xref: /linux/net/tipc/crypto.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3  * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
4  *
5  * Copyright (c) 2019, Ericsson AB
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the names of the copyright holders nor the names of its
17  *    contributors may be used to endorse or promote products derived from
18  *    this software without specific prior written permission.
19  *
20  * Alternatively, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") version 2 as published by the Free
22  * Software Foundation.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
28  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include <crypto/aead.h>
38 #include <crypto/aes.h>
39 #include "crypto.h"
40 
41 #define TIPC_TX_PROBE_LIM	msecs_to_jiffies(1000) /* > 1s */
42 #define TIPC_TX_LASTING_LIM	msecs_to_jiffies(120000) /* 2 mins */
43 #define TIPC_RX_ACTIVE_LIM	msecs_to_jiffies(3000) /* 3s */
44 #define TIPC_RX_PASSIVE_LIM	msecs_to_jiffies(180000) /* 3 mins */
45 #define TIPC_MAX_TFMS_DEF	10
46 #define TIPC_MAX_TFMS_LIM	1000
47 
48 /**
49  * TIPC Key ids
50  */
51 enum {
52 	KEY_UNUSED = 0,
53 	KEY_MIN,
54 	KEY_1 = KEY_MIN,
55 	KEY_2,
56 	KEY_3,
57 	KEY_MAX = KEY_3,
58 };
59 
60 /**
61  * TIPC Crypto statistics
62  */
63 enum {
64 	STAT_OK,
65 	STAT_NOK,
66 	STAT_ASYNC,
67 	STAT_ASYNC_OK,
68 	STAT_ASYNC_NOK,
69 	STAT_BADKEYS, /* tx only */
70 	STAT_BADMSGS = STAT_BADKEYS, /* rx only */
71 	STAT_NOKEYS,
72 	STAT_SWITCHES,
73 
74 	MAX_STATS,
75 };
76 
77 /* TIPC crypto statistics' header */
78 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
79 					"async_nok", "badmsgs", "nokeys",
80 					"switches"};
81 
82 /* Max TFMs number per key */
83 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
84 
85 /**
86  * struct tipc_key - TIPC keys' status indicator
87  *
88  *         7     6     5     4     3     2     1     0
89  *      +-----+-----+-----+-----+-----+-----+-----+-----+
90  * key: | (reserved)|passive idx| active idx|pending idx|
91  *      +-----+-----+-----+-----+-----+-----+-----+-----+
92  */
93 struct tipc_key {
94 #define KEY_BITS (2)
95 #define KEY_MASK ((1 << KEY_BITS) - 1)
96 	union {
97 		struct {
98 #if defined(__LITTLE_ENDIAN_BITFIELD)
99 			u8 pending:2,
100 			   active:2,
101 			   passive:2, /* rx only */
102 			   reserved:2;
103 #elif defined(__BIG_ENDIAN_BITFIELD)
104 			u8 reserved:2,
105 			   passive:2, /* rx only */
106 			   active:2,
107 			   pending:2;
108 #else
109 #error  "Please fix <asm/byteorder.h>"
110 #endif
111 		} __packed;
112 		u8 keys;
113 	};
114 };
115 
116 /**
117  * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
118  */
119 struct tipc_tfm {
120 	struct crypto_aead *tfm;
121 	struct list_head list;
122 };
123 
124 /**
125  * struct tipc_aead - TIPC AEAD key structure
126  * @tfm_entry: per-cpu pointer to one entry in TFM list
127  * @crypto: TIPC crypto owns this key
128  * @cloned: reference to the source key in case cloning
129  * @users: the number of the key users (TX/RX)
130  * @salt: the key's SALT value
131  * @authsize: authentication tag size (max = 16)
132  * @mode: crypto mode is applied to the key
133  * @hint[]: a hint for user key
134  * @rcu: struct rcu_head
135  * @seqno: the key seqno (cluster scope)
136  * @refcnt: the key reference counter
137  */
138 struct tipc_aead {
139 #define TIPC_AEAD_HINT_LEN (5)
140 	struct tipc_tfm * __percpu *tfm_entry;
141 	struct tipc_crypto *crypto;
142 	struct tipc_aead *cloned;
143 	atomic_t users;
144 	u32 salt;
145 	u8 authsize;
146 	u8 mode;
147 	char hint[TIPC_AEAD_HINT_LEN + 1];
148 	struct rcu_head rcu;
149 
150 	atomic64_t seqno ____cacheline_aligned;
151 	refcount_t refcnt ____cacheline_aligned;
152 
153 } ____cacheline_aligned;
154 
155 /**
156  * struct tipc_crypto_stats - TIPC Crypto statistics
157  */
158 struct tipc_crypto_stats {
159 	unsigned int stat[MAX_STATS];
160 };
161 
162 /**
163  * struct tipc_crypto - TIPC TX/RX crypto structure
164  * @net: struct net
165  * @node: TIPC node (RX)
166  * @aead: array of pointers to AEAD keys for encryption/decryption
167  * @peer_rx_active: replicated peer RX active key index
168  * @key: the key states
169  * @working: the crypto is working or not
170  * @stats: the crypto statistics
171  * @sndnxt: the per-peer sndnxt (TX)
172  * @timer1: general timer 1 (jiffies)
173  * @timer2: general timer 1 (jiffies)
174  * @lock: tipc_key lock
175  */
176 struct tipc_crypto {
177 	struct net *net;
178 	struct tipc_node *node;
179 	struct tipc_aead __rcu *aead[KEY_MAX + 1]; /* key[0] is UNUSED */
180 	atomic_t peer_rx_active;
181 	struct tipc_key key;
182 	u8 working:1;
183 	struct tipc_crypto_stats __percpu *stats;
184 
185 	atomic64_t sndnxt ____cacheline_aligned;
186 	unsigned long timer1;
187 	unsigned long timer2;
188 	spinlock_t lock; /* crypto lock */
189 
190 } ____cacheline_aligned;
191 
192 /* struct tipc_crypto_tx_ctx - TX context for callbacks */
193 struct tipc_crypto_tx_ctx {
194 	struct tipc_aead *aead;
195 	struct tipc_bearer *bearer;
196 	struct tipc_media_addr dst;
197 };
198 
199 /* struct tipc_crypto_rx_ctx - RX context for callbacks */
200 struct tipc_crypto_rx_ctx {
201 	struct tipc_aead *aead;
202 	struct tipc_bearer *bearer;
203 };
204 
205 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
206 static inline void tipc_aead_put(struct tipc_aead *aead);
207 static void tipc_aead_free(struct rcu_head *rp);
208 static int tipc_aead_users(struct tipc_aead __rcu *aead);
209 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
210 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
211 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
212 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
213 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
214 			  u8 mode);
215 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
216 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
217 				 unsigned int crypto_ctx_size,
218 				 u8 **iv, struct aead_request **req,
219 				 struct scatterlist **sg, int nsg);
220 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
221 			     struct tipc_bearer *b,
222 			     struct tipc_media_addr *dst,
223 			     struct tipc_node *__dnode);
224 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
225 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
226 			     struct sk_buff *skb, struct tipc_bearer *b);
227 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
228 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
229 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
230 			   u8 tx_key, struct sk_buff *skb,
231 			   struct tipc_crypto *__rx);
232 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
233 					     u8 new_passive,
234 					     u8 new_active,
235 					     u8 new_pending);
236 static int tipc_crypto_key_attach(struct tipc_crypto *c,
237 				  struct tipc_aead *aead, u8 pos);
238 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
239 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
240 						 struct tipc_crypto *rx,
241 						 struct sk_buff *skb);
242 static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active,
243 				  struct tipc_msg *hdr);
244 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
245 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
246 				     struct tipc_bearer *b,
247 				     struct sk_buff **skb, int err);
248 static void tipc_crypto_do_cmd(struct net *net, int cmd);
249 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
250 #ifdef TIPC_CRYPTO_DEBUG
251 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
252 				  char *buf);
253 #endif
254 
255 #define key_next(cur) ((cur) % KEY_MAX + 1)
256 
257 #define tipc_aead_rcu_ptr(rcu_ptr, lock)				\
258 	rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
259 
260 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)			\
261 do {									\
262 	typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr),	\
263 						lockdep_is_held(lock));	\
264 	rcu_assign_pointer((rcu_ptr), (ptr));				\
265 	tipc_aead_put(__tmp);						\
266 } while (0)
267 
268 #define tipc_crypto_key_detach(rcu_ptr, lock)				\
269 	tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
270 
271 /**
272  * tipc_aead_key_validate - Validate a AEAD user key
273  */
274 int tipc_aead_key_validate(struct tipc_aead_key *ukey)
275 {
276 	int keylen;
277 
278 	/* Check if algorithm exists */
279 	if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
280 		pr_info("Not found cipher: \"%s\"!\n", ukey->alg_name);
281 		return -ENODEV;
282 	}
283 
284 	/* Currently, we only support the "gcm(aes)" cipher algorithm */
285 	if (strcmp(ukey->alg_name, "gcm(aes)"))
286 		return -ENOTSUPP;
287 
288 	/* Check if key size is correct */
289 	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
290 	if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
291 		     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
292 		     keylen != TIPC_AES_GCM_KEY_SIZE_256))
293 		return -EINVAL;
294 
295 	return 0;
296 }
297 
298 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
299 {
300 	struct tipc_aead *tmp;
301 
302 	rcu_read_lock();
303 	tmp = rcu_dereference(aead);
304 	if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
305 		tmp = NULL;
306 	rcu_read_unlock();
307 
308 	return tmp;
309 }
310 
311 static inline void tipc_aead_put(struct tipc_aead *aead)
312 {
313 	if (aead && refcount_dec_and_test(&aead->refcnt))
314 		call_rcu(&aead->rcu, tipc_aead_free);
315 }
316 
317 /**
318  * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
319  * @rp: rcu head pointer
320  */
321 static void tipc_aead_free(struct rcu_head *rp)
322 {
323 	struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
324 	struct tipc_tfm *tfm_entry, *head, *tmp;
325 
326 	if (aead->cloned) {
327 		tipc_aead_put(aead->cloned);
328 	} else {
329 		head = *this_cpu_ptr(aead->tfm_entry);
330 		list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
331 			crypto_free_aead(tfm_entry->tfm);
332 			list_del(&tfm_entry->list);
333 			kfree(tfm_entry);
334 		}
335 		/* Free the head */
336 		crypto_free_aead(head->tfm);
337 		list_del(&head->list);
338 		kfree(head);
339 	}
340 	free_percpu(aead->tfm_entry);
341 	kfree(aead);
342 }
343 
344 static int tipc_aead_users(struct tipc_aead __rcu *aead)
345 {
346 	struct tipc_aead *tmp;
347 	int users = 0;
348 
349 	rcu_read_lock();
350 	tmp = rcu_dereference(aead);
351 	if (tmp)
352 		users = atomic_read(&tmp->users);
353 	rcu_read_unlock();
354 
355 	return users;
356 }
357 
358 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
359 {
360 	struct tipc_aead *tmp;
361 
362 	rcu_read_lock();
363 	tmp = rcu_dereference(aead);
364 	if (tmp)
365 		atomic_add_unless(&tmp->users, 1, lim);
366 	rcu_read_unlock();
367 }
368 
369 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
370 {
371 	struct tipc_aead *tmp;
372 
373 	rcu_read_lock();
374 	tmp = rcu_dereference(aead);
375 	if (tmp)
376 		atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
377 	rcu_read_unlock();
378 }
379 
380 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
381 {
382 	struct tipc_aead *tmp;
383 	int cur;
384 
385 	rcu_read_lock();
386 	tmp = rcu_dereference(aead);
387 	if (tmp) {
388 		do {
389 			cur = atomic_read(&tmp->users);
390 			if (cur == val)
391 				break;
392 		} while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
393 	}
394 	rcu_read_unlock();
395 }
396 
397 /**
398  * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
399  */
400 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
401 {
402 	struct tipc_tfm **tfm_entry = this_cpu_ptr(aead->tfm_entry);
403 
404 	*tfm_entry = list_next_entry(*tfm_entry, list);
405 	return (*tfm_entry)->tfm;
406 }
407 
408 /**
409  * tipc_aead_init - Initiate TIPC AEAD
410  * @aead: returned new TIPC AEAD key handle pointer
411  * @ukey: pointer to user key data
412  * @mode: the key mode
413  *
414  * Allocate a (list of) new cipher transformation (TFM) with the specific user
415  * key data if valid. The number of the allocated TFMs can be set via the sysfs
416  * "net/tipc/max_tfms" first.
417  * Also, all the other AEAD data are also initialized.
418  *
419  * Return: 0 if the initiation is successful, otherwise: < 0
420  */
421 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
422 			  u8 mode)
423 {
424 	struct tipc_tfm *tfm_entry, *head;
425 	struct crypto_aead *tfm;
426 	struct tipc_aead *tmp;
427 	int keylen, err, cpu;
428 	int tfm_cnt = 0;
429 
430 	if (unlikely(*aead))
431 		return -EEXIST;
432 
433 	/* Allocate a new AEAD */
434 	tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
435 	if (unlikely(!tmp))
436 		return -ENOMEM;
437 
438 	/* The key consists of two parts: [AES-KEY][SALT] */
439 	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
440 
441 	/* Allocate per-cpu TFM entry pointer */
442 	tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
443 	if (!tmp->tfm_entry) {
444 		kfree_sensitive(tmp);
445 		return -ENOMEM;
446 	}
447 
448 	/* Make a list of TFMs with the user key data */
449 	do {
450 		tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
451 		if (IS_ERR(tfm)) {
452 			err = PTR_ERR(tfm);
453 			break;
454 		}
455 
456 		if (unlikely(!tfm_cnt &&
457 			     crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
458 			crypto_free_aead(tfm);
459 			err = -ENOTSUPP;
460 			break;
461 		}
462 
463 		err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
464 		err |= crypto_aead_setkey(tfm, ukey->key, keylen);
465 		if (unlikely(err)) {
466 			crypto_free_aead(tfm);
467 			break;
468 		}
469 
470 		tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
471 		if (unlikely(!tfm_entry)) {
472 			crypto_free_aead(tfm);
473 			err = -ENOMEM;
474 			break;
475 		}
476 		INIT_LIST_HEAD(&tfm_entry->list);
477 		tfm_entry->tfm = tfm;
478 
479 		/* First entry? */
480 		if (!tfm_cnt) {
481 			head = tfm_entry;
482 			for_each_possible_cpu(cpu) {
483 				*per_cpu_ptr(tmp->tfm_entry, cpu) = head;
484 			}
485 		} else {
486 			list_add_tail(&tfm_entry->list, &head->list);
487 		}
488 
489 	} while (++tfm_cnt < sysctl_tipc_max_tfms);
490 
491 	/* Not any TFM is allocated? */
492 	if (!tfm_cnt) {
493 		free_percpu(tmp->tfm_entry);
494 		kfree_sensitive(tmp);
495 		return err;
496 	}
497 
498 	/* Copy some chars from the user key as a hint */
499 	memcpy(tmp->hint, ukey->key, TIPC_AEAD_HINT_LEN);
500 	tmp->hint[TIPC_AEAD_HINT_LEN] = '\0';
501 
502 	/* Initialize the other data */
503 	tmp->mode = mode;
504 	tmp->cloned = NULL;
505 	tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
506 	memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
507 	atomic_set(&tmp->users, 0);
508 	atomic64_set(&tmp->seqno, 0);
509 	refcount_set(&tmp->refcnt, 1);
510 
511 	*aead = tmp;
512 	return 0;
513 }
514 
515 /**
516  * tipc_aead_clone - Clone a TIPC AEAD key
517  * @dst: dest key for the cloning
518  * @src: source key to clone from
519  *
520  * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
521  * common for the keys.
522  * A reference to the source is hold in the "cloned" pointer for the later
523  * freeing purposes.
524  *
525  * Note: this must be done in cluster-key mode only!
526  * Return: 0 in case of success, otherwise < 0
527  */
528 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
529 {
530 	struct tipc_aead *aead;
531 	int cpu;
532 
533 	if (!src)
534 		return -ENOKEY;
535 
536 	if (src->mode != CLUSTER_KEY)
537 		return -EINVAL;
538 
539 	if (unlikely(*dst))
540 		return -EEXIST;
541 
542 	aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
543 	if (unlikely(!aead))
544 		return -ENOMEM;
545 
546 	aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
547 	if (unlikely(!aead->tfm_entry)) {
548 		kfree_sensitive(aead);
549 		return -ENOMEM;
550 	}
551 
552 	for_each_possible_cpu(cpu) {
553 		*per_cpu_ptr(aead->tfm_entry, cpu) =
554 				*per_cpu_ptr(src->tfm_entry, cpu);
555 	}
556 
557 	memcpy(aead->hint, src->hint, sizeof(src->hint));
558 	aead->mode = src->mode;
559 	aead->salt = src->salt;
560 	aead->authsize = src->authsize;
561 	atomic_set(&aead->users, 0);
562 	atomic64_set(&aead->seqno, 0);
563 	refcount_set(&aead->refcnt, 1);
564 
565 	WARN_ON(!refcount_inc_not_zero(&src->refcnt));
566 	aead->cloned = src;
567 
568 	*dst = aead;
569 	return 0;
570 }
571 
572 /**
573  * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
574  * @tfm: cipher handle to be registered with the request
575  * @crypto_ctx_size: size of crypto context for callback
576  * @iv: returned pointer to IV data
577  * @req: returned pointer to AEAD request data
578  * @sg: returned pointer to SG lists
579  * @nsg: number of SG lists to be allocated
580  *
581  * Allocate memory to store the crypto context data, AEAD request, IV and SG
582  * lists, the memory layout is as follows:
583  * crypto_ctx || iv || aead_req || sg[]
584  *
585  * Return: the pointer to the memory areas in case of success, otherwise NULL
586  */
587 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
588 				 unsigned int crypto_ctx_size,
589 				 u8 **iv, struct aead_request **req,
590 				 struct scatterlist **sg, int nsg)
591 {
592 	unsigned int iv_size, req_size;
593 	unsigned int len;
594 	u8 *mem;
595 
596 	iv_size = crypto_aead_ivsize(tfm);
597 	req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
598 
599 	len = crypto_ctx_size;
600 	len += iv_size;
601 	len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
602 	len = ALIGN(len, crypto_tfm_ctx_alignment());
603 	len += req_size;
604 	len = ALIGN(len, __alignof__(struct scatterlist));
605 	len += nsg * sizeof(**sg);
606 
607 	mem = kmalloc(len, GFP_ATOMIC);
608 	if (!mem)
609 		return NULL;
610 
611 	*iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
612 			      crypto_aead_alignmask(tfm) + 1);
613 	*req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
614 						crypto_tfm_ctx_alignment());
615 	*sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
616 					      __alignof__(struct scatterlist));
617 
618 	return (void *)mem;
619 }
620 
621 /**
622  * tipc_aead_encrypt - Encrypt a message
623  * @aead: TIPC AEAD key for the message encryption
624  * @skb: the input/output skb
625  * @b: TIPC bearer where the message will be delivered after the encryption
626  * @dst: the destination media address
627  * @__dnode: TIPC dest node if "known"
628  *
629  * Return:
630  * 0                   : if the encryption has completed
631  * -EINPROGRESS/-EBUSY : if a callback will be performed
632  * < 0                 : the encryption has failed
633  */
634 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
635 			     struct tipc_bearer *b,
636 			     struct tipc_media_addr *dst,
637 			     struct tipc_node *__dnode)
638 {
639 	struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
640 	struct tipc_crypto_tx_ctx *tx_ctx;
641 	struct aead_request *req;
642 	struct sk_buff *trailer;
643 	struct scatterlist *sg;
644 	struct tipc_ehdr *ehdr;
645 	int ehsz, len, tailen, nsg, rc;
646 	void *ctx;
647 	u32 salt;
648 	u8 *iv;
649 
650 	/* Make sure message len at least 4-byte aligned */
651 	len = ALIGN(skb->len, 4);
652 	tailen = len - skb->len + aead->authsize;
653 
654 	/* Expand skb tail for authentication tag:
655 	 * As for simplicity, we'd have made sure skb having enough tailroom
656 	 * for authentication tag @skb allocation. Even when skb is nonlinear
657 	 * but there is no frag_list, it should be still fine!
658 	 * Otherwise, we must cow it to be a writable buffer with the tailroom.
659 	 */
660 #ifdef TIPC_CRYPTO_DEBUG
661 	SKB_LINEAR_ASSERT(skb);
662 	if (tailen > skb_tailroom(skb)) {
663 		pr_warn("TX: skb tailroom is not enough: %d, requires: %d\n",
664 			skb_tailroom(skb), tailen);
665 	}
666 #endif
667 
668 	if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
669 		nsg = 1;
670 		trailer = skb;
671 	} else {
672 		/* TODO: We could avoid skb_cow_data() if skb has no frag_list
673 		 * e.g. by skb_fill_page_desc() to add another page to the skb
674 		 * with the wanted tailen... However, page skbs look not often,
675 		 * so take it easy now!
676 		 * Cloned skbs e.g. from link_xmit() seems no choice though :(
677 		 */
678 		nsg = skb_cow_data(skb, tailen, &trailer);
679 		if (unlikely(nsg < 0)) {
680 			pr_err("TX: skb_cow_data() returned %d\n", nsg);
681 			return nsg;
682 		}
683 	}
684 
685 	pskb_put(skb, trailer, tailen);
686 
687 	/* Allocate memory for the AEAD operation */
688 	ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
689 	if (unlikely(!ctx))
690 		return -ENOMEM;
691 	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
692 
693 	/* Map skb to the sg lists */
694 	sg_init_table(sg, nsg);
695 	rc = skb_to_sgvec(skb, sg, 0, skb->len);
696 	if (unlikely(rc < 0)) {
697 		pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
698 		goto exit;
699 	}
700 
701 	/* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
702 	 * In case we're in cluster-key mode, SALT is varied by xor-ing with
703 	 * the source address (or w0 of id), otherwise with the dest address
704 	 * if dest is known.
705 	 */
706 	ehdr = (struct tipc_ehdr *)skb->data;
707 	salt = aead->salt;
708 	if (aead->mode == CLUSTER_KEY)
709 		salt ^= ehdr->addr; /* __be32 */
710 	else if (__dnode)
711 		salt ^= tipc_node_get_addr(__dnode);
712 	memcpy(iv, &salt, 4);
713 	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
714 
715 	/* Prepare request */
716 	ehsz = tipc_ehdr_size(ehdr);
717 	aead_request_set_tfm(req, tfm);
718 	aead_request_set_ad(req, ehsz);
719 	aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
720 
721 	/* Set callback function & data */
722 	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
723 				  tipc_aead_encrypt_done, skb);
724 	tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
725 	tx_ctx->aead = aead;
726 	tx_ctx->bearer = b;
727 	memcpy(&tx_ctx->dst, dst, sizeof(*dst));
728 
729 	/* Hold bearer */
730 	if (unlikely(!tipc_bearer_hold(b))) {
731 		rc = -ENODEV;
732 		goto exit;
733 	}
734 
735 	/* Now, do encrypt */
736 	rc = crypto_aead_encrypt(req);
737 	if (rc == -EINPROGRESS || rc == -EBUSY)
738 		return rc;
739 
740 	tipc_bearer_put(b);
741 
742 exit:
743 	kfree(ctx);
744 	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
745 	return rc;
746 }
747 
748 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
749 {
750 	struct sk_buff *skb = base->data;
751 	struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
752 	struct tipc_bearer *b = tx_ctx->bearer;
753 	struct tipc_aead *aead = tx_ctx->aead;
754 	struct tipc_crypto *tx = aead->crypto;
755 	struct net *net = tx->net;
756 
757 	switch (err) {
758 	case 0:
759 		this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
760 		rcu_read_lock();
761 		if (likely(test_bit(0, &b->up)))
762 			b->media->send_msg(net, skb, b, &tx_ctx->dst);
763 		else
764 			kfree_skb(skb);
765 		rcu_read_unlock();
766 		break;
767 	case -EINPROGRESS:
768 		return;
769 	default:
770 		this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
771 		kfree_skb(skb);
772 		break;
773 	}
774 
775 	kfree(tx_ctx);
776 	tipc_bearer_put(b);
777 	tipc_aead_put(aead);
778 }
779 
780 /**
781  * tipc_aead_decrypt - Decrypt an encrypted message
782  * @net: struct net
783  * @aead: TIPC AEAD for the message decryption
784  * @skb: the input/output skb
785  * @b: TIPC bearer where the message has been received
786  *
787  * Return:
788  * 0                   : if the decryption has completed
789  * -EINPROGRESS/-EBUSY : if a callback will be performed
790  * < 0                 : the decryption has failed
791  */
792 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
793 			     struct sk_buff *skb, struct tipc_bearer *b)
794 {
795 	struct tipc_crypto_rx_ctx *rx_ctx;
796 	struct aead_request *req;
797 	struct crypto_aead *tfm;
798 	struct sk_buff *unused;
799 	struct scatterlist *sg;
800 	struct tipc_ehdr *ehdr;
801 	int ehsz, nsg, rc;
802 	void *ctx;
803 	u32 salt;
804 	u8 *iv;
805 
806 	if (unlikely(!aead))
807 		return -ENOKEY;
808 
809 	/* Cow skb data if needed */
810 	if (likely(!skb_cloned(skb) &&
811 		   (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) {
812 		nsg = 1 + skb_shinfo(skb)->nr_frags;
813 	} else {
814 		nsg = skb_cow_data(skb, 0, &unused);
815 		if (unlikely(nsg < 0)) {
816 			pr_err("RX: skb_cow_data() returned %d\n", nsg);
817 			return nsg;
818 		}
819 	}
820 
821 	/* Allocate memory for the AEAD operation */
822 	tfm = tipc_aead_tfm_next(aead);
823 	ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
824 	if (unlikely(!ctx))
825 		return -ENOMEM;
826 	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
827 
828 	/* Map skb to the sg lists */
829 	sg_init_table(sg, nsg);
830 	rc = skb_to_sgvec(skb, sg, 0, skb->len);
831 	if (unlikely(rc < 0)) {
832 		pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
833 		goto exit;
834 	}
835 
836 	/* Reconstruct IV: */
837 	ehdr = (struct tipc_ehdr *)skb->data;
838 	salt = aead->salt;
839 	if (aead->mode == CLUSTER_KEY)
840 		salt ^= ehdr->addr; /* __be32 */
841 	else if (ehdr->destined)
842 		salt ^= tipc_own_addr(net);
843 	memcpy(iv, &salt, 4);
844 	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
845 
846 	/* Prepare request */
847 	ehsz = tipc_ehdr_size(ehdr);
848 	aead_request_set_tfm(req, tfm);
849 	aead_request_set_ad(req, ehsz);
850 	aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
851 
852 	/* Set callback function & data */
853 	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
854 				  tipc_aead_decrypt_done, skb);
855 	rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
856 	rx_ctx->aead = aead;
857 	rx_ctx->bearer = b;
858 
859 	/* Hold bearer */
860 	if (unlikely(!tipc_bearer_hold(b))) {
861 		rc = -ENODEV;
862 		goto exit;
863 	}
864 
865 	/* Now, do decrypt */
866 	rc = crypto_aead_decrypt(req);
867 	if (rc == -EINPROGRESS || rc == -EBUSY)
868 		return rc;
869 
870 	tipc_bearer_put(b);
871 
872 exit:
873 	kfree(ctx);
874 	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
875 	return rc;
876 }
877 
878 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
879 {
880 	struct sk_buff *skb = base->data;
881 	struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
882 	struct tipc_bearer *b = rx_ctx->bearer;
883 	struct tipc_aead *aead = rx_ctx->aead;
884 	struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
885 	struct net *net = aead->crypto->net;
886 
887 	switch (err) {
888 	case 0:
889 		this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
890 		break;
891 	case -EINPROGRESS:
892 		return;
893 	default:
894 		this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
895 		break;
896 	}
897 
898 	kfree(rx_ctx);
899 	tipc_crypto_rcv_complete(net, aead, b, &skb, err);
900 	if (likely(skb)) {
901 		if (likely(test_bit(0, &b->up)))
902 			tipc_rcv(net, skb, b);
903 		else
904 			kfree_skb(skb);
905 	}
906 
907 	tipc_bearer_put(b);
908 }
909 
910 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
911 {
912 	return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
913 }
914 
915 /**
916  * tipc_ehdr_validate - Validate an encryption message
917  * @skb: the message buffer
918  *
919  * Returns "true" if this is a valid encryption message, otherwise "false"
920  */
921 bool tipc_ehdr_validate(struct sk_buff *skb)
922 {
923 	struct tipc_ehdr *ehdr;
924 	int ehsz;
925 
926 	if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
927 		return false;
928 
929 	ehdr = (struct tipc_ehdr *)skb->data;
930 	if (unlikely(ehdr->version != TIPC_EVERSION))
931 		return false;
932 	ehsz = tipc_ehdr_size(ehdr);
933 	if (unlikely(!pskb_may_pull(skb, ehsz)))
934 		return false;
935 	if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
936 		return false;
937 	if (unlikely(!ehdr->tx_key))
938 		return false;
939 
940 	return true;
941 }
942 
943 /**
944  * tipc_ehdr_build - Build TIPC encryption message header
945  * @net: struct net
946  * @aead: TX AEAD key to be used for the message encryption
947  * @tx_key: key id used for the message encryption
948  * @skb: input/output message skb
949  * @__rx: RX crypto handle if dest is "known"
950  *
951  * Return: the header size if the building is successful, otherwise < 0
952  */
953 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
954 			   u8 tx_key, struct sk_buff *skb,
955 			   struct tipc_crypto *__rx)
956 {
957 	struct tipc_msg *hdr = buf_msg(skb);
958 	struct tipc_ehdr *ehdr;
959 	u32 user = msg_user(hdr);
960 	u64 seqno;
961 	int ehsz;
962 
963 	/* Make room for encryption header */
964 	ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
965 	WARN_ON(skb_headroom(skb) < ehsz);
966 	ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
967 
968 	/* Obtain a seqno first:
969 	 * Use the key seqno (= cluster wise) if dest is unknown or we're in
970 	 * cluster key mode, otherwise it's better for a per-peer seqno!
971 	 */
972 	if (!__rx || aead->mode == CLUSTER_KEY)
973 		seqno = atomic64_inc_return(&aead->seqno);
974 	else
975 		seqno = atomic64_inc_return(&__rx->sndnxt);
976 
977 	/* Revoke the key if seqno is wrapped around */
978 	if (unlikely(!seqno))
979 		return tipc_crypto_key_revoke(net, tx_key);
980 
981 	/* Word 1-2 */
982 	ehdr->seqno = cpu_to_be64(seqno);
983 
984 	/* Words 0, 3- */
985 	ehdr->version = TIPC_EVERSION;
986 	ehdr->user = 0;
987 	ehdr->keepalive = 0;
988 	ehdr->tx_key = tx_key;
989 	ehdr->destined = (__rx) ? 1 : 0;
990 	ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
991 	ehdr->reserved_1 = 0;
992 	ehdr->reserved_2 = 0;
993 
994 	switch (user) {
995 	case LINK_CONFIG:
996 		ehdr->user = LINK_CONFIG;
997 		memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
998 		break;
999 	default:
1000 		if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1001 			ehdr->user = LINK_PROTOCOL;
1002 			ehdr->keepalive = msg_is_keepalive(hdr);
1003 		}
1004 		ehdr->addr = hdr->hdr[3];
1005 		break;
1006 	}
1007 
1008 	return ehsz;
1009 }
1010 
1011 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1012 					     u8 new_passive,
1013 					     u8 new_active,
1014 					     u8 new_pending)
1015 {
1016 #ifdef TIPC_CRYPTO_DEBUG
1017 	struct tipc_key old = c->key;
1018 	char buf[32];
1019 #endif
1020 
1021 	c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1022 		      ((new_active  & KEY_MASK) << (KEY_BITS)) |
1023 		      ((new_pending & KEY_MASK));
1024 
1025 #ifdef TIPC_CRYPTO_DEBUG
1026 	pr_info("%s(%s): key changing %s ::%pS\n",
1027 		(c->node) ? "RX" : "TX",
1028 		(c->node) ? tipc_node_get_id_str(c->node) :
1029 			    tipc_own_id_string(c->net),
1030 		tipc_key_change_dump(old, c->key, buf),
1031 		__builtin_return_address(0));
1032 #endif
1033 }
1034 
1035 /**
1036  * tipc_crypto_key_init - Initiate a new user / AEAD key
1037  * @c: TIPC crypto to which new key is attached
1038  * @ukey: the user key
1039  * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1040  *
1041  * A new TIPC AEAD key will be allocated and initiated with the specified user
1042  * key, then attached to the TIPC crypto.
1043  *
1044  * Return: new key id in case of success, otherwise: < 0
1045  */
1046 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1047 			 u8 mode)
1048 {
1049 	struct tipc_aead *aead = NULL;
1050 	int rc = 0;
1051 
1052 	/* Initiate with the new user key */
1053 	rc = tipc_aead_init(&aead, ukey, mode);
1054 
1055 	/* Attach it to the crypto */
1056 	if (likely(!rc)) {
1057 		rc = tipc_crypto_key_attach(c, aead, 0);
1058 		if (rc < 0)
1059 			tipc_aead_free(&aead->rcu);
1060 	}
1061 
1062 	pr_info("%s(%s): key initiating, rc %d!\n",
1063 		(c->node) ? "RX" : "TX",
1064 		(c->node) ? tipc_node_get_id_str(c->node) :
1065 			    tipc_own_id_string(c->net),
1066 		rc);
1067 
1068 	return rc;
1069 }
1070 
1071 /**
1072  * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1073  * @c: TIPC crypto to which the new AEAD key is attached
1074  * @aead: the new AEAD key pointer
1075  * @pos: desired slot in the crypto key array, = 0 if any!
1076  *
1077  * Return: new key id in case of success, otherwise: -EBUSY
1078  */
1079 static int tipc_crypto_key_attach(struct tipc_crypto *c,
1080 				  struct tipc_aead *aead, u8 pos)
1081 {
1082 	u8 new_pending, new_passive, new_key;
1083 	struct tipc_key key;
1084 	int rc = -EBUSY;
1085 
1086 	spin_lock_bh(&c->lock);
1087 	key = c->key;
1088 	if (key.active && key.passive)
1089 		goto exit;
1090 	if (key.passive && !tipc_aead_users(c->aead[key.passive]))
1091 		goto exit;
1092 	if (key.pending) {
1093 		if (pos)
1094 			goto exit;
1095 		if (tipc_aead_users(c->aead[key.pending]) > 0)
1096 			goto exit;
1097 		/* Replace it */
1098 		new_pending = key.pending;
1099 		new_passive = key.passive;
1100 		new_key = new_pending;
1101 	} else {
1102 		if (pos) {
1103 			if (key.active && pos != key_next(key.active)) {
1104 				new_pending = key.pending;
1105 				new_passive = pos;
1106 				new_key = new_passive;
1107 				goto attach;
1108 			} else if (!key.active && !key.passive) {
1109 				new_pending = pos;
1110 				new_passive = key.passive;
1111 				new_key = new_pending;
1112 				goto attach;
1113 			}
1114 		}
1115 		new_pending = key_next(key.active ?: key.passive);
1116 		new_passive = key.passive;
1117 		new_key = new_pending;
1118 	}
1119 
1120 attach:
1121 	aead->crypto = c;
1122 	tipc_crypto_key_set_state(c, new_passive, key.active, new_pending);
1123 	tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1124 
1125 	c->working = 1;
1126 	c->timer1 = jiffies;
1127 	c->timer2 = jiffies;
1128 	rc = new_key;
1129 
1130 exit:
1131 	spin_unlock_bh(&c->lock);
1132 	return rc;
1133 }
1134 
1135 void tipc_crypto_key_flush(struct tipc_crypto *c)
1136 {
1137 	int k;
1138 
1139 	spin_lock_bh(&c->lock);
1140 	c->working = 0;
1141 	tipc_crypto_key_set_state(c, 0, 0, 0);
1142 	for (k = KEY_MIN; k <= KEY_MAX; k++)
1143 		tipc_crypto_key_detach(c->aead[k], &c->lock);
1144 	atomic_set(&c->peer_rx_active, 0);
1145 	atomic64_set(&c->sndnxt, 0);
1146 	spin_unlock_bh(&c->lock);
1147 }
1148 
1149 /**
1150  * tipc_crypto_key_try_align - Align RX keys if possible
1151  * @rx: RX crypto handle
1152  * @new_pending: new pending slot if aligned (= TX key from peer)
1153  *
1154  * Peer has used an unknown key slot, this only happens when peer has left and
1155  * rejoned, or we are newcomer.
1156  * That means, there must be no active key but a pending key at unaligned slot.
1157  * If so, we try to move the pending key to the new slot.
1158  * Note: A potential passive key can exist, it will be shifted correspondingly!
1159  *
1160  * Return: "true" if key is successfully aligned, otherwise "false"
1161  */
1162 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1163 {
1164 	struct tipc_aead *tmp1, *tmp2 = NULL;
1165 	struct tipc_key key;
1166 	bool aligned = false;
1167 	u8 new_passive = 0;
1168 	int x;
1169 
1170 	spin_lock(&rx->lock);
1171 	key = rx->key;
1172 	if (key.pending == new_pending) {
1173 		aligned = true;
1174 		goto exit;
1175 	}
1176 	if (key.active)
1177 		goto exit;
1178 	if (!key.pending)
1179 		goto exit;
1180 	if (tipc_aead_users(rx->aead[key.pending]) > 0)
1181 		goto exit;
1182 
1183 	/* Try to "isolate" this pending key first */
1184 	tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1185 	if (!refcount_dec_if_one(&tmp1->refcnt))
1186 		goto exit;
1187 	rcu_assign_pointer(rx->aead[key.pending], NULL);
1188 
1189 	/* Move passive key if any */
1190 	if (key.passive) {
1191 		tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1192 		x = (key.passive - key.pending + new_pending) % KEY_MAX;
1193 		new_passive = (x <= 0) ? x + KEY_MAX : x;
1194 	}
1195 
1196 	/* Re-allocate the key(s) */
1197 	tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1198 	rcu_assign_pointer(rx->aead[new_pending], tmp1);
1199 	if (new_passive)
1200 		rcu_assign_pointer(rx->aead[new_passive], tmp2);
1201 	refcount_set(&tmp1->refcnt, 1);
1202 	aligned = true;
1203 	pr_info("RX(%s): key is aligned!\n", tipc_node_get_id_str(rx->node));
1204 
1205 exit:
1206 	spin_unlock(&rx->lock);
1207 	return aligned;
1208 }
1209 
1210 /**
1211  * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1212  * @tx: TX crypto handle
1213  * @rx: RX crypto handle (can be NULL)
1214  * @skb: the message skb which will be decrypted later
1215  *
1216  * This function looks up the existing TX keys and pick one which is suitable
1217  * for the message decryption, that must be a cluster key and not used before
1218  * on the same message (i.e. recursive).
1219  *
1220  * Return: the TX AEAD key handle in case of success, otherwise NULL
1221  */
1222 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1223 						 struct tipc_crypto *rx,
1224 						 struct sk_buff *skb)
1225 {
1226 	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1227 	struct tipc_aead *aead = NULL;
1228 	struct tipc_key key = tx->key;
1229 	u8 k, i = 0;
1230 
1231 	/* Initialize data if not yet */
1232 	if (!skb_cb->tx_clone_deferred) {
1233 		skb_cb->tx_clone_deferred = 1;
1234 		memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1235 	}
1236 
1237 	skb_cb->tx_clone_ctx.rx = rx;
1238 	if (++skb_cb->tx_clone_ctx.recurs > 2)
1239 		return NULL;
1240 
1241 	/* Pick one TX key */
1242 	spin_lock(&tx->lock);
1243 	do {
1244 		k = (i == 0) ? key.pending :
1245 			((i == 1) ? key.active : key.passive);
1246 		if (!k)
1247 			continue;
1248 		aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1249 		if (!aead)
1250 			continue;
1251 		if (aead->mode != CLUSTER_KEY ||
1252 		    aead == skb_cb->tx_clone_ctx.last) {
1253 			aead = NULL;
1254 			continue;
1255 		}
1256 		/* Ok, found one cluster key */
1257 		skb_cb->tx_clone_ctx.last = aead;
1258 		WARN_ON(skb->next);
1259 		skb->next = skb_clone(skb, GFP_ATOMIC);
1260 		if (unlikely(!skb->next))
1261 			pr_warn("Failed to clone skb for next round if any\n");
1262 		WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1263 		break;
1264 	} while (++i < 3);
1265 	spin_unlock(&tx->lock);
1266 
1267 	return aead;
1268 }
1269 
1270 /**
1271  * tipc_crypto_key_synch: Synch own key data according to peer key status
1272  * @rx: RX crypto handle
1273  * @new_rx_active: latest RX active key from peer
1274  * @hdr: TIPCv2 message
1275  *
1276  * This function updates the peer node related data as the peer RX active key
1277  * has changed, so the number of TX keys' users on this node are increased and
1278  * decreased correspondingly.
1279  *
1280  * The "per-peer" sndnxt is also reset when the peer key has switched.
1281  */
1282 static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active,
1283 				  struct tipc_msg *hdr)
1284 {
1285 	struct net *net = rx->net;
1286 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1287 	u8 cur_rx_active;
1288 
1289 	/* TX might be even not ready yet */
1290 	if (unlikely(!tx->key.active && !tx->key.pending))
1291 		return;
1292 
1293 	cur_rx_active = atomic_read(&rx->peer_rx_active);
1294 	if (likely(cur_rx_active == new_rx_active))
1295 		return;
1296 
1297 	/* Make sure this message destined for this node */
1298 	if (unlikely(msg_short(hdr) ||
1299 		     msg_destnode(hdr) != tipc_own_addr(net)))
1300 		return;
1301 
1302 	/* Peer RX active key has changed, try to update owns' & TX users */
1303 	if (atomic_cmpxchg(&rx->peer_rx_active,
1304 			   cur_rx_active,
1305 			   new_rx_active) == cur_rx_active) {
1306 		if (new_rx_active)
1307 			tipc_aead_users_inc(tx->aead[new_rx_active], INT_MAX);
1308 		if (cur_rx_active)
1309 			tipc_aead_users_dec(tx->aead[cur_rx_active], 0);
1310 
1311 		atomic64_set(&rx->sndnxt, 0);
1312 		/* Mark the point TX key users changed */
1313 		tx->timer1 = jiffies;
1314 
1315 #ifdef TIPC_CRYPTO_DEBUG
1316 		pr_info("TX(%s): key users changed %d-- %d++, peer RX(%s)\n",
1317 			tipc_own_id_string(net), cur_rx_active,
1318 			new_rx_active, tipc_node_get_id_str(rx->node));
1319 #endif
1320 	}
1321 }
1322 
1323 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1324 {
1325 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1326 	struct tipc_key key;
1327 
1328 	spin_lock(&tx->lock);
1329 	key = tx->key;
1330 	WARN_ON(!key.active || tx_key != key.active);
1331 
1332 	/* Free the active key */
1333 	tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1334 	tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1335 	spin_unlock(&tx->lock);
1336 
1337 	pr_warn("TX(%s): key is revoked!\n", tipc_own_id_string(net));
1338 	return -EKEYREVOKED;
1339 }
1340 
1341 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1342 		      struct tipc_node *node)
1343 {
1344 	struct tipc_crypto *c;
1345 
1346 	if (*crypto)
1347 		return -EEXIST;
1348 
1349 	/* Allocate crypto */
1350 	c = kzalloc(sizeof(*c), GFP_ATOMIC);
1351 	if (!c)
1352 		return -ENOMEM;
1353 
1354 	/* Allocate statistic structure */
1355 	c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1356 	if (!c->stats) {
1357 		kfree_sensitive(c);
1358 		return -ENOMEM;
1359 	}
1360 
1361 	c->working = 0;
1362 	c->net = net;
1363 	c->node = node;
1364 	tipc_crypto_key_set_state(c, 0, 0, 0);
1365 	atomic_set(&c->peer_rx_active, 0);
1366 	atomic64_set(&c->sndnxt, 0);
1367 	c->timer1 = jiffies;
1368 	c->timer2 = jiffies;
1369 	spin_lock_init(&c->lock);
1370 	*crypto = c;
1371 
1372 	return 0;
1373 }
1374 
1375 void tipc_crypto_stop(struct tipc_crypto **crypto)
1376 {
1377 	struct tipc_crypto *c, *tx, *rx;
1378 	bool is_rx;
1379 	u8 k;
1380 
1381 	if (!*crypto)
1382 		return;
1383 
1384 	rcu_read_lock();
1385 	/* RX stopping? => decrease TX key users if any */
1386 	is_rx = !!((*crypto)->node);
1387 	if (is_rx) {
1388 		rx = *crypto;
1389 		tx = tipc_net(rx->net)->crypto_tx;
1390 		k = atomic_read(&rx->peer_rx_active);
1391 		if (k) {
1392 			tipc_aead_users_dec(tx->aead[k], 0);
1393 			/* Mark the point TX key users changed */
1394 			tx->timer1 = jiffies;
1395 		}
1396 	}
1397 
1398 	/* Release AEAD keys */
1399 	c = *crypto;
1400 	for (k = KEY_MIN; k <= KEY_MAX; k++)
1401 		tipc_aead_put(rcu_dereference(c->aead[k]));
1402 	rcu_read_unlock();
1403 
1404 	pr_warn("%s(%s) has been purged, node left!\n",
1405 		(is_rx) ? "RX" : "TX",
1406 		(is_rx) ? tipc_node_get_id_str((*crypto)->node) :
1407 			  tipc_own_id_string((*crypto)->net));
1408 
1409 	/* Free this crypto statistics */
1410 	free_percpu(c->stats);
1411 
1412 	*crypto = NULL;
1413 	kfree_sensitive(c);
1414 }
1415 
1416 void tipc_crypto_timeout(struct tipc_crypto *rx)
1417 {
1418 	struct tipc_net *tn = tipc_net(rx->net);
1419 	struct tipc_crypto *tx = tn->crypto_tx;
1420 	struct tipc_key key;
1421 	u8 new_pending, new_passive;
1422 	int cmd;
1423 
1424 	/* TX key activating:
1425 	 * The pending key (users > 0) -> active
1426 	 * The active key if any (users == 0) -> free
1427 	 */
1428 	spin_lock(&tx->lock);
1429 	key = tx->key;
1430 	if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1431 		goto s1;
1432 	if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1433 		goto s1;
1434 	if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_LIM))
1435 		goto s1;
1436 
1437 	tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1438 	if (key.active)
1439 		tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1440 	this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1441 	pr_info("TX(%s): key %d is activated!\n", tipc_own_id_string(tx->net),
1442 		key.pending);
1443 
1444 s1:
1445 	spin_unlock(&tx->lock);
1446 
1447 	/* RX key activating:
1448 	 * The pending key (users > 0) -> active
1449 	 * The active key if any -> passive, freed later
1450 	 */
1451 	spin_lock(&rx->lock);
1452 	key = rx->key;
1453 	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1454 		goto s2;
1455 
1456 	new_pending = (key.passive &&
1457 		       !tipc_aead_users(rx->aead[key.passive])) ?
1458 				       key.passive : 0;
1459 	new_passive = (key.active) ?: ((new_pending) ? 0 : key.passive);
1460 	tipc_crypto_key_set_state(rx, new_passive, key.pending, new_pending);
1461 	this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1462 	pr_info("RX(%s): key %d is activated!\n",
1463 		tipc_node_get_id_str(rx->node),	key.pending);
1464 	goto s5;
1465 
1466 s2:
1467 	/* RX key "faulty" switching:
1468 	 * The faulty pending key (users < -30) -> passive
1469 	 * The passive key (users = 0) -> pending
1470 	 * Note: This only happens after RX deactivated - s3!
1471 	 */
1472 	key = rx->key;
1473 	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -30)
1474 		goto s3;
1475 	if (!key.passive || tipc_aead_users(rx->aead[key.passive]) != 0)
1476 		goto s3;
1477 
1478 	new_pending = key.passive;
1479 	new_passive = key.pending;
1480 	tipc_crypto_key_set_state(rx, new_passive, key.active, new_pending);
1481 	goto s5;
1482 
1483 s3:
1484 	/* RX key deactivating:
1485 	 * The passive key if any -> pending
1486 	 * The active key -> passive (users = 0) / pending
1487 	 * The pending key if any -> passive (users = 0)
1488 	 */
1489 	key = rx->key;
1490 	if (!key.active)
1491 		goto s4;
1492 	if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM))
1493 		goto s4;
1494 
1495 	new_pending = (key.passive) ?: key.active;
1496 	new_passive = (key.passive) ? key.active : key.pending;
1497 	tipc_aead_users_set(rx->aead[new_pending], 0);
1498 	if (new_passive)
1499 		tipc_aead_users_set(rx->aead[new_passive], 0);
1500 	tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1501 	pr_info("RX(%s): key %d is deactivated!\n",
1502 		tipc_node_get_id_str(rx->node), key.active);
1503 	goto s5;
1504 
1505 s4:
1506 	/* RX key passive -> freed: */
1507 	key = rx->key;
1508 	if (!key.passive || !tipc_aead_users(rx->aead[key.passive]))
1509 		goto s5;
1510 	if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM))
1511 		goto s5;
1512 
1513 	tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1514 	tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1515 	pr_info("RX(%s): key %d is freed!\n", tipc_node_get_id_str(rx->node),
1516 		key.passive);
1517 
1518 s5:
1519 	spin_unlock(&rx->lock);
1520 
1521 	/* Limit max_tfms & do debug commands if needed */
1522 	if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1523 		return;
1524 
1525 	cmd = sysctl_tipc_max_tfms;
1526 	sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1527 	tipc_crypto_do_cmd(rx->net, cmd);
1528 }
1529 
1530 /**
1531  * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1532  * @net: struct net
1533  * @skb: input/output message skb pointer
1534  * @b: bearer used for xmit later
1535  * @dst: destination media address
1536  * @__dnode: destination node for reference if any
1537  *
1538  * First, build an encryption message header on the top of the message, then
1539  * encrypt the original TIPC message by using the active or pending TX key.
1540  * If the encryption is successful, the encrypted skb is returned directly or
1541  * via the callback.
1542  * Otherwise, the skb is freed!
1543  *
1544  * Return:
1545  * 0                   : the encryption has succeeded (or no encryption)
1546  * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1547  * -ENOKEK             : the encryption has failed due to no key
1548  * -EKEYREVOKED        : the encryption has failed due to key revoked
1549  * -ENOMEM             : the encryption has failed due to no memory
1550  * < 0                 : the encryption has failed due to other reasons
1551  */
1552 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1553 		     struct tipc_bearer *b, struct tipc_media_addr *dst,
1554 		     struct tipc_node *__dnode)
1555 {
1556 	struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1557 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1558 	struct tipc_crypto_stats __percpu *stats = tx->stats;
1559 	struct tipc_key key = tx->key;
1560 	struct tipc_aead *aead = NULL;
1561 	struct sk_buff *probe;
1562 	int rc = -ENOKEY;
1563 	u8 tx_key;
1564 
1565 	/* No encryption? */
1566 	if (!tx->working)
1567 		return 0;
1568 
1569 	/* Try with the pending key if available and:
1570 	 * 1) This is the only choice (i.e. no active key) or;
1571 	 * 2) Peer has switched to this key (unicast only) or;
1572 	 * 3) It is time to do a pending key probe;
1573 	 */
1574 	if (unlikely(key.pending)) {
1575 		tx_key = key.pending;
1576 		if (!key.active)
1577 			goto encrypt;
1578 		if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1579 			goto encrypt;
1580 		if (TIPC_SKB_CB(*skb)->probe)
1581 			goto encrypt;
1582 		if (!__rx &&
1583 		    time_after(jiffies, tx->timer2 + TIPC_TX_PROBE_LIM)) {
1584 			tx->timer2 = jiffies;
1585 			probe = skb_clone(*skb, GFP_ATOMIC);
1586 			if (probe) {
1587 				TIPC_SKB_CB(probe)->probe = 1;
1588 				tipc_crypto_xmit(net, &probe, b, dst, __dnode);
1589 				if (probe)
1590 					b->media->send_msg(net, probe, b, dst);
1591 			}
1592 		}
1593 	}
1594 	/* Else, use the active key if any */
1595 	if (likely(key.active)) {
1596 		tx_key = key.active;
1597 		goto encrypt;
1598 	}
1599 	goto exit;
1600 
1601 encrypt:
1602 	aead = tipc_aead_get(tx->aead[tx_key]);
1603 	if (unlikely(!aead))
1604 		goto exit;
1605 	rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1606 	if (likely(rc > 0))
1607 		rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1608 
1609 exit:
1610 	switch (rc) {
1611 	case 0:
1612 		this_cpu_inc(stats->stat[STAT_OK]);
1613 		break;
1614 	case -EINPROGRESS:
1615 	case -EBUSY:
1616 		this_cpu_inc(stats->stat[STAT_ASYNC]);
1617 		*skb = NULL;
1618 		return rc;
1619 	default:
1620 		this_cpu_inc(stats->stat[STAT_NOK]);
1621 		if (rc == -ENOKEY)
1622 			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1623 		else if (rc == -EKEYREVOKED)
1624 			this_cpu_inc(stats->stat[STAT_BADKEYS]);
1625 		kfree_skb(*skb);
1626 		*skb = NULL;
1627 		break;
1628 	}
1629 
1630 	tipc_aead_put(aead);
1631 	return rc;
1632 }
1633 
1634 /**
1635  * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1636  * @net: struct net
1637  * @rx: RX crypto handle
1638  * @skb: input/output message skb pointer
1639  * @b: bearer where the message has been received
1640  *
1641  * If the decryption is successful, the decrypted skb is returned directly or
1642  * as the callback, the encryption header and auth tag will be trimed out
1643  * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1644  * Otherwise, the skb will be freed!
1645  * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1646  * cluster key(s) can be taken for decryption (- recursive).
1647  *
1648  * Return:
1649  * 0                   : the decryption has successfully completed
1650  * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1651  * -ENOKEY             : the decryption has failed due to no key
1652  * -EBADMSG            : the decryption has failed due to bad message
1653  * -ENOMEM             : the decryption has failed due to no memory
1654  * < 0                 : the decryption has failed due to other reasons
1655  */
1656 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1657 		    struct sk_buff **skb, struct tipc_bearer *b)
1658 {
1659 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1660 	struct tipc_crypto_stats __percpu *stats;
1661 	struct tipc_aead *aead = NULL;
1662 	struct tipc_key key;
1663 	int rc = -ENOKEY;
1664 	u8 tx_key = 0;
1665 
1666 	/* New peer?
1667 	 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1668 	 */
1669 	if (unlikely(!rx))
1670 		goto pick_tx;
1671 
1672 	/* Pick RX key according to TX key, three cases are possible:
1673 	 * 1) The current active key (likely) or;
1674 	 * 2) The pending (new or deactivated) key (if any) or;
1675 	 * 3) The passive or old active key (i.e. users > 0);
1676 	 */
1677 	tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1678 	key = rx->key;
1679 	if (likely(tx_key == key.active))
1680 		goto decrypt;
1681 	if (tx_key == key.pending)
1682 		goto decrypt;
1683 	if (tx_key == key.passive) {
1684 		rx->timer2 = jiffies;
1685 		if (tipc_aead_users(rx->aead[key.passive]) > 0)
1686 			goto decrypt;
1687 	}
1688 
1689 	/* Unknown key, let's try to align RX key(s) */
1690 	if (tipc_crypto_key_try_align(rx, tx_key))
1691 		goto decrypt;
1692 
1693 pick_tx:
1694 	/* No key suitable? Try to pick one from TX... */
1695 	aead = tipc_crypto_key_pick_tx(tx, rx, *skb);
1696 	if (aead)
1697 		goto decrypt;
1698 	goto exit;
1699 
1700 decrypt:
1701 	rcu_read_lock();
1702 	if (!aead)
1703 		aead = tipc_aead_get(rx->aead[tx_key]);
1704 	rc = tipc_aead_decrypt(net, aead, *skb, b);
1705 	rcu_read_unlock();
1706 
1707 exit:
1708 	stats = ((rx) ?: tx)->stats;
1709 	switch (rc) {
1710 	case 0:
1711 		this_cpu_inc(stats->stat[STAT_OK]);
1712 		break;
1713 	case -EINPROGRESS:
1714 	case -EBUSY:
1715 		this_cpu_inc(stats->stat[STAT_ASYNC]);
1716 		*skb = NULL;
1717 		return rc;
1718 	default:
1719 		this_cpu_inc(stats->stat[STAT_NOK]);
1720 		if (rc == -ENOKEY) {
1721 			kfree_skb(*skb);
1722 			*skb = NULL;
1723 			if (rx)
1724 				tipc_node_put(rx->node);
1725 			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1726 			return rc;
1727 		} else if (rc == -EBADMSG) {
1728 			this_cpu_inc(stats->stat[STAT_BADMSGS]);
1729 		}
1730 		break;
1731 	}
1732 
1733 	tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1734 	return rc;
1735 }
1736 
1737 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1738 				     struct tipc_bearer *b,
1739 				     struct sk_buff **skb, int err)
1740 {
1741 	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1742 	struct tipc_crypto *rx = aead->crypto;
1743 	struct tipc_aead *tmp = NULL;
1744 	struct tipc_ehdr *ehdr;
1745 	struct tipc_node *n;
1746 	u8 rx_key_active;
1747 	bool destined;
1748 
1749 	/* Is this completed by TX? */
1750 	if (unlikely(!rx->node)) {
1751 		rx = skb_cb->tx_clone_ctx.rx;
1752 #ifdef TIPC_CRYPTO_DEBUG
1753 		pr_info("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1754 			(rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1755 			(*skb)->next, skb_cb->flags);
1756 		pr_info("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1757 			skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1758 			aead->crypto->aead[1], aead->crypto->aead[2],
1759 			aead->crypto->aead[3]);
1760 #endif
1761 		if (unlikely(err)) {
1762 			if (err == -EBADMSG && (*skb)->next)
1763 				tipc_rcv(net, (*skb)->next, b);
1764 			goto free_skb;
1765 		}
1766 
1767 		if (likely((*skb)->next)) {
1768 			kfree_skb((*skb)->next);
1769 			(*skb)->next = NULL;
1770 		}
1771 		ehdr = (struct tipc_ehdr *)(*skb)->data;
1772 		if (!rx) {
1773 			WARN_ON(ehdr->user != LINK_CONFIG);
1774 			n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1775 					     true);
1776 			rx = tipc_node_crypto_rx(n);
1777 			if (unlikely(!rx))
1778 				goto free_skb;
1779 		}
1780 
1781 		/* Skip cloning this time as we had a RX pending key */
1782 		if (rx->key.pending)
1783 			goto rcv;
1784 		if (tipc_aead_clone(&tmp, aead) < 0)
1785 			goto rcv;
1786 		if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key) < 0) {
1787 			tipc_aead_free(&tmp->rcu);
1788 			goto rcv;
1789 		}
1790 		tipc_aead_put(aead);
1791 		aead = tipc_aead_get(tmp);
1792 	}
1793 
1794 	if (unlikely(err)) {
1795 		tipc_aead_users_dec(aead, INT_MIN);
1796 		goto free_skb;
1797 	}
1798 
1799 	/* Set the RX key's user */
1800 	tipc_aead_users_set(aead, 1);
1801 
1802 rcv:
1803 	/* Mark this point, RX works */
1804 	rx->timer1 = jiffies;
1805 
1806 	/* Remove ehdr & auth. tag prior to tipc_rcv() */
1807 	ehdr = (struct tipc_ehdr *)(*skb)->data;
1808 	destined = ehdr->destined;
1809 	rx_key_active = ehdr->rx_key_active;
1810 	skb_pull(*skb, tipc_ehdr_size(ehdr));
1811 	pskb_trim(*skb, (*skb)->len - aead->authsize);
1812 
1813 	/* Validate TIPCv2 message */
1814 	if (unlikely(!tipc_msg_validate(skb))) {
1815 		pr_err_ratelimited("Packet dropped after decryption!\n");
1816 		goto free_skb;
1817 	}
1818 
1819 	/* Update peer RX active key & TX users */
1820 	if (destined)
1821 		tipc_crypto_key_synch(rx, rx_key_active, buf_msg(*skb));
1822 
1823 	/* Mark skb decrypted */
1824 	skb_cb->decrypted = 1;
1825 
1826 	/* Clear clone cxt if any */
1827 	if (likely(!skb_cb->tx_clone_deferred))
1828 		goto exit;
1829 	skb_cb->tx_clone_deferred = 0;
1830 	memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1831 	goto exit;
1832 
1833 free_skb:
1834 	kfree_skb(*skb);
1835 	*skb = NULL;
1836 
1837 exit:
1838 	tipc_aead_put(aead);
1839 	if (rx)
1840 		tipc_node_put(rx->node);
1841 }
1842 
1843 static void tipc_crypto_do_cmd(struct net *net, int cmd)
1844 {
1845 	struct tipc_net *tn = tipc_net(net);
1846 	struct tipc_crypto *tx = tn->crypto_tx, *rx;
1847 	struct list_head *p;
1848 	unsigned int stat;
1849 	int i, j, cpu;
1850 	char buf[200];
1851 
1852 	/* Currently only one command is supported */
1853 	switch (cmd) {
1854 	case 0xfff1:
1855 		goto print_stats;
1856 	default:
1857 		return;
1858 	}
1859 
1860 print_stats:
1861 	/* Print a header */
1862 	pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
1863 
1864 	/* Print key status */
1865 	pr_info("Key status:\n");
1866 	pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
1867 		tipc_crypto_key_dump(tx, buf));
1868 
1869 	rcu_read_lock();
1870 	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
1871 		rx = tipc_node_crypto_rx_by_list(p);
1872 		pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
1873 			tipc_crypto_key_dump(rx, buf));
1874 	}
1875 	rcu_read_unlock();
1876 
1877 	/* Print crypto statistics */
1878 	for (i = 0, j = 0; i < MAX_STATS; i++)
1879 		j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
1880 	pr_info("\nCounter     %s", buf);
1881 
1882 	memset(buf, '-', 115);
1883 	buf[115] = '\0';
1884 	pr_info("%s\n", buf);
1885 
1886 	j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
1887 	for_each_possible_cpu(cpu) {
1888 		for (i = 0; i < MAX_STATS; i++) {
1889 			stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
1890 			j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
1891 		}
1892 		pr_info("%s", buf);
1893 		j = scnprintf(buf, 200, "%12s", " ");
1894 	}
1895 
1896 	rcu_read_lock();
1897 	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
1898 		rx = tipc_node_crypto_rx_by_list(p);
1899 		j = scnprintf(buf, 200, "RX(%7.7s) ",
1900 			      tipc_node_get_id_str(rx->node));
1901 		for_each_possible_cpu(cpu) {
1902 			for (i = 0; i < MAX_STATS; i++) {
1903 				stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
1904 				j += scnprintf(buf + j, 200 - j, "|%11d ",
1905 					       stat);
1906 			}
1907 			pr_info("%s", buf);
1908 			j = scnprintf(buf, 200, "%12s", " ");
1909 		}
1910 	}
1911 	rcu_read_unlock();
1912 
1913 	pr_info("\n======================== Done ========================\n");
1914 }
1915 
1916 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
1917 {
1918 	struct tipc_key key = c->key;
1919 	struct tipc_aead *aead;
1920 	int k, i = 0;
1921 	char *s;
1922 
1923 	for (k = KEY_MIN; k <= KEY_MAX; k++) {
1924 		if (k == key.passive)
1925 			s = "PAS";
1926 		else if (k == key.active)
1927 			s = "ACT";
1928 		else if (k == key.pending)
1929 			s = "PEN";
1930 		else
1931 			s = "-";
1932 		i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
1933 
1934 		rcu_read_lock();
1935 		aead = rcu_dereference(c->aead[k]);
1936 		if (aead)
1937 			i += scnprintf(buf + i, 200 - i,
1938 				       "{\"%s...\", \"%s\"}/%d:%d",
1939 				       aead->hint,
1940 				       (aead->mode == CLUSTER_KEY) ? "c" : "p",
1941 				       atomic_read(&aead->users),
1942 				       refcount_read(&aead->refcnt));
1943 		rcu_read_unlock();
1944 		i += scnprintf(buf + i, 200 - i, "\n");
1945 	}
1946 
1947 	if (c->node)
1948 		i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
1949 			       atomic_read(&c->peer_rx_active));
1950 
1951 	return buf;
1952 }
1953 
1954 #ifdef TIPC_CRYPTO_DEBUG
1955 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
1956 				  char *buf)
1957 {
1958 	struct tipc_key *key = &old;
1959 	int k, i = 0;
1960 	char *s;
1961 
1962 	/* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
1963 again:
1964 	i += scnprintf(buf + i, 32 - i, "[");
1965 	for (k = KEY_MIN; k <= KEY_MAX; k++) {
1966 		if (k == key->passive)
1967 			s = "pas";
1968 		else if (k == key->active)
1969 			s = "act";
1970 		else if (k == key->pending)
1971 			s = "pen";
1972 		else
1973 			s = "-";
1974 		i += scnprintf(buf + i, 32 - i,
1975 			       (k != KEY_MAX) ? "%s " : "%s", s);
1976 	}
1977 	if (key != &new) {
1978 		i += scnprintf(buf + i, 32 - i, "] -> ");
1979 		key = &new;
1980 		goto again;
1981 	}
1982 	i += scnprintf(buf + i, 32 - i, "]");
1983 	return buf;
1984 }
1985 #endif
1986