0); 1231 if (k) { 1232 tipc_aead_users_dec(tx->aead[k], 0); 1233 /* Mark the point TX key users changed */ 1234 tx->timer1 = jiffies; 1235 } 1236 } 1237 1238 c->flags = 0; 1239 tipc_crypto_key_set_state(c, 0, 0, 0); 1240 for (k = KEY_MIN; k <= KEY_MAX; k++) 1241 tipc_crypto_key_detach(c->aead[k], &c->lock); 1242 atomic64_set(&c->sndnxt, 0); 1243 spin_unlock_bh(&c->lock); 1244 } 1245 1246 /** 1247 * tipc_crypto_key_try_align - Align RX keys if possible 1248 * @rx: RX crypto handle 1249 * @new_pending: new pending slot if aligned (= TX key from peer) 1250 * 1251 * Peer has used an unknown key slot, this only happens when peer has left and 1252 * rejoned, or we are newcomer. 1253 * That means, there must be no active key but a pending key at unaligned slot. 1254 * If so, we try to move the pending key to the new slot. 1255 * Note: A potential passive key can exist, it will be shifted correspondingly! 1256 * 1257 * Return: "true" if key is successfully aligned, otherwise "false" 1258 */ 1259 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending) 1260 { 1261 struct tipc_aead *tmp1, *tmp2 = NULL; 1262 struct tipc_key key; 1263 bool aligned = false; 1264 u8 new_passive = 0; 1265 int x; 1266 1267 spin_lock(&rx->lock); 1268 key = rx->key; 1269 if (key.pending == new_pending) { 1270 aligned = true; 1271 goto exit; 1272 } 1273 if (key.active) 1274 goto exit; 1275 if (!key.pending) 1276 goto exit; 1277 if (tipc_aead_users(rx->aead[key.pending]) > 0) 1278 goto exit; 1279 1280 /* Try to "isolate" this pending key first */ 1281 tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock); 1282 if (!refcount_dec_if_one(&tmp1->refcnt)) 1283 goto exit; 1284 rcu_assign_pointer(rx->aead[key.pending], NULL); 1285 1286 /* Move passive key if any */ 1287 if (key.passive) { 1288 tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock)); 1289 x = (key.passive - key.pending + new_pending) % KEY_MAX; 1290 new_passive = (x <= 0) ? x + KEY_MAX : x; 1291 } 1292 1293 /* Re-allocate the key(s) */ 1294 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending); 1295 rcu_assign_pointer(rx->aead[new_pending], tmp1); 1296 if (new_passive) 1297 rcu_assign_pointer(rx->aead[new_passive], tmp2); 1298 refcount_set(&tmp1->refcnt, 1); 1299 aligned = true; 1300 pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending, 1301 new_pending); 1302 1303 exit: 1304 spin_unlock(&rx->lock); 1305 return aligned; 1306 } 1307 1308 /** 1309 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption 1310 * @tx: TX crypto handle 1311 * @rx: RX crypto handle (can be NULL) 1312 * @skb: the message skb which will be decrypted later 1313 * @tx_key: peer TX key id 1314 * 1315 * This function looks up the existing TX keys and pick one which is suitable 1316 * for the message decryption, that must be a cluster key and not used before 1317 * on the same message (i.e. recursive). 1318 * 1319 * Return: the TX AEAD key handle in case of success, otherwise NULL 1320 */ 1321 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, 1322 struct tipc_crypto *rx, 1323 struct sk_buff *skb, 1324 u8 tx_key) 1325 { 1326 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb); 1327 struct tipc_aead *aead = NULL; 1328 struct tipc_key key = tx->key; 1329 u8 k, i = 0; 1330 1331 /* Initialize data if not yet */ 1332 if (!skb_cb->tx_clone_deferred) { 1333 skb_cb->tx_clone_deferred = 1; 1334 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); 1335 } 1336 1337 skb_cb->tx_clone_ctx.rx = rx; 1338 if (++skb_cb->tx_clone_ctx.recurs > 2) 1339 return NULL; 1340 1341 /* Pick one TX key */ 1342 spin_lock(&tx->lock); 1343 if (tx_key == KEY_MASTER) { 1344 aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock); 1345 goto done; 1346 } 1347 do { 1348 k = (i == 0) ? key.pending : 1349 ((i == 1) ? key.active : key.passive); 1350 if (!k) 1351 continue; 1352 aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock); 1353 if (!aead) 1354 continue; 1355 if (aead->mode != CLUSTER_KEY || 1356 aead == skb_cb->tx_clone_ctx.last) { 1357 aead = NULL; 1358 continue; 1359 } 1360 /* Ok, found one cluster key */ 1361 skb_cb->tx_clone_ctx.last = aead; 1362 WARN_ON(skb->next); 1363 skb->next = skb_clone(skb, GFP_ATOMIC); 1364 if (unlikely(!skb->next)) 1365 pr_warn("Failed to clone skb for next round if any\n"); 1366 break; 1367 } while (++i < 3); 1368 1369 done: 1370 if (likely(aead)) 1371 WARN_ON(!refcount_inc_not_zero(&aead->refcnt)); 1372 spin_unlock(&tx->lock); 1373 1374 return aead; 1375 } 1376 1377 /** 1378 * tipc_crypto_key_synch: Synch own key data according to peer key status 1379 * @rx: RX crypto handle 1380 * @skb: TIPCv2 message buffer (incl. the ehdr from peer) 1381 * 1382 * This function updates the peer node related data as the peer RX active key 1383 * has changed, so the number of TX keys' users on this node are increased and 1384 * decreased correspondingly. 1385 * 1386 * It also considers if peer has no key, then we need to make own master key 1387 * (if any) taking over i.e. starting grace period and also trigger key 1388 * distributing process. 1389 * 1390 * The "per-peer" sndnxt is also reset when the peer key has switched. 1391 */ 1392 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb) 1393 { 1394 struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb); 1395 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx; 1396 struct tipc_msg *hdr = buf_msg(skb); 1397 u32 self = tipc_own_addr(rx->net); 1398 u8 cur, new; 1399 unsigned long delay; 1400 1401 /* Update RX 'key_master' flag according to peer, also mark "legacy" if 1402 * a peer has no master key. 1403 */ 1404 rx->key_master = ehdr->master_key; 1405 if (!rx->key_master) 1406 tx->legacy_user = 1; 1407 1408 /* For later cases, apply only if message is destined to this node */ 1409 if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self) 1410 return; 1411 1412 /* Case 1: Peer has no keys, let's make master key take over */ 1413 if (ehdr->rx_nokey) { 1414 /* Set or extend grace period */ 1415 tx->timer2 = jiffies; 1416 /* Schedule key distributing for the peer if not yet */ 1417 if (tx->key.keys && 1418 !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) { 1419 get_random_bytes(&delay, 2); 1420 delay %= 5; 1421 delay = msecs_to_jiffies(500 * ++delay); 1422 if (queue_delayed_work(tx->wq, &rx->work, delay)) 1423 tipc_node_get(rx->node); 1424 } 1425 } else { 1426 /* Cancel a pending key distributing if any */ 1427 atomic_xchg(&rx->key_distr, 0); 1428 } 1429 1430 /* Case 2: Peer RX active key has changed, let's update own TX users */ 1431 cur = atomic_read(&rx->peer_rx_active); 1432 new = ehdr->rx_key_active; 1433 if (tx->key.keys && 1434 cur != new && 1435 atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) { 1436 if (new) 1437 tipc_aead_users_inc(tx->aead[new], INT_MAX); 1438 if (cur) 1439 tipc_aead_users_dec(tx->aead[cur], 0); 1440 1441 atomic64_set(&rx->sndnxt, 0); 1442 /* Mark the point TX key users changed */ 1443 tx->timer1 = jiffies; 1444 1445 pr_debug("%s: key users changed %d-- %d++, peer %s\n", 1446 tx->name, cur, new, rx->name); 1447 } 1448 } 1449 1450 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key) 1451 { 1452 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1453 struct tipc_key key; 1454 1455 spin_lock(&tx->lock); 1456 key = tx->key; 1457 WARN_ON(!key.active || tx_key != key.active); 1458 1459 /* Free the active key */ 1460 tipc_crypto_key_set_state(tx, key.passive, 0, key.pending); 1461 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); 1462 spin_unlock(&tx->lock); 1463 1464 pr_warn("%s: key is revoked\n", tx->name); 1465 return -EKEYREVOKED; 1466 } 1467 1468 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net, 1469 struct tipc_node *node) 1470 { 1471 struct tipc_crypto *c; 1472 1473 if (*crypto) 1474 return -EEXIST; 1475 1476 /* Allocate crypto */ 1477 c = kzalloc(sizeof(*c), GFP_KERNEL); 1478 if (!c) 1479 return -ENOMEM; 1480 1481 /* Allocate workqueue on TX */ 1482 if (!node) { 1483 c->wq = alloc_ordered_workqueue("tipc_crypto", 0); 1484 if (!c->wq) { 1485 kfree(c); 1486 return -ENOMEM; 1487 } 1488 } 1489 1490 /* Allocate statistic structure */ 1491 c->stats = alloc_percpu(struct tipc_crypto_stats); 1492 if (!c->stats) { 1493 if (c->wq) 1494 destroy_workqueue(c->wq); 1495 kfree_sensitive(c); 1496 return -ENOMEM; 1497 } 1498 1499 c->flags = 0; 1500 c->net = net; 1501 c->node = node; 1502 get_random_bytes(&c->key_gen, 2); 1503 tipc_crypto_key_set_state(c, 0, 0, 0); 1504 atomic_set(&c->key_distr, 0); 1505 atomic_set(&c->peer_rx_active, 0); 1506 atomic64_set(&c->sndnxt, 0); 1507 c->timer1 = jiffies; 1508 c->timer2 = jiffies; 1509 c->rekeying_intv = TIPC_REKEYING_INTV_DEF; 1510 spin_lock_init(&c->lock); 1511 scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX", 1512 (is_rx(c)) ? tipc_node_get_id_str(c->node) : 1513 tipc_own_id_string(c->net)); 1514 1515 if (is_rx(c)) 1516 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx); 1517 else 1518 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx); 1519 1520 *crypto = c; 1521 return 0; 1522 } 1523 1524 void tipc_crypto_stop(struct tipc_crypto **crypto) 1525 { 1526 struct tipc_crypto *c = *crypto; 1527 u8 k; 1528 1529 if (!c) 1530 return; 1531 1532 /* Flush any queued works & destroy wq */ 1533 if (is_tx(c)) { 1534 c->rekeying_intv = 0; 1535 cancel_delayed_work_sync(&c->work); 1536 destroy_workqueue(c->wq); 1537 } 1538 1539 /* Release AEAD keys */ 1540 rcu_read_lock(); 1541 for (k = KEY_MIN; k <= KEY_MAX; k++) 1542 tipc_aead_put(rcu_dereference(c->aead[k])); 1543 rcu_read_unlock(); 1544 pr_debug("%s: has been stopped\n", c->name); 1545 1546 /* Free this crypto statistics */ 1547 free_percpu(c->stats); 1548 1549 *crypto = NULL; 1550 kfree_sensitive(c); 1551 } 1552 1553 void tipc_crypto_timeout(struct tipc_crypto *rx) 1554 { 1555 struct tipc_net *tn = tipc_net(rx->net); 1556 struct tipc_crypto *tx = tn->crypto_tx; 1557 struct tipc_key key; 1558 int cmd; 1559 1560 /* TX pending: taking all users & stable -> active */ 1561 spin_lock(&tx->lock); 1562 key = tx->key; 1563 if (key.active && tipc_aead_users(tx->aead[key.active]) > 0) 1564 goto s1; 1565 if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0) 1566 goto s1; 1567 if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME)) 1568 goto s1; 1569 1570 tipc_crypto_key_set_state(tx, key.passive, key.pending, 0); 1571 if (key.active) 1572 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); 1573 this_cpu_inc(tx->stats->stat[STAT_SWITCHES]); 1574 pr_info("%s: key[%d] is activated\n", tx->name, key.pending); 1575 1576 s1: 1577 spin_unlock(&tx->lock); 1578 1579 /* RX pending: having user -> active */ 1580 spin_lock(&rx->lock); 1581 key = rx->key; 1582 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0) 1583 goto s2; 1584 1585 if (key.active) 1586 key.passive = key.active; 1587 key.active = key.pending; 1588 rx->timer2 = jiffies; 1589 tipc_crypto_key_set_state(rx, key.passive, key.active, 0); 1590 this_cpu_inc(rx->stats->stat[STAT_SWITCHES]); 1591 pr_info("%s: key[%d] is activated\n", rx->name, key.pending); 1592 goto s5; 1593 1594 s2: 1595 /* RX pending: not working -> remove */ 1596 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10) 1597 goto s3; 1598 1599 tipc_crypto_key_set_state(rx, key.passive, key.active, 0); 1600 tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock); 1601 pr_debug("%s: key[%d] is removed\n", rx->name, key.pending); 1602 goto s5; 1603 1604 s3: 1605 /* RX active: timed out or no user -> pending */ 1606 if (!key.active) 1607 goto s4; 1608 if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) && 1609 tipc_aead_users(rx->aead[key.active]) > 0) 1610 goto s4; 1611 1612 if (key.pending) 1613 key.passive = key.active; 1614 else 1615 key.pending = key.active; 1616 rx->timer2 = jiffies; 1617 tipc_crypto_key_set_state(rx, key.passive, 0, key.pending); 1618 tipc_aead_users_set(rx->aead[key.pending], 0); 1619 pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active); 1620 goto s5; 1621 1622 s4: 1623 /* RX passive: outdated or not working -> free */ 1624 if (!key.passive) 1625 goto s5; 1626 if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) && 1627 tipc_aead_users(rx->aead[key.passive]) > -10) 1628 goto s5; 1629 1630 tipc_crypto_key_set_state(rx, 0, key.active, key.pending); 1631 tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock); 1632 pr_debug("%s: key[%d] is freed\n", rx->name, key.passive); 1633 1634 s5: 1635 spin_unlock(&rx->lock); 1636 1637 /* Relax it here, the flag will be set again if it really is, but only 1638 * when we are not in grace period for safety! 1639 */ 1640 if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) 1641 tx->legacy_user = 0; 1642 1643 /* Limit max_tfms & do debug commands if needed */ 1644 if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM)) 1645 return; 1646 1647 cmd = sysctl_tipc_max_tfms; 1648 sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF; 1649 tipc_crypto_do_cmd(rx->net, cmd); 1650 } 1651 1652 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb, 1653 struct tipc_bearer *b, 1654 struct tipc_media_addr *dst, 1655 struct tipc_node *__dnode, u8 type) 1656 { 1657 struct sk_buff *skb; 1658 1659 skb = skb_clone(_skb, GFP_ATOMIC); 1660 if (skb) { 1661 TIPC_SKB_CB(skb)->xmit_type = type; 1662 tipc_crypto_xmit(net, &skb, b, dst, __dnode); 1663 if (skb) 1664 b->media->send_msg(net, skb, b, dst); 1665 } 1666 } 1667 1668 /** 1669 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit 1670 * @net: struct net 1671 * @skb: input/output message skb pointer 1672 * @b: bearer used for xmit later 1673 * @dst: destination media address 1674 * @__dnode: destination node for reference if any 1675 * 1676 * First, build an encryption message header on the top of the message, then 1677 * encrypt the original TIPC message by using the pending, master or active 1678 * key with this preference order. 1679 * If the encryption is successful, the encrypted skb is returned directly or 1680 * via the callback. 1681 * Otherwise, the skb is freed! 1682 * 1683 * Return: 1684 * * 0 : the encryption has succeeded (or no encryption) 1685 * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made 1686 * * -ENOKEK : the encryption has failed due to no key 1687 * * -EKEYREVOKED : the encryption has failed due to key revoked 1688 * * -ENOMEM : the encryption has failed due to no memory 1689 * * < 0 : the encryption has failed due to other reasons 1690 */ 1691 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb, 1692 struct tipc_bearer *b, struct tipc_media_addr *dst, 1693 struct tipc_node *__dnode) 1694 { 1695 struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode); 1696 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1697 struct tipc_crypto_stats __percpu *stats = tx->stats; 1698 struct tipc_msg *hdr = buf_msg(*skb); 1699 struct tipc_key key = tx->key; 1700 struct tipc_aead *aead = NULL; 1701 u32 user = msg_user(hdr); 1702 u32 type = msg_type(hdr); 1703 int rc = -ENOKEY; 1704 u8 tx_key = 0; 1705 1706 /* No encryption? */ 1707 if (!tx->working) 1708 return 0; 1709 1710 /* Pending key if peer has active on it or probing time */ 1711 if (unlikely(key.pending)) { 1712 tx_key = key.pending; 1713 if (!tx->key_master && !key.active) 1714 goto encrypt; 1715 if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key) 1716 goto encrypt; 1717 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) { 1718 pr_debug("%s: probing for key[%d]\n", tx->name, 1719 key.pending); 1720 goto encrypt; 1721 } 1722 if (user == LINK_CONFIG || user == LINK_PROTOCOL) 1723 tipc_crypto_clone_msg(net, *skb, b, dst, __dnode, 1724 SKB_PROBING); 1725 } 1726 1727 /* Master key if this is a *vital* message or in grace period */ 1728 if (tx->key_master) { 1729 tx_key = KEY_MASTER; 1730 if (!key.active) 1731 goto encrypt; 1732 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) { 1733 pr_debug("%s: gracing for msg (%d %d)\n", tx->name, 1734 user, type); 1735 goto encrypt; 1736 } 1737 if (user == LINK_CONFIG || 1738 (user == LINK_PROTOCOL && type == RESET_MSG) || 1739 (user == MSG_CRYPTO && type == KEY_DISTR_MSG) || 1740 time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) { 1741 if (__rx && __rx->key_master && 1742 !atomic_read(&__rx->peer_rx_active)) 1743 goto encrypt; 1744 if (!__rx) { 1745 if (likely(!tx->legacy_user)) 1746 goto encrypt; 1747 tipc_crypto_clone_msg(net, *skb, b, dst, 1748 __dnode, SKB_GRACING); 1749 } 1750 } 1751 } 1752 1753 /* Else, use the active key if any */ 1754 if (likely(key.active)) { 1755 tx_key = key.active; 1756 goto encrypt; 1757 } 1758 1759 goto exit; 1760 1761 encrypt: 1762 aead = tipc_aead_get(tx->aead[tx_key]); 1763 if (unlikely(!aead)) 1764 goto exit; 1765 rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx); 1766 if (likely(rc > 0)) 1767 rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode); 1768 1769 exit: 1770 switch (rc) { 1771 case 0: 1772 this_cpu_inc(stats->stat[STAT_OK]); 1773 break; 1774 case -EINPROGRESS: 1775 case -EBUSY: 1776 this_cpu_inc(stats->stat[STAT_ASYNC]); 1777 *skb = NULL; 1778 return rc; 1779 default: 1780 this_cpu_inc(stats->stat[STAT_NOK]); 1781 if (rc == -ENOKEY) 1782 this_cpu_inc(stats->stat[STAT_NOKEYS]); 1783 else if (rc == -EKEYREVOKED) 1784 this_cpu_inc(stats->stat[STAT_BADKEYS]); 1785 kfree_skb(*skb); 1786 *skb = NULL; 1787 break; 1788 } 1789 1790 tipc_aead_put(aead); 1791 return rc; 1792 } 1793 1794 /** 1795 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer 1796 * @net: struct net 1797 * @rx: RX crypto handle 1798 * @skb: input/output message skb pointer 1799 * @b: bearer where the message has been received 1800 * 1801 * If the decryption is successful, the decrypted skb is returned directly or 1802 * as the callback, the encryption header and auth tag will be trimed out 1803 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete(). 1804 * Otherwise, the skb will be freed! 1805 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX 1806 * cluster key(s) can be taken for decryption (- recursive). 1807 * 1808 * Return: 1809 * * 0 : the decryption has successfully completed 1810 * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made 1811 * * -ENOKEY : the decryption has failed due to no key 1812 * * -EBADMSG : the decryption has failed due to bad message 1813 * * -ENOMEM : the decryption has failed due to no memory 1814 * * < 0 : the decryption has failed due to other reasons 1815 */ 1816 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx, 1817 struct sk_buff **skb, struct tipc_bearer *b) 1818 { 1819 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1820 struct tipc_crypto_stats __percpu *stats; 1821 struct tipc_aead *aead = NULL; 1822 struct tipc_key key; 1823 int rc = -ENOKEY; 1824 u8 tx_key, n; 1825 1826 tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key; 1827 1828 /* New peer? 1829 * Let's try with TX key (i.e. cluster mode) & verify the skb first! 1830 */ 1831 if (unlikely(!rx || tx_key == KEY_MASTER)) 1832 goto pick_tx; 1833 1834 /* Pick RX key according to TX key if any */ 1835 key = rx->key; 1836 if (tx_key == key.active || tx_key == key.pending || 1837 tx_key == key.passive) 1838 goto decrypt; 1839 1840 /* Unknown key, let's try to align RX key(s) */ 1841 if (tipc_crypto_key_try_align(rx, tx_key)) 1842 goto decrypt; 1843 1844 pick_tx: 1845 /* No key suitable? Try to pick one from TX... */ 1846 aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key); 1847 if (aead) 1848 goto decrypt; 1849 goto exit; 1850 1851 decrypt: 1852 rcu_read_lock(); 1853 if (!aead) 1854 aead = tipc_aead_get(rx->aead[tx_key]); 1855 rc = tipc_aead_decrypt(net, aead, *skb, b); 1856 rcu_read_unlock(); 1857 1858 exit: 1859 stats = ((rx) ?: tx)->stats; 1860 switch (rc) { 1861 case 0: 1862 this_cpu_inc(stats->stat[STAT_OK]); 1863 break; 1864 case -EINPROGRESS: 1865 case -EBUSY: 1866 this_cpu_inc(stats->stat[STAT_ASYNC]); 1867 *skb = NULL; 1868 return rc; 1869 default: 1870 this_cpu_inc(stats->stat[STAT_NOK]); 1871 if (rc == -ENOKEY) { 1872 kfree_skb(*skb); 1873 *skb = NULL; 1874 if (rx) { 1875 /* Mark rx->nokey only if we dont have a 1876 * pending received session key, nor a newer 1877 * one i.e. in the next slot. 1878 */ 1879 n = key_next(tx_key); 1880 rx->nokey = !(rx->skey || 1881 rcu_access_pointer(rx->aead[n])); 1882 pr_debug_ratelimited("%s: nokey %d, key %d/%x\n", 1883 rx->name, rx->nokey, 1884 tx_key, rx->key.keys); 1885 tipc_node_put(rx->node); 1886 } 1887 this_cpu_inc(stats->stat[STAT_NOKEYS]); 1888 return rc; 1889 } else if (rc == -EBADMSG) { 1890 this_cpu_inc(stats->stat[STAT_BADMSGS]); 1891 } 1892 break; 1893 } 1894 1895 tipc_crypto_rcv_complete(net, aead, b, skb, rc); 1896 return rc; 1897 } 1898 1899 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, 1900 struct tipc_bearer *b, 1901 struct sk_buff **skb, int err) 1902 { 1903 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb); 1904 struct tipc_crypto *rx = aead->crypto; 1905 struct tipc_aead *tmp = NULL; 1906 struct tipc_ehdr *ehdr; 1907 struct tipc_node *n; 1908 1909 /* Is this completed by TX? */ 1910 if (unlikely(is_tx(aead->crypto))) { 1911 rx = skb_cb->tx_clone_ctx.rx; 1912 pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n", 1913 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead, 1914 (*skb)->next, skb_cb->flags); 1915 pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n", 1916 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last, 1917 aead->crypto->aead[1], aead->crypto->aead[2], 1918 aead->crypto->aead[3]); 1919 if (unlikely(err)) { 1920 if (err == -EBADMSG && (*skb)->next) 1921 tipc_rcv(net, (*skb)->next, b); 1922 goto free_skb; 1923 } 1924 1925 if (likely((*skb)->next)) { 1926 kfree_skb((*skb)->next); 1927 (*skb)->next = NULL; 1928 } 1929 ehdr = (struct tipc_ehdr *)(*skb)->data; 1930 if (!rx) { 1931 WARN_ON(ehdr->user != LINK_CONFIG); 1932 n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0, 1933 true); 1934 rx = tipc_node_crypto_rx(n); 1935 if (unlikely(!rx)) 1936 goto free_skb; 1937 } 1938 1939 /* Ignore cloning if it was TX master key */ 1940 if (ehdr->tx_key == KEY_MASTER) 1941 goto rcv; 1942 if (tipc_aead_clone(&tmp, aead) < 0) 1943 goto rcv; 1944 WARN_ON(!refcount_inc_not_zero(&tmp->refcnt)); 1945 if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) { 1946 tipc_aead_free(&tmp->rcu); 1947 goto rcv; 1948 } 1949 tipc_aead_put(aead); 1950 aead = tmp; 1951 } 1952 1953 if (unlikely(err)) { 1954 tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN); 1955 goto free_skb; 1956 } 1957 1958 /* Set the RX key's user */ 1959 tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1); 1960 1961 /* Mark this point, RX works */ 1962 rx->timer1 = jiffies; 1963 1964 rcv: 1965 /* Remove ehdr & auth. tag prior to tipc_rcv() */ 1966 ehdr = (struct tipc_ehdr *)(*skb)->data; 1967 1968 /* Mark this point, RX passive still works */ 1969 if (rx->key.passive && ehdr->tx_key == rx->key.passive) 1970 rx->timer2 = jiffies; 1971 1972 skb_reset_network_header(*skb); 1973 skb_pull(*skb, tipc_ehdr_size(ehdr)); 1974 pskb_trim(*skb, (*skb)->len - aead->authsize); 1975 1976 /* Validate TIPCv2 message */ 1977 if (unlikely(!tipc_msg_validate(skb))) { 1978 pr_err_ratelimited("Packet dropped after decryption!\n"); 1979 goto free_skb; 1980 } 1981 1982 /* Ok, everything's fine, try to synch own keys according to peers' */ 1983 tipc_crypto_key_synch(rx, *skb); 1984 1985 /* Mark skb decrypted */ 1986 skb_cb->decrypted = 1; 1987 1988 /* Clear clone cxt if any */ 1989 if (likely(!skb_cb->tx_clone_deferred)) 1990 goto exit; 1991 skb_cb->tx_clone_deferred = 0; 1992 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); 1993 goto exit; 1994 1995 free_skb: 1996 kfree_skb(*skb); 1997 *skb = NULL; 1998 1999 exit: 2000 tipc_aead_put(aead); 2001 if (rx) 2002 tipc_node_put(rx->node); 2003 } 2004 2005 static void tipc_crypto_do_cmd(struct net *net, int cmd) 2006 { 2007 struct tipc_net *tn = tipc_net(net); 2008 struct tipc_crypto *tx = tn->crypto_tx, *rx; 2009 struct list_head *p; 2010 unsigned int stat; 2011 int i, j, cpu; 2012 char buf[200]; 2013 2014 /* Currently only one command is supported */ 2015 switch (cmd) { 2016 case 0xfff1: 2017 goto print_stats; 2018 default: 2019 return; 2020 } 2021 2022 print_stats: 2023 /* Print a header */ 2024 pr_info("\n=============== TIPC Crypto Statistics ===============\n\n"); 2025 2026 /* Print key status */ 2027 pr_info("Key status:\n"); 2028 pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net), 2029 tipc_crypto_key_dump(tx, buf)); 2030 2031 rcu_read_lock(); 2032 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { 2033 rx = tipc_node_crypto_rx_by_list(p); 2034 pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node), 2035 tipc_crypto_key_dump(rx, buf)); 2036 } 2037 rcu_read_unlock(); 2038 2039 /* Print crypto statistics */ 2040 for (i = 0, j = 0; i < MAX_STATS; i++) 2041 j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]); 2042 pr_info("Counter %s", buf); 2043 2044 memset(buf, '-', 115); 2045 buf[115] = '\0'; 2046 pr_info("%s\n", buf); 2047 2048 j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net)); 2049 for_each_possible_cpu(cpu) { 2050 for (i = 0; i < MAX_STATS; i++) { 2051 stat = per_cpu_ptr(tx->stats, cpu)->stat[i]; 2052 j += scnprintf(buf + j, 200 - j, "|%11d ", stat); 2053 } 2054 pr_info("%s", buf); 2055 j = scnprintf(buf, 200, "%12s", " "); 2056 } 2057 2058 rcu_read_lock(); 2059 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { 2060 rx = tipc_node_crypto_rx_by_list(p); 2061 j = scnprintf(buf, 200, "RX(%7.7s) ", 2062 tipc_node_get_id_str(rx->node)); 2063 for_each_possible_cpu(cpu) { 2064 for (i = 0; i < MAX_STATS; i++) { 2065 stat = per_cpu_ptr(rx->stats, cpu)->stat[i]; 2066 j += scnprintf(buf + j, 200 - j, "|%11d ", 2067 stat); 2068 } 2069 pr_info("%s", buf); 2070 j = scnprintf(buf, 200, "%12s", " "); 2071 } 2072 } 2073 rcu_read_unlock(); 2074 2075 pr_info("\n======================== Done ========================\n"); 2076 } 2077 2078 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf) 2079 { 2080 struct tipc_key key = c->key; 2081 struct tipc_aead *aead; 2082 int k, i = 0; 2083 char *s; 2084 2085 for (k = KEY_MIN; k <= KEY_MAX; k++) { 2086 if (k == KEY_MASTER) { 2087 if (is_rx(c)) 2088 continue; 2089 if (time_before(jiffies, 2090 c->timer2 + TIPC_TX_GRACE_PERIOD)) 2091 s = "ACT"; 2092 else 2093 s = "PAS"; 2094 } else { 2095 if (k == key.passive) 2096 s = "PAS"; 2097 else if (k == key.active) 2098 s = "ACT"; 2099 else if (k == key.pending) 2100 s = "PEN"; 2101 else 2102 s = "-"; 2103 } 2104 i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s); 2105 2106 rcu_read_lock(); 2107 aead = rcu_dereference(c->aead[k]); 2108 if (aead) 2109 i += scnprintf(buf + i, 200 - i, 2110 "{\"0x...%s\", \"%s\"}/%d:%d", 2111 aead->hint, 2112 (aead->mode == CLUSTER_KEY) ? "c" : "p", 2113 atomic_read(&aead->users), 2114 refcount_read(&aead->refcnt)); 2115 rcu_read_unlock(); 2116 i += scnprintf(buf + i, 200 - i, "\n"); 2117 } 2118 2119 if (is_rx(c)) 2120 i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n", 2121 atomic_read(&c->peer_rx_active)); 2122 2123 return buf; 2124 } 2125 2126 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, 2127 char *buf) 2128 { 2129 struct tipc_key *key = &old; 2130 int k, i = 0; 2131 char *s; 2132 2133 /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */ 2134 again: 2135 i += scnprintf(buf + i, 32 - i, "["); 2136 for (k = KEY_1; k <= KEY_3; k++) { 2137 if (k == key->passive) 2138 s = "pas"; 2139 else if (k == key->active) 2140 s = "act"; 2141 else if (k == key->pending) 2142 s = "pen"; 2143 else 2144 s = "-"; 2145 i += scnprintf(buf + i, 32 - i, 2146 (k != KEY_3) ? "%s " : "%s", s); 2147 } 2148 if (key != &new) { 2149 i += scnprintf(buf + i, 32 - i, "] -> "); 2150 key = &new; 2151 goto again; 2152 } 2153 i += scnprintf(buf + i, 32 - i, "]"); 2154 return buf; 2155 } 2156 2157 /** 2158 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point 2159 * @net: the struct net 2160 * @skb: the receiving message buffer 2161 */ 2162 void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb) 2163 { 2164 struct tipc_crypto *rx; 2165 struct tipc_msg *hdr; 2166 2167 if (unlikely(skb_linearize(skb))) 2168 goto exit; 2169 2170 hdr = buf_msg(skb); 2171 rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr)); 2172 if (unlikely(!rx)) 2173 goto exit; 2174 2175 switch (msg_type(hdr)) { 2176 case KEY_DISTR_MSG: 2177 if (tipc_crypto_key_rcv(rx, hdr)) 2178 goto exit; 2179 break; 2180 default: 2181 break; 2182 } 2183 2184 tipc_node_put(rx->node); 2185 2186 exit: 2187 kfree_skb(skb); 2188 } 2189 2190 /** 2191 * tipc_crypto_key_distr - Distribute a TX key 2192 * @tx: the TX crypto 2193 * @key: the key's index 2194 * @dest: the destination tipc node, = NULL if distributing to all nodes 2195 * 2196 * Return: 0 in case of success, otherwise < 0 2197 */ 2198 int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key, 2199 struct tipc_node *dest) 2200 { 2201 struct tipc_aead *aead; 2202 u32 dnode = tipc_node_get_addr(dest); 2203 int rc = -ENOKEY; 2204 2205 if (!sysctl_tipc_key_exchange_enabled) 2206 return 0; 2207 2208 if (key) { 2209 rcu_read_lock(); 2210 aead = tipc_aead_get(tx->aead[key]); 2211 if (likely(aead)) { 2212 rc = tipc_crypto_key_xmit(tx->net, aead->key, 2213 aead->gen, aead->mode, 2214 dnode); 2215 tipc_aead_put(aead); 2216 } 2217 rcu_read_unlock(); 2218 } 2219 2220 return rc; 2221 } 2222 2223 /** 2224 * tipc_crypto_key_xmit - Send a session key 2225 * @net: the struct net 2226 * @skey: the session key to be sent 2227 * @gen: the key's generation 2228 * @mode: the key's mode 2229 * @dnode: the destination node address, = 0 if broadcasting to all nodes 2230 * 2231 * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG' 2232 * as its data section, then xmit-ed through the uc/bc link. 2233 * 2234 * Return: 0 in case of success, otherwise < 0 2235 */ 2236 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey, 2237 u16 gen, u8 mode, u32 dnode) 2238 { 2239 struct sk_buff_head pkts; 2240 struct tipc_msg *hdr; 2241 struct sk_buff *skb; 2242 u16 size, cong_link_cnt; 2243 u8 *data; 2244 int rc; 2245 2246 size = tipc_aead_key_size(skey); 2247 skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC); 2248 if (!skb) 2249 return -ENOMEM; 2250 2251 hdr = buf_msg(skb); 2252 tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG, 2253 INT_H_SIZE, dnode); 2254 msg_set_size(hdr, INT_H_SIZE + size); 2255 msg_set_key_gen(hdr, gen); 2256 msg_set_key_mode(hdr, mode); 2257 2258 data = msg_data(hdr); 2259 *((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen); 2260 memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME); 2261 memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key, 2262 skey->keylen); 2263 2264 __skb_queue_head_init(&pkts); 2265 __skb_queue_tail(&pkts, skb); 2266 if (dnode) 2267 rc = tipc_node_xmit(net, &pkts, dnode, 0); 2268 else 2269 rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt); 2270 2271 return rc; 2272 } 2273 2274 /** 2275 * tipc_crypto_key_rcv - Receive a session key 2276 * @rx: the RX crypto 2277 * @hdr: the TIPC v2 message incl. the receiving session key in its data 2278 * 2279 * This function retrieves the session key in the message from peer, then 2280 * schedules a RX work to attach the key to the corresponding RX crypto. 2281 * 2282 * Return: "true" if the key has been scheduled for attaching, otherwise 2283 * "false". 2284 */ 2285 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr) 2286 { 2287 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx; 2288 struct tipc_aead_key *skey = NULL; 2289 u16 key_gen = msg_key_gen(hdr); 2290 u16 size = msg_data_sz(hdr); 2291 u8 *data = msg_data(hdr); 2292 unsigned int keylen; 2293 2294 /* Verify whether the size can exist in the packet */ 2295 if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) { 2296 pr_debug("%s: message data size is too small\n", rx->name); 2297 goto exit; 2298 } 2299 2300 keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME))); 2301 2302 /* Verify the supplied size values */ 2303 if (unlikely(size != keylen + sizeof(struct tipc_aead_key) || 2304 keylen > TIPC_AEAD_KEY_SIZE_MAX)) { 2305 pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name); 2306 goto exit; 2307 } 2308 2309 spin_lock(&rx->lock); 2310 if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) { 2311 pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name, 2312 rx->skey, key_gen, rx->key_gen); 2313 goto exit_unlock; 2314 } 2315 2316 /* Allocate memory for the key */ 2317 skey = kmalloc(size, GFP_ATOMIC); 2318 if (unlikely(!skey)) { 2319 pr_err("%s: unable to allocate memory for skey\n", rx->name); 2320 goto exit_unlock; 2321 } 2322 2323 /* Copy key from msg data */ 2324 skey->keylen = keylen; 2325 memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME); 2326 memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32), 2327 skey->keylen); 2328 2329 rx->key_gen = key_gen; 2330 rx->skey_mode = msg_key_mode(hdr); 2331 rx->skey = skey; 2332 rx->nokey = 0; 2333 mb(); /* for nokey flag */ 2334 2335 exit_unlock: 2336 spin_unlock(&rx->lock); 2337 2338 exit: 2339 /* Schedule the key attaching on this crypto */ 2340 if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0))) 2341 return true; 2342 2343 return false; 2344 } 2345 2346 /** 2347 * tipc_crypto_work_rx - Scheduled RX works handler 2348 * @work: the struct RX work 2349 * 2350 * The function processes the previous scheduled works i.e. distributing TX key 2351 * or attaching a received session key on RX crypto. 2352 */ 2353 static void tipc_crypto_work_rx(struct work_struct *work) 2354 { 2355 struct delayed_work *dwork = to_delayed_work(work); 2356 struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work); 2357 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx; 2358 unsigned long delay = msecs_to_jiffies(5000); 2359 bool resched = false; 2360 u8 key; 2361 int rc; 2362 2363 /* Case 1: Distribute TX key to peer if scheduled */ 2364 if (atomic_cmpxchg(&rx->key_distr, 2365 KEY_DISTR_SCHED, 2366 KEY_DISTR_COMPL) == KEY_DISTR_SCHED) { 2367 /* Always pick the newest one for distributing */ 2368 key = tx->key.pending ?: tx->key.active; 2369 rc = tipc_crypto_key_distr(tx, key, rx->node); 2370 if (unlikely(rc)) 2371 pr_warn("%s: unable to distr key[%d] to %s, err %d\n", 2372 tx->name, key, tipc_node_get_id_str(rx->node), 2373 rc); 2374 2375 /* Sched for key_distr releasing */ 2376 resched = true; 2377 } else { 2378 atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0); 2379 } 2380 2381 /* Case 2: Attach a pending received session key from peer if any */ 2382 if (rx->skey) { 2383 rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false); 2384 if (unlikely(rc < 0)) 2385 pr_warn("%s: unable to attach received skey, err %d\n", 2386 rx->name, rc); 2387 switch (rc) { 2388 case -EBUSY: 2389 case -ENOMEM: 2390 /* Resched the key attaching */ 2391 resched = true; 2392 break; 2393 default: 2394 synchronize_rcu(); 2395 kfree(rx->skey); 2396 rx->skey = NULL; 2397 break; 2398 } 2399 } 2400 2401 if (resched && queue_delayed_work(tx->wq, &rx->work, delay)) 2402 return; 2403 2404 tipc_node_put(rx->node); 2405 } 2406 2407 /** 2408 * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval 2409 * @tx: TX crypto 2410 * @changed: if the rekeying needs to be rescheduled with new interval 2411 * @new_intv: new rekeying interval (when "changed" = true) 2412 */ 2413 void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed, 2414 u32 new_intv) 2415 { 2416 unsigned long delay; 2417 bool now = false; 2418 2419 if (changed) { 2420 if (new_intv == TIPC_REKEYING_NOW) 2421 now = true; 2422 else 2423 tx->rekeying_intv = new_intv; 2424 cancel_delayed_work_sync(&tx->work); 2425 } 2426 2427 if (tx->rekeying_intv || now) { 2428 delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000; 2429 queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay)); 2430 } 2431 } 2432 2433 /** 2434 * tipc_crypto_work_tx - Scheduled TX works handler 2435 * @work: the struct TX work 2436 * 2437 * The function processes the previous scheduled work, i.e. key rekeying, by 2438 * generating a new session key based on current one, then attaching it to the 2439 * TX crypto and finally distributing it to peers. It also re-schedules the 2440 * rekeying if needed. 2441 */ 2442 static void tipc_crypto_work_tx(struct work_struct *work) 2443 { 2444 struct delayed_work *dwork = to_delayed_work(work); 2445 struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work); 2446 struct tipc_aead_key *skey = NULL; 2447 struct tipc_key key = tx->key; 2448 struct tipc_aead *aead; 2449 int rc = -ENOMEM; 2450 2451 if (unlikely(key.pending)) 2452 goto resched; 2453 2454 /* Take current key as a template */ 2455 rcu_read_lock(); 2456 aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]); 2457 if (unlikely(!aead)) { 2458 rcu_read_unlock(); 2459 /* At least one key should exist for securing */ 2460 return; 2461 } 2462 2463 /* Lets duplicate it first */ 2464 skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_KERNEL); 2465 rcu_read_unlock(); 2466 2467 /* Now, generate new key, initiate & distribute it */ 2468 if (likely(skey)) { 2469 rc = tipc_aead_key_generate(skey) ?: 2470 tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false); 2471 if (likely(rc > 0)) 2472 rc = tipc_crypto_key_distr(tx, rc, NULL); 2473 kfree_sensitive(skey); 2474 } 2475 2476 if (unlikely(rc)) 2477 pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc); 2478 2479 resched: 2480 /* Re-schedule rekeying if any */ 2481 tipc_crypto_rekeying_sched(tx, false, 0); 2482 } 2483