1 // SPDX-License-Identifier: GPL-2.0 2 /** 3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption 4 * 5 * Copyright (c) 2019, Ericsson AB 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the names of the copyright holders nor the names of its 17 * contributors may be used to endorse or promote products derived from 18 * this software without specific prior written permission. 19 * 20 * Alternatively, this software may be distributed under the terms of the 21 * GNU General Public License ("GPL") version 2 as published by the Free 22 * Software Foundation. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * POSSIBILITY OF SUCH DAMAGE. 35 */ 36 37 #include <crypto/aead.h> 38 #include <crypto/aes.h> 39 #include "crypto.h" 40 41 #define TIPC_TX_PROBE_LIM msecs_to_jiffies(1000) /* > 1s */ 42 #define TIPC_TX_LASTING_LIM msecs_to_jiffies(120000) /* 2 mins */ 43 #define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */ 44 #define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(180000) /* 3 mins */ 45 #define TIPC_MAX_TFMS_DEF 10 46 #define TIPC_MAX_TFMS_LIM 1000 47 48 /** 49 * TIPC Key ids 50 */ 51 enum { 52 KEY_UNUSED = 0, 53 KEY_MIN, 54 KEY_1 = KEY_MIN, 55 KEY_2, 56 KEY_3, 57 KEY_MAX = KEY_3, 58 }; 59 60 /** 61 * TIPC Crypto statistics 62 */ 63 enum { 64 STAT_OK, 65 STAT_NOK, 66 STAT_ASYNC, 67 STAT_ASYNC_OK, 68 STAT_ASYNC_NOK, 69 STAT_BADKEYS, /* tx only */ 70 STAT_BADMSGS = STAT_BADKEYS, /* rx only */ 71 STAT_NOKEYS, 72 STAT_SWITCHES, 73 74 MAX_STATS, 75 }; 76 77 /* TIPC crypto statistics' header */ 78 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok", 79 "async_nok", "badmsgs", "nokeys", 80 "switches"}; 81 82 /* Max TFMs number per key */ 83 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF; 84 85 /** 86 * struct tipc_key - TIPC keys' status indicator 87 * 88 * 7 6 5 4 3 2 1 0 89 * +-----+-----+-----+-----+-----+-----+-----+-----+ 90 * key: | (reserved)|passive idx| active idx|pending idx| 91 * +-----+-----+-----+-----+-----+-----+-----+-----+ 92 */ 93 struct tipc_key { 94 #define KEY_BITS (2) 95 #define KEY_MASK ((1 << KEY_BITS) - 1) 96 union { 97 struct { 98 #if defined(__LITTLE_ENDIAN_BITFIELD) 99 u8 pending:2, 100 active:2, 101 passive:2, /* rx only */ 102 reserved:2; 103 #elif defined(__BIG_ENDIAN_BITFIELD) 104 u8 reserved:2, 105 passive:2, /* rx only */ 106 active:2, 107 pending:2; 108 #else 109 #error "Please fix <asm/byteorder.h>" 110 #endif 111 } __packed; 112 u8 keys; 113 }; 114 }; 115 116 /** 117 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs 118 */ 119 struct tipc_tfm { 120 struct crypto_aead *tfm; 121 struct list_head list; 122 }; 123 124 /** 125 * struct tipc_aead - TIPC AEAD key structure 126 * @tfm_entry: per-cpu pointer to one entry in TFM list 127 * @crypto: TIPC crypto owns this key 128 * @cloned: reference to the source key in case cloning 129 * @users: the number of the key users (TX/RX) 130 * @salt: the key's SALT value 131 * @authsize: authentication tag size (max = 16) 132 * @mode: crypto mode is applied to the key 133 * @hint[]: a hint for user key 134 * @rcu: struct rcu_head 135 * @seqno: the key seqno (cluster scope) 136 * @refcnt: the key reference counter 137 */ 138 struct tipc_aead { 139 #define TIPC_AEAD_HINT_LEN (5) 140 struct tipc_tfm * __percpu *tfm_entry; 141 struct tipc_crypto *crypto; 142 struct tipc_aead *cloned; 143 atomic_t users; 144 u32 salt; 145 u8 authsize; 146 u8 mode; 147 char hint[TIPC_AEAD_HINT_LEN + 1]; 148 struct rcu_head rcu; 149 150 atomic64_t seqno ____cacheline_aligned; 151 refcount_t refcnt ____cacheline_aligned; 152 153 } ____cacheline_aligned; 154 155 /** 156 * struct tipc_crypto_stats - TIPC Crypto statistics 157 */ 158 struct tipc_crypto_stats { 159 unsigned int stat[MAX_STATS]; 160 }; 161 162 /** 163 * struct tipc_crypto - TIPC TX/RX crypto structure 164 * @net: struct net 165 * @node: TIPC node (RX) 166 * @aead: array of pointers to AEAD keys for encryption/decryption 167 * @peer_rx_active: replicated peer RX active key index 168 * @key: the key states 169 * @working: the crypto is working or not 170 * @stats: the crypto statistics 171 * @sndnxt: the per-peer sndnxt (TX) 172 * @timer1: general timer 1 (jiffies) 173 * @timer2: general timer 1 (jiffies) 174 * @lock: tipc_key lock 175 */ 176 struct tipc_crypto { 177 struct net *net; 178 struct tipc_node *node; 179 struct tipc_aead __rcu *aead[KEY_MAX + 1]; /* key[0] is UNUSED */ 180 atomic_t peer_rx_active; 181 struct tipc_key key; 182 u8 working:1; 183 struct tipc_crypto_stats __percpu *stats; 184 185 atomic64_t sndnxt ____cacheline_aligned; 186 unsigned long timer1; 187 unsigned long timer2; 188 spinlock_t lock; /* crypto lock */ 189 190 } ____cacheline_aligned; 191 192 /* struct tipc_crypto_tx_ctx - TX context for callbacks */ 193 struct tipc_crypto_tx_ctx { 194 struct tipc_aead *aead; 195 struct tipc_bearer *bearer; 196 struct tipc_media_addr dst; 197 }; 198 199 /* struct tipc_crypto_rx_ctx - RX context for callbacks */ 200 struct tipc_crypto_rx_ctx { 201 struct tipc_aead *aead; 202 struct tipc_bearer *bearer; 203 }; 204 205 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead); 206 static inline void tipc_aead_put(struct tipc_aead *aead); 207 static void tipc_aead_free(struct rcu_head *rp); 208 static int tipc_aead_users(struct tipc_aead __rcu *aead); 209 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim); 210 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim); 211 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val); 212 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead); 213 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, 214 u8 mode); 215 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src); 216 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, 217 unsigned int crypto_ctx_size, 218 u8 **iv, struct aead_request **req, 219 struct scatterlist **sg, int nsg); 220 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, 221 struct tipc_bearer *b, 222 struct tipc_media_addr *dst, 223 struct tipc_node *__dnode); 224 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err); 225 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, 226 struct sk_buff *skb, struct tipc_bearer *b); 227 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err); 228 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr); 229 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, 230 u8 tx_key, struct sk_buff *skb, 231 struct tipc_crypto *__rx); 232 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, 233 u8 new_passive, 234 u8 new_active, 235 u8 new_pending); 236 static int tipc_crypto_key_attach(struct tipc_crypto *c, 237 struct tipc_aead *aead, u8 pos); 238 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending); 239 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, 240 struct tipc_crypto *rx, 241 struct sk_buff *skb); 242 static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active, 243 struct tipc_msg *hdr); 244 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key); 245 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, 246 struct tipc_bearer *b, 247 struct sk_buff **skb, int err); 248 static void tipc_crypto_do_cmd(struct net *net, int cmd); 249 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf); 250 #ifdef TIPC_CRYPTO_DEBUG 251 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, 252 char *buf); 253 #endif 254 255 #define key_next(cur) ((cur) % KEY_MAX + 1) 256 257 #define tipc_aead_rcu_ptr(rcu_ptr, lock) \ 258 rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock)) 259 260 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \ 261 do { \ 262 typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr), \ 263 lockdep_is_held(lock)); \ 264 rcu_assign_pointer((rcu_ptr), (ptr)); \ 265 tipc_aead_put(__tmp); \ 266 } while (0) 267 268 #define tipc_crypto_key_detach(rcu_ptr, lock) \ 269 tipc_aead_rcu_replace((rcu_ptr), NULL, lock) 270 271 /** 272 * tipc_aead_key_validate - Validate a AEAD user key 273 */ 274 int tipc_aead_key_validate(struct tipc_aead_key *ukey) 275 { 276 int keylen; 277 278 /* Check if algorithm exists */ 279 if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) { 280 pr_info("Not found cipher: \"%s\"!\n", ukey->alg_name); 281 return -ENODEV; 282 } 283 284 /* Currently, we only support the "gcm(aes)" cipher algorithm */ 285 if (strcmp(ukey->alg_name, "gcm(aes)")) 286 return -ENOTSUPP; 287 288 /* Check if key size is correct */ 289 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; 290 if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 && 291 keylen != TIPC_AES_GCM_KEY_SIZE_192 && 292 keylen != TIPC_AES_GCM_KEY_SIZE_256)) 293 return -EINVAL; 294 295 return 0; 296 } 297 298 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead) 299 { 300 struct tipc_aead *tmp; 301 302 rcu_read_lock(); 303 tmp = rcu_dereference(aead); 304 if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt))) 305 tmp = NULL; 306 rcu_read_unlock(); 307 308 return tmp; 309 } 310 311 static inline void tipc_aead_put(struct tipc_aead *aead) 312 { 313 if (aead && refcount_dec_and_test(&aead->refcnt)) 314 call_rcu(&aead->rcu, tipc_aead_free); 315 } 316 317 /** 318 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list 319 * @rp: rcu head pointer 320 */ 321 static void tipc_aead_free(struct rcu_head *rp) 322 { 323 struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu); 324 struct tipc_tfm *tfm_entry, *head, *tmp; 325 326 if (aead->cloned) { 327 tipc_aead_put(aead->cloned); 328 } else { 329 head = *this_cpu_ptr(aead->tfm_entry); 330 list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) { 331 crypto_free_aead(tfm_entry->tfm); 332 list_del(&tfm_entry->list); 333 kfree(tfm_entry); 334 } 335 /* Free the head */ 336 crypto_free_aead(head->tfm); 337 list_del(&head->list); 338 kfree(head); 339 } 340 free_percpu(aead->tfm_entry); 341 kfree(aead); 342 } 343 344 static int tipc_aead_users(struct tipc_aead __rcu *aead) 345 { 346 struct tipc_aead *tmp; 347 int users = 0; 348 349 rcu_read_lock(); 350 tmp = rcu_dereference(aead); 351 if (tmp) 352 users = atomic_read(&tmp->users); 353 rcu_read_unlock(); 354 355 return users; 356 } 357 358 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim) 359 { 360 struct tipc_aead *tmp; 361 362 rcu_read_lock(); 363 tmp = rcu_dereference(aead); 364 if (tmp) 365 atomic_add_unless(&tmp->users, 1, lim); 366 rcu_read_unlock(); 367 } 368 369 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim) 370 { 371 struct tipc_aead *tmp; 372 373 rcu_read_lock(); 374 tmp = rcu_dereference(aead); 375 if (tmp) 376 atomic_add_unless(&rcu_dereference(aead)->users, -1, lim); 377 rcu_read_unlock(); 378 } 379 380 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val) 381 { 382 struct tipc_aead *tmp; 383 int cur; 384 385 rcu_read_lock(); 386 tmp = rcu_dereference(aead); 387 if (tmp) { 388 do { 389 cur = atomic_read(&tmp->users); 390 if (cur == val) 391 break; 392 } while (atomic_cmpxchg(&tmp->users, cur, val) != cur); 393 } 394 rcu_read_unlock(); 395 } 396 397 /** 398 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it 399 */ 400 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead) 401 { 402 struct tipc_tfm **tfm_entry = this_cpu_ptr(aead->tfm_entry); 403 404 *tfm_entry = list_next_entry(*tfm_entry, list); 405 return (*tfm_entry)->tfm; 406 } 407 408 /** 409 * tipc_aead_init - Initiate TIPC AEAD 410 * @aead: returned new TIPC AEAD key handle pointer 411 * @ukey: pointer to user key data 412 * @mode: the key mode 413 * 414 * Allocate a (list of) new cipher transformation (TFM) with the specific user 415 * key data if valid. The number of the allocated TFMs can be set via the sysfs 416 * "net/tipc/max_tfms" first. 417 * Also, all the other AEAD data are also initialized. 418 * 419 * Return: 0 if the initiation is successful, otherwise: < 0 420 */ 421 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, 422 u8 mode) 423 { 424 struct tipc_tfm *tfm_entry, *head; 425 struct crypto_aead *tfm; 426 struct tipc_aead *tmp; 427 int keylen, err, cpu; 428 int tfm_cnt = 0; 429 430 if (unlikely(*aead)) 431 return -EEXIST; 432 433 /* Allocate a new AEAD */ 434 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC); 435 if (unlikely(!tmp)) 436 return -ENOMEM; 437 438 /* The key consists of two parts: [AES-KEY][SALT] */ 439 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; 440 441 /* Allocate per-cpu TFM entry pointer */ 442 tmp->tfm_entry = alloc_percpu(struct tipc_tfm *); 443 if (!tmp->tfm_entry) { 444 kfree_sensitive(tmp); 445 return -ENOMEM; 446 } 447 448 /* Make a list of TFMs with the user key data */ 449 do { 450 tfm = crypto_alloc_aead(ukey->alg_name, 0, 0); 451 if (IS_ERR(tfm)) { 452 err = PTR_ERR(tfm); 453 break; 454 } 455 456 if (unlikely(!tfm_cnt && 457 crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) { 458 crypto_free_aead(tfm); 459 err = -ENOTSUPP; 460 break; 461 } 462 463 err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE); 464 err |= crypto_aead_setkey(tfm, ukey->key, keylen); 465 if (unlikely(err)) { 466 crypto_free_aead(tfm); 467 break; 468 } 469 470 tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL); 471 if (unlikely(!tfm_entry)) { 472 crypto_free_aead(tfm); 473 err = -ENOMEM; 474 break; 475 } 476 INIT_LIST_HEAD(&tfm_entry->list); 477 tfm_entry->tfm = tfm; 478 479 /* First entry? */ 480 if (!tfm_cnt) { 481 head = tfm_entry; 482 for_each_possible_cpu(cpu) { 483 *per_cpu_ptr(tmp->tfm_entry, cpu) = head; 484 } 485 } else { 486 list_add_tail(&tfm_entry->list, &head->list); 487 } 488 489 } while (++tfm_cnt < sysctl_tipc_max_tfms); 490 491 /* Not any TFM is allocated? */ 492 if (!tfm_cnt) { 493 free_percpu(tmp->tfm_entry); 494 kfree_sensitive(tmp); 495 return err; 496 } 497 498 /* Copy some chars from the user key as a hint */ 499 memcpy(tmp->hint, ukey->key, TIPC_AEAD_HINT_LEN); 500 tmp->hint[TIPC_AEAD_HINT_LEN] = '\0'; 501 502 /* Initialize the other data */ 503 tmp->mode = mode; 504 tmp->cloned = NULL; 505 tmp->authsize = TIPC_AES_GCM_TAG_SIZE; 506 memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE); 507 atomic_set(&tmp->users, 0); 508 atomic64_set(&tmp->seqno, 0); 509 refcount_set(&tmp->refcnt, 1); 510 511 *aead = tmp; 512 return 0; 513 } 514 515 /** 516 * tipc_aead_clone - Clone a TIPC AEAD key 517 * @dst: dest key for the cloning 518 * @src: source key to clone from 519 * 520 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is 521 * common for the keys. 522 * A reference to the source is hold in the "cloned" pointer for the later 523 * freeing purposes. 524 * 525 * Note: this must be done in cluster-key mode only! 526 * Return: 0 in case of success, otherwise < 0 527 */ 528 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src) 529 { 530 struct tipc_aead *aead; 531 int cpu; 532 533 if (!src) 534 return -ENOKEY; 535 536 if (src->mode != CLUSTER_KEY) 537 return -EINVAL; 538 539 if (unlikely(*dst)) 540 return -EEXIST; 541 542 aead = kzalloc(sizeof(*aead), GFP_ATOMIC); 543 if (unlikely(!aead)) 544 return -ENOMEM; 545 546 aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC); 547 if (unlikely(!aead->tfm_entry)) { 548 kfree_sensitive(aead); 549 return -ENOMEM; 550 } 551 552 for_each_possible_cpu(cpu) { 553 *per_cpu_ptr(aead->tfm_entry, cpu) = 554 *per_cpu_ptr(src->tfm_entry, cpu); 555 } 556 557 memcpy(aead->hint, src->hint, sizeof(src->hint)); 558 aead->mode = src->mode; 559 aead->salt = src->salt; 560 aead->authsize = src->authsize; 561 atomic_set(&aead->users, 0); 562 atomic64_set(&aead->seqno, 0); 563 refcount_set(&aead->refcnt, 1); 564 565 WARN_ON(!refcount_inc_not_zero(&src->refcnt)); 566 aead->cloned = src; 567 568 *dst = aead; 569 return 0; 570 } 571 572 /** 573 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations 574 * @tfm: cipher handle to be registered with the request 575 * @crypto_ctx_size: size of crypto context for callback 576 * @iv: returned pointer to IV data 577 * @req: returned pointer to AEAD request data 578 * @sg: returned pointer to SG lists 579 * @nsg: number of SG lists to be allocated 580 * 581 * Allocate memory to store the crypto context data, AEAD request, IV and SG 582 * lists, the memory layout is as follows: 583 * crypto_ctx || iv || aead_req || sg[] 584 * 585 * Return: the pointer to the memory areas in case of success, otherwise NULL 586 */ 587 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, 588 unsigned int crypto_ctx_size, 589 u8 **iv, struct aead_request **req, 590 struct scatterlist **sg, int nsg) 591 { 592 unsigned int iv_size, req_size; 593 unsigned int len; 594 u8 *mem; 595 596 iv_size = crypto_aead_ivsize(tfm); 597 req_size = sizeof(**req) + crypto_aead_reqsize(tfm); 598 599 len = crypto_ctx_size; 600 len += iv_size; 601 len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1); 602 len = ALIGN(len, crypto_tfm_ctx_alignment()); 603 len += req_size; 604 len = ALIGN(len, __alignof__(struct scatterlist)); 605 len += nsg * sizeof(**sg); 606 607 mem = kmalloc(len, GFP_ATOMIC); 608 if (!mem) 609 return NULL; 610 611 *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size, 612 crypto_aead_alignmask(tfm) + 1); 613 *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size, 614 crypto_tfm_ctx_alignment()); 615 *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size, 616 __alignof__(struct scatterlist)); 617 618 return (void *)mem; 619 } 620 621 /** 622 * tipc_aead_encrypt - Encrypt a message 623 * @aead: TIPC AEAD key for the message encryption 624 * @skb: the input/output skb 625 * @b: TIPC bearer where the message will be delivered after the encryption 626 * @dst: the destination media address 627 * @__dnode: TIPC dest node if "known" 628 * 629 * Return: 630 * 0 : if the encryption has completed 631 * -EINPROGRESS/-EBUSY : if a callback will be performed 632 * < 0 : the encryption has failed 633 */ 634 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, 635 struct tipc_bearer *b, 636 struct tipc_media_addr *dst, 637 struct tipc_node *__dnode) 638 { 639 struct crypto_aead *tfm = tipc_aead_tfm_next(aead); 640 struct tipc_crypto_tx_ctx *tx_ctx; 641 struct aead_request *req; 642 struct sk_buff *trailer; 643 struct scatterlist *sg; 644 struct tipc_ehdr *ehdr; 645 int ehsz, len, tailen, nsg, rc; 646 void *ctx; 647 u32 salt; 648 u8 *iv; 649 650 /* Make sure message len at least 4-byte aligned */ 651 len = ALIGN(skb->len, 4); 652 tailen = len - skb->len + aead->authsize; 653 654 /* Expand skb tail for authentication tag: 655 * As for simplicity, we'd have made sure skb having enough tailroom 656 * for authentication tag @skb allocation. Even when skb is nonlinear 657 * but there is no frag_list, it should be still fine! 658 * Otherwise, we must cow it to be a writable buffer with the tailroom. 659 */ 660 #ifdef TIPC_CRYPTO_DEBUG 661 SKB_LINEAR_ASSERT(skb); 662 if (tailen > skb_tailroom(skb)) { 663 pr_warn("TX: skb tailroom is not enough: %d, requires: %d\n", 664 skb_tailroom(skb), tailen); 665 } 666 #endif 667 668 if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) { 669 nsg = 1; 670 trailer = skb; 671 } else { 672 /* TODO: We could avoid skb_cow_data() if skb has no frag_list 673 * e.g. by skb_fill_page_desc() to add another page to the skb 674 * with the wanted tailen... However, page skbs look not often, 675 * so take it easy now! 676 * Cloned skbs e.g. from link_xmit() seems no choice though :( 677 */ 678 nsg = skb_cow_data(skb, tailen, &trailer); 679 if (unlikely(nsg < 0)) { 680 pr_err("TX: skb_cow_data() returned %d\n", nsg); 681 return nsg; 682 } 683 } 684 685 pskb_put(skb, trailer, tailen); 686 687 /* Allocate memory for the AEAD operation */ 688 ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg); 689 if (unlikely(!ctx)) 690 return -ENOMEM; 691 TIPC_SKB_CB(skb)->crypto_ctx = ctx; 692 693 /* Map skb to the sg lists */ 694 sg_init_table(sg, nsg); 695 rc = skb_to_sgvec(skb, sg, 0, skb->len); 696 if (unlikely(rc < 0)) { 697 pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg); 698 goto exit; 699 } 700 701 /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)] 702 * In case we're in cluster-key mode, SALT is varied by xor-ing with 703 * the source address (or w0 of id), otherwise with the dest address 704 * if dest is known. 705 */ 706 ehdr = (struct tipc_ehdr *)skb->data; 707 salt = aead->salt; 708 if (aead->mode == CLUSTER_KEY) 709 salt ^= ehdr->addr; /* __be32 */ 710 else if (__dnode) 711 salt ^= tipc_node_get_addr(__dnode); 712 memcpy(iv, &salt, 4); 713 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); 714 715 /* Prepare request */ 716 ehsz = tipc_ehdr_size(ehdr); 717 aead_request_set_tfm(req, tfm); 718 aead_request_set_ad(req, ehsz); 719 aead_request_set_crypt(req, sg, sg, len - ehsz, iv); 720 721 /* Set callback function & data */ 722 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 723 tipc_aead_encrypt_done, skb); 724 tx_ctx = (struct tipc_crypto_tx_ctx *)ctx; 725 tx_ctx->aead = aead; 726 tx_ctx->bearer = b; 727 memcpy(&tx_ctx->dst, dst, sizeof(*dst)); 728 729 /* Hold bearer */ 730 if (unlikely(!tipc_bearer_hold(b))) { 731 rc = -ENODEV; 732 goto exit; 733 } 734 735 /* Now, do encrypt */ 736 rc = crypto_aead_encrypt(req); 737 if (rc == -EINPROGRESS || rc == -EBUSY) 738 return rc; 739 740 tipc_bearer_put(b); 741 742 exit: 743 kfree(ctx); 744 TIPC_SKB_CB(skb)->crypto_ctx = NULL; 745 return rc; 746 } 747 748 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err) 749 { 750 struct sk_buff *skb = base->data; 751 struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; 752 struct tipc_bearer *b = tx_ctx->bearer; 753 struct tipc_aead *aead = tx_ctx->aead; 754 struct tipc_crypto *tx = aead->crypto; 755 struct net *net = tx->net; 756 757 switch (err) { 758 case 0: 759 this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]); 760 rcu_read_lock(); 761 if (likely(test_bit(0, &b->up))) 762 b->media->send_msg(net, skb, b, &tx_ctx->dst); 763 else 764 kfree_skb(skb); 765 rcu_read_unlock(); 766 break; 767 case -EINPROGRESS: 768 return; 769 default: 770 this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]); 771 kfree_skb(skb); 772 break; 773 } 774 775 kfree(tx_ctx); 776 tipc_bearer_put(b); 777 tipc_aead_put(aead); 778 } 779 780 /** 781 * tipc_aead_decrypt - Decrypt an encrypted message 782 * @net: struct net 783 * @aead: TIPC AEAD for the message decryption 784 * @skb: the input/output skb 785 * @b: TIPC bearer where the message has been received 786 * 787 * Return: 788 * 0 : if the decryption has completed 789 * -EINPROGRESS/-EBUSY : if a callback will be performed 790 * < 0 : the decryption has failed 791 */ 792 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, 793 struct sk_buff *skb, struct tipc_bearer *b) 794 { 795 struct tipc_crypto_rx_ctx *rx_ctx; 796 struct aead_request *req; 797 struct crypto_aead *tfm; 798 struct sk_buff *unused; 799 struct scatterlist *sg; 800 struct tipc_ehdr *ehdr; 801 int ehsz, nsg, rc; 802 void *ctx; 803 u32 salt; 804 u8 *iv; 805 806 if (unlikely(!aead)) 807 return -ENOKEY; 808 809 /* Cow skb data if needed */ 810 if (likely(!skb_cloned(skb) && 811 (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) { 812 nsg = 1 + skb_shinfo(skb)->nr_frags; 813 } else { 814 nsg = skb_cow_data(skb, 0, &unused); 815 if (unlikely(nsg < 0)) { 816 pr_err("RX: skb_cow_data() returned %d\n", nsg); 817 return nsg; 818 } 819 } 820 821 /* Allocate memory for the AEAD operation */ 822 tfm = tipc_aead_tfm_next(aead); 823 ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg); 824 if (unlikely(!ctx)) 825 return -ENOMEM; 826 TIPC_SKB_CB(skb)->crypto_ctx = ctx; 827 828 /* Map skb to the sg lists */ 829 sg_init_table(sg, nsg); 830 rc = skb_to_sgvec(skb, sg, 0, skb->len); 831 if (unlikely(rc < 0)) { 832 pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg); 833 goto exit; 834 } 835 836 /* Reconstruct IV: */ 837 ehdr = (struct tipc_ehdr *)skb->data; 838 salt = aead->salt; 839 if (aead->mode == CLUSTER_KEY) 840 salt ^= ehdr->addr; /* __be32 */ 841 else if (ehdr->destined) 842 salt ^= tipc_own_addr(net); 843 memcpy(iv, &salt, 4); 844 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); 845 846 /* Prepare request */ 847 ehsz = tipc_ehdr_size(ehdr); 848 aead_request_set_tfm(req, tfm); 849 aead_request_set_ad(req, ehsz); 850 aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv); 851 852 /* Set callback function & data */ 853 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 854 tipc_aead_decrypt_done, skb); 855 rx_ctx = (struct tipc_crypto_rx_ctx *)ctx; 856 rx_ctx->aead = aead; 857 rx_ctx->bearer = b; 858 859 /* Hold bearer */ 860 if (unlikely(!tipc_bearer_hold(b))) { 861 rc = -ENODEV; 862 goto exit; 863 } 864 865 /* Now, do decrypt */ 866 rc = crypto_aead_decrypt(req); 867 if (rc == -EINPROGRESS || rc == -EBUSY) 868 return rc; 869 870 tipc_bearer_put(b); 871 872 exit: 873 kfree(ctx); 874 TIPC_SKB_CB(skb)->crypto_ctx = NULL; 875 return rc; 876 } 877 878 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err) 879 { 880 struct sk_buff *skb = base->data; 881 struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; 882 struct tipc_bearer *b = rx_ctx->bearer; 883 struct tipc_aead *aead = rx_ctx->aead; 884 struct tipc_crypto_stats __percpu *stats = aead->crypto->stats; 885 struct net *net = aead->crypto->net; 886 887 switch (err) { 888 case 0: 889 this_cpu_inc(stats->stat[STAT_ASYNC_OK]); 890 break; 891 case -EINPROGRESS: 892 return; 893 default: 894 this_cpu_inc(stats->stat[STAT_ASYNC_NOK]); 895 break; 896 } 897 898 kfree(rx_ctx); 899 tipc_crypto_rcv_complete(net, aead, b, &skb, err); 900 if (likely(skb)) { 901 if (likely(test_bit(0, &b->up))) 902 tipc_rcv(net, skb, b); 903 else 904 kfree_skb(skb); 905 } 906 907 tipc_bearer_put(b); 908 } 909 910 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr) 911 { 912 return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; 913 } 914 915 /** 916 * tipc_ehdr_validate - Validate an encryption message 917 * @skb: the message buffer 918 * 919 * Returns "true" if this is a valid encryption message, otherwise "false" 920 */ 921 bool tipc_ehdr_validate(struct sk_buff *skb) 922 { 923 struct tipc_ehdr *ehdr; 924 int ehsz; 925 926 if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE))) 927 return false; 928 929 ehdr = (struct tipc_ehdr *)skb->data; 930 if (unlikely(ehdr->version != TIPC_EVERSION)) 931 return false; 932 ehsz = tipc_ehdr_size(ehdr); 933 if (unlikely(!pskb_may_pull(skb, ehsz))) 934 return false; 935 if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE)) 936 return false; 937 if (unlikely(!ehdr->tx_key)) 938 return false; 939 940 return true; 941 } 942 943 /** 944 * tipc_ehdr_build - Build TIPC encryption message header 945 * @net: struct net 946 * @aead: TX AEAD key to be used for the message encryption 947 * @tx_key: key id used for the message encryption 948 * @skb: input/output message skb 949 * @__rx: RX crypto handle if dest is "known" 950 * 951 * Return: the header size if the building is successful, otherwise < 0 952 */ 953 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, 954 u8 tx_key, struct sk_buff *skb, 955 struct tipc_crypto *__rx) 956 { 957 struct tipc_msg *hdr = buf_msg(skb); 958 struct tipc_ehdr *ehdr; 959 u32 user = msg_user(hdr); 960 u64 seqno; 961 int ehsz; 962 963 /* Make room for encryption header */ 964 ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; 965 WARN_ON(skb_headroom(skb) < ehsz); 966 ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz); 967 968 /* Obtain a seqno first: 969 * Use the key seqno (= cluster wise) if dest is unknown or we're in 970 * cluster key mode, otherwise it's better for a per-peer seqno! 971 */ 972 if (!__rx || aead->mode == CLUSTER_KEY) 973 seqno = atomic64_inc_return(&aead->seqno); 974 else 975 seqno = atomic64_inc_return(&__rx->sndnxt); 976 977 /* Revoke the key if seqno is wrapped around */ 978 if (unlikely(!seqno)) 979 return tipc_crypto_key_revoke(net, tx_key); 980 981 /* Word 1-2 */ 982 ehdr->seqno = cpu_to_be64(seqno); 983 984 /* Words 0, 3- */ 985 ehdr->version = TIPC_EVERSION; 986 ehdr->user = 0; 987 ehdr->keepalive = 0; 988 ehdr->tx_key = tx_key; 989 ehdr->destined = (__rx) ? 1 : 0; 990 ehdr->rx_key_active = (__rx) ? __rx->key.active : 0; 991 ehdr->reserved_1 = 0; 992 ehdr->reserved_2 = 0; 993 994 switch (user) { 995 case LINK_CONFIG: 996 ehdr->user = LINK_CONFIG; 997 memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN); 998 break; 999 default: 1000 if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) { 1001 ehdr->user = LINK_PROTOCOL; 1002 ehdr->keepalive = msg_is_keepalive(hdr); 1003 } 1004 ehdr->addr = hdr->hdr[3]; 1005 break; 1006 } 1007 1008 return ehsz; 1009 } 1010 1011 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, 1012 u8 new_passive, 1013 u8 new_active, 1014 u8 new_pending) 1015 { 1016 #ifdef TIPC_CRYPTO_DEBUG 1017 struct tipc_key old = c->key; 1018 char buf[32]; 1019 #endif 1020 1021 c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) | 1022 ((new_active & KEY_MASK) << (KEY_BITS)) | 1023 ((new_pending & KEY_MASK)); 1024 1025 #ifdef TIPC_CRYPTO_DEBUG 1026 pr_info("%s(%s): key changing %s ::%pS\n", 1027 (c->node) ? "RX" : "TX", 1028 (c->node) ? tipc_node_get_id_str(c->node) : 1029 tipc_own_id_string(c->net), 1030 tipc_key_change_dump(old, c->key, buf), 1031 __builtin_return_address(0)); 1032 #endif 1033 } 1034 1035 /** 1036 * tipc_crypto_key_init - Initiate a new user / AEAD key 1037 * @c: TIPC crypto to which new key is attached 1038 * @ukey: the user key 1039 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY) 1040 * 1041 * A new TIPC AEAD key will be allocated and initiated with the specified user 1042 * key, then attached to the TIPC crypto. 1043 * 1044 * Return: new key id in case of success, otherwise: < 0 1045 */ 1046 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey, 1047 u8 mode) 1048 { 1049 struct tipc_aead *aead = NULL; 1050 int rc = 0; 1051 1052 /* Initiate with the new user key */ 1053 rc = tipc_aead_init(&aead, ukey, mode); 1054 1055 /* Attach it to the crypto */ 1056 if (likely(!rc)) { 1057 rc = tipc_crypto_key_attach(c, aead, 0); 1058 if (rc < 0) 1059 tipc_aead_free(&aead->rcu); 1060 } 1061 1062 pr_info("%s(%s): key initiating, rc %d!\n", 1063 (c->node) ? "RX" : "TX", 1064 (c->node) ? tipc_node_get_id_str(c->node) : 1065 tipc_own_id_string(c->net), 1066 rc); 1067 1068 return rc; 1069 } 1070 1071 /** 1072 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto 1073 * @c: TIPC crypto to which the new AEAD key is attached 1074 * @aead: the new AEAD key pointer 1075 * @pos: desired slot in the crypto key array, = 0 if any! 1076 * 1077 * Return: new key id in case of success, otherwise: -EBUSY 1078 */ 1079 static int tipc_crypto_key_attach(struct tipc_crypto *c, 1080 struct tipc_aead *aead, u8 pos) 1081 { 1082 u8 new_pending, new_passive, new_key; 1083 struct tipc_key key; 1084 int rc = -EBUSY; 1085 1086 spin_lock_bh(&c->lock); 1087 key = c->key; 1088 if (key.active && key.passive) 1089 goto exit; 1090 if (key.passive && !tipc_aead_users(c->aead[key.passive])) 1091 goto exit; 1092 if (key.pending) { 1093 if (pos) 1094 goto exit; 1095 if (tipc_aead_users(c->aead[key.pending]) > 0) 1096 goto exit; 1097 /* Replace it */ 1098 new_pending = key.pending; 1099 new_passive = key.passive; 1100 new_key = new_pending; 1101 } else { 1102 if (pos) { 1103 if (key.active && pos != key_next(key.active)) { 1104 new_pending = key.pending; 1105 new_passive = pos; 1106 new_key = new_passive; 1107 goto attach; 1108 } else if (!key.active && !key.passive) { 1109 new_pending = pos; 1110 new_passive = key.passive; 1111 new_key = new_pending; 1112 goto attach; 1113 } 1114 } 1115 new_pending = key_next(key.active ?: key.passive); 1116 new_passive = key.passive; 1117 new_key = new_pending; 1118 } 1119 1120 attach: 1121 aead->crypto = c; 1122 tipc_crypto_key_set_state(c, new_passive, key.active, new_pending); 1123 tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock); 1124 1125 c->working = 1; 1126 c->timer1 = jiffies; 1127 c->timer2 = jiffies; 1128 rc = new_key; 1129 1130 exit: 1131 spin_unlock_bh(&c->lock); 1132 return rc; 1133 } 1134 1135 void tipc_crypto_key_flush(struct tipc_crypto *c) 1136 { 1137 int k; 1138 1139 spin_lock_bh(&c->lock); 1140 c->working = 0; 1141 tipc_crypto_key_set_state(c, 0, 0, 0); 1142 for (k = KEY_MIN; k <= KEY_MAX; k++) 1143 tipc_crypto_key_detach(c->aead[k], &c->lock); 1144 atomic_set(&c->peer_rx_active, 0); 1145 atomic64_set(&c->sndnxt, 0); 1146 spin_unlock_bh(&c->lock); 1147 } 1148 1149 /** 1150 * tipc_crypto_key_try_align - Align RX keys if possible 1151 * @rx: RX crypto handle 1152 * @new_pending: new pending slot if aligned (= TX key from peer) 1153 * 1154 * Peer has used an unknown key slot, this only happens when peer has left and 1155 * rejoned, or we are newcomer. 1156 * That means, there must be no active key but a pending key at unaligned slot. 1157 * If so, we try to move the pending key to the new slot. 1158 * Note: A potential passive key can exist, it will be shifted correspondingly! 1159 * 1160 * Return: "true" if key is successfully aligned, otherwise "false" 1161 */ 1162 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending) 1163 { 1164 struct tipc_aead *tmp1, *tmp2 = NULL; 1165 struct tipc_key key; 1166 bool aligned = false; 1167 u8 new_passive = 0; 1168 int x; 1169 1170 spin_lock(&rx->lock); 1171 key = rx->key; 1172 if (key.pending == new_pending) { 1173 aligned = true; 1174 goto exit; 1175 } 1176 if (key.active) 1177 goto exit; 1178 if (!key.pending) 1179 goto exit; 1180 if (tipc_aead_users(rx->aead[key.pending]) > 0) 1181 goto exit; 1182 1183 /* Try to "isolate" this pending key first */ 1184 tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock); 1185 if (!refcount_dec_if_one(&tmp1->refcnt)) 1186 goto exit; 1187 rcu_assign_pointer(rx->aead[key.pending], NULL); 1188 1189 /* Move passive key if any */ 1190 if (key.passive) { 1191 tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock)); 1192 x = (key.passive - key.pending + new_pending) % KEY_MAX; 1193 new_passive = (x <= 0) ? x + KEY_MAX : x; 1194 } 1195 1196 /* Re-allocate the key(s) */ 1197 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending); 1198 rcu_assign_pointer(rx->aead[new_pending], tmp1); 1199 if (new_passive) 1200 rcu_assign_pointer(rx->aead[new_passive], tmp2); 1201 refcount_set(&tmp1->refcnt, 1); 1202 aligned = true; 1203 pr_info("RX(%s): key is aligned!\n", tipc_node_get_id_str(rx->node)); 1204 1205 exit: 1206 spin_unlock(&rx->lock); 1207 return aligned; 1208 } 1209 1210 /** 1211 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption 1212 * @tx: TX crypto handle 1213 * @rx: RX crypto handle (can be NULL) 1214 * @skb: the message skb which will be decrypted later 1215 * 1216 * This function looks up the existing TX keys and pick one which is suitable 1217 * for the message decryption, that must be a cluster key and not used before 1218 * on the same message (i.e. recursive). 1219 * 1220 * Return: the TX AEAD key handle in case of success, otherwise NULL 1221 */ 1222 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, 1223 struct tipc_crypto *rx, 1224 struct sk_buff *skb) 1225 { 1226 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb); 1227 struct tipc_aead *aead = NULL; 1228 struct tipc_key key = tx->key; 1229 u8 k, i = 0; 1230 1231 /* Initialize data if not yet */ 1232 if (!skb_cb->tx_clone_deferred) { 1233 skb_cb->tx_clone_deferred = 1; 1234 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); 1235 } 1236 1237 skb_cb->tx_clone_ctx.rx = rx; 1238 if (++skb_cb->tx_clone_ctx.recurs > 2) 1239 return NULL; 1240 1241 /* Pick one TX key */ 1242 spin_lock(&tx->lock); 1243 do { 1244 k = (i == 0) ? key.pending : 1245 ((i == 1) ? key.active : key.passive); 1246 if (!k) 1247 continue; 1248 aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock); 1249 if (!aead) 1250 continue; 1251 if (aead->mode != CLUSTER_KEY || 1252 aead == skb_cb->tx_clone_ctx.last) { 1253 aead = NULL; 1254 continue; 1255 } 1256 /* Ok, found one cluster key */ 1257 skb_cb->tx_clone_ctx.last = aead; 1258 WARN_ON(skb->next); 1259 skb->next = skb_clone(skb, GFP_ATOMIC); 1260 if (unlikely(!skb->next)) 1261 pr_warn("Failed to clone skb for next round if any\n"); 1262 WARN_ON(!refcount_inc_not_zero(&aead->refcnt)); 1263 break; 1264 } while (++i < 3); 1265 spin_unlock(&tx->lock); 1266 1267 return aead; 1268 } 1269 1270 /** 1271 * tipc_crypto_key_synch: Synch own key data according to peer key status 1272 * @rx: RX crypto handle 1273 * @new_rx_active: latest RX active key from peer 1274 * @hdr: TIPCv2 message 1275 * 1276 * This function updates the peer node related data as the peer RX active key 1277 * has changed, so the number of TX keys' users on this node are increased and 1278 * decreased correspondingly. 1279 * 1280 * The "per-peer" sndnxt is also reset when the peer key has switched. 1281 */ 1282 static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active, 1283 struct tipc_msg *hdr) 1284 { 1285 struct net *net = rx->net; 1286 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1287 u8 cur_rx_active; 1288 1289 /* TX might be even not ready yet */ 1290 if (unlikely(!tx->key.active && !tx->key.pending)) 1291 return; 1292 1293 cur_rx_active = atomic_read(&rx->peer_rx_active); 1294 if (likely(cur_rx_active == new_rx_active)) 1295 return; 1296 1297 /* Make sure this message destined for this node */ 1298 if (unlikely(msg_short(hdr) || 1299 msg_destnode(hdr) != tipc_own_addr(net))) 1300 return; 1301 1302 /* Peer RX active key has changed, try to update owns' & TX users */ 1303 if (atomic_cmpxchg(&rx->peer_rx_active, 1304 cur_rx_active, 1305 new_rx_active) == cur_rx_active) { 1306 if (new_rx_active) 1307 tipc_aead_users_inc(tx->aead[new_rx_active], INT_MAX); 1308 if (cur_rx_active) 1309 tipc_aead_users_dec(tx->aead[cur_rx_active], 0); 1310 1311 atomic64_set(&rx->sndnxt, 0); 1312 /* Mark the point TX key users changed */ 1313 tx->timer1 = jiffies; 1314 1315 #ifdef TIPC_CRYPTO_DEBUG 1316 pr_info("TX(%s): key users changed %d-- %d++, peer RX(%s)\n", 1317 tipc_own_id_string(net), cur_rx_active, 1318 new_rx_active, tipc_node_get_id_str(rx->node)); 1319 #endif 1320 } 1321 } 1322 1323 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key) 1324 { 1325 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1326 struct tipc_key key; 1327 1328 spin_lock(&tx->lock); 1329 key = tx->key; 1330 WARN_ON(!key.active || tx_key != key.active); 1331 1332 /* Free the active key */ 1333 tipc_crypto_key_set_state(tx, key.passive, 0, key.pending); 1334 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); 1335 spin_unlock(&tx->lock); 1336 1337 pr_warn("TX(%s): key is revoked!\n", tipc_own_id_string(net)); 1338 return -EKEYREVOKED; 1339 } 1340 1341 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net, 1342 struct tipc_node *node) 1343 { 1344 struct tipc_crypto *c; 1345 1346 if (*crypto) 1347 return -EEXIST; 1348 1349 /* Allocate crypto */ 1350 c = kzalloc(sizeof(*c), GFP_ATOMIC); 1351 if (!c) 1352 return -ENOMEM; 1353 1354 /* Allocate statistic structure */ 1355 c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC); 1356 if (!c->stats) { 1357 kfree_sensitive(c); 1358 return -ENOMEM; 1359 } 1360 1361 c->working = 0; 1362 c->net = net; 1363 c->node = node; 1364 tipc_crypto_key_set_state(c, 0, 0, 0); 1365 atomic_set(&c->peer_rx_active, 0); 1366 atomic64_set(&c->sndnxt, 0); 1367 c->timer1 = jiffies; 1368 c->timer2 = jiffies; 1369 spin_lock_init(&c->lock); 1370 *crypto = c; 1371 1372 return 0; 1373 } 1374 1375 void tipc_crypto_stop(struct tipc_crypto **crypto) 1376 { 1377 struct tipc_crypto *c, *tx, *rx; 1378 bool is_rx; 1379 u8 k; 1380 1381 if (!*crypto) 1382 return; 1383 1384 rcu_read_lock(); 1385 /* RX stopping? => decrease TX key users if any */ 1386 is_rx = !!((*crypto)->node); 1387 if (is_rx) { 1388 rx = *crypto; 1389 tx = tipc_net(rx->net)->crypto_tx; 1390 k = atomic_read(&rx->peer_rx_active); 1391 if (k) { 1392 tipc_aead_users_dec(tx->aead[k], 0); 1393 /* Mark the point TX key users changed */ 1394 tx->timer1 = jiffies; 1395 } 1396 } 1397 1398 /* Release AEAD keys */ 1399 c = *crypto; 1400 for (k = KEY_MIN; k <= KEY_MAX; k++) 1401 tipc_aead_put(rcu_dereference(c->aead[k])); 1402 rcu_read_unlock(); 1403 1404 pr_warn("%s(%s) has been purged, node left!\n", 1405 (is_rx) ? "RX" : "TX", 1406 (is_rx) ? tipc_node_get_id_str((*crypto)->node) : 1407 tipc_own_id_string((*crypto)->net)); 1408 1409 /* Free this crypto statistics */ 1410 free_percpu(c->stats); 1411 1412 *crypto = NULL; 1413 kfree_sensitive(c); 1414 } 1415 1416 void tipc_crypto_timeout(struct tipc_crypto *rx) 1417 { 1418 struct tipc_net *tn = tipc_net(rx->net); 1419 struct tipc_crypto *tx = tn->crypto_tx; 1420 struct tipc_key key; 1421 u8 new_pending, new_passive; 1422 int cmd; 1423 1424 /* TX key activating: 1425 * The pending key (users > 0) -> active 1426 * The active key if any (users == 0) -> free 1427 */ 1428 spin_lock(&tx->lock); 1429 key = tx->key; 1430 if (key.active && tipc_aead_users(tx->aead[key.active]) > 0) 1431 goto s1; 1432 if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0) 1433 goto s1; 1434 if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_LIM)) 1435 goto s1; 1436 1437 tipc_crypto_key_set_state(tx, key.passive, key.pending, 0); 1438 if (key.active) 1439 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); 1440 this_cpu_inc(tx->stats->stat[STAT_SWITCHES]); 1441 pr_info("TX(%s): key %d is activated!\n", tipc_own_id_string(tx->net), 1442 key.pending); 1443 1444 s1: 1445 spin_unlock(&tx->lock); 1446 1447 /* RX key activating: 1448 * The pending key (users > 0) -> active 1449 * The active key if any -> passive, freed later 1450 */ 1451 spin_lock(&rx->lock); 1452 key = rx->key; 1453 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0) 1454 goto s2; 1455 1456 new_pending = (key.passive && 1457 !tipc_aead_users(rx->aead[key.passive])) ? 1458 key.passive : 0; 1459 new_passive = (key.active) ?: ((new_pending) ? 0 : key.passive); 1460 tipc_crypto_key_set_state(rx, new_passive, key.pending, new_pending); 1461 this_cpu_inc(rx->stats->stat[STAT_SWITCHES]); 1462 pr_info("RX(%s): key %d is activated!\n", 1463 tipc_node_get_id_str(rx->node), key.pending); 1464 goto s5; 1465 1466 s2: 1467 /* RX key "faulty" switching: 1468 * The faulty pending key (users < -30) -> passive 1469 * The passive key (users = 0) -> pending 1470 * Note: This only happens after RX deactivated - s3! 1471 */ 1472 key = rx->key; 1473 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -30) 1474 goto s3; 1475 if (!key.passive || tipc_aead_users(rx->aead[key.passive]) != 0) 1476 goto s3; 1477 1478 new_pending = key.passive; 1479 new_passive = key.pending; 1480 tipc_crypto_key_set_state(rx, new_passive, key.active, new_pending); 1481 goto s5; 1482 1483 s3: 1484 /* RX key deactivating: 1485 * The passive key if any -> pending 1486 * The active key -> passive (users = 0) / pending 1487 * The pending key if any -> passive (users = 0) 1488 */ 1489 key = rx->key; 1490 if (!key.active) 1491 goto s4; 1492 if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM)) 1493 goto s4; 1494 1495 new_pending = (key.passive) ?: key.active; 1496 new_passive = (key.passive) ? key.active : key.pending; 1497 tipc_aead_users_set(rx->aead[new_pending], 0); 1498 if (new_passive) 1499 tipc_aead_users_set(rx->aead[new_passive], 0); 1500 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending); 1501 pr_info("RX(%s): key %d is deactivated!\n", 1502 tipc_node_get_id_str(rx->node), key.active); 1503 goto s5; 1504 1505 s4: 1506 /* RX key passive -> freed: */ 1507 key = rx->key; 1508 if (!key.passive || !tipc_aead_users(rx->aead[key.passive])) 1509 goto s5; 1510 if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM)) 1511 goto s5; 1512 1513 tipc_crypto_key_set_state(rx, 0, key.active, key.pending); 1514 tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock); 1515 pr_info("RX(%s): key %d is freed!\n", tipc_node_get_id_str(rx->node), 1516 key.passive); 1517 1518 s5: 1519 spin_unlock(&rx->lock); 1520 1521 /* Limit max_tfms & do debug commands if needed */ 1522 if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM)) 1523 return; 1524 1525 cmd = sysctl_tipc_max_tfms; 1526 sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF; 1527 tipc_crypto_do_cmd(rx->net, cmd); 1528 } 1529 1530 /** 1531 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit 1532 * @net: struct net 1533 * @skb: input/output message skb pointer 1534 * @b: bearer used for xmit later 1535 * @dst: destination media address 1536 * @__dnode: destination node for reference if any 1537 * 1538 * First, build an encryption message header on the top of the message, then 1539 * encrypt the original TIPC message by using the active or pending TX key. 1540 * If the encryption is successful, the encrypted skb is returned directly or 1541 * via the callback. 1542 * Otherwise, the skb is freed! 1543 * 1544 * Return: 1545 * 0 : the encryption has succeeded (or no encryption) 1546 * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made 1547 * -ENOKEK : the encryption has failed due to no key 1548 * -EKEYREVOKED : the encryption has failed due to key revoked 1549 * -ENOMEM : the encryption has failed due to no memory 1550 * < 0 : the encryption has failed due to other reasons 1551 */ 1552 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb, 1553 struct tipc_bearer *b, struct tipc_media_addr *dst, 1554 struct tipc_node *__dnode) 1555 { 1556 struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode); 1557 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1558 struct tipc_crypto_stats __percpu *stats = tx->stats; 1559 struct tipc_key key = tx->key; 1560 struct tipc_aead *aead = NULL; 1561 struct sk_buff *probe; 1562 int rc = -ENOKEY; 1563 u8 tx_key; 1564 1565 /* No encryption? */ 1566 if (!tx->working) 1567 return 0; 1568 1569 /* Try with the pending key if available and: 1570 * 1) This is the only choice (i.e. no active key) or; 1571 * 2) Peer has switched to this key (unicast only) or; 1572 * 3) It is time to do a pending key probe; 1573 */ 1574 if (unlikely(key.pending)) { 1575 tx_key = key.pending; 1576 if (!key.active) 1577 goto encrypt; 1578 if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key) 1579 goto encrypt; 1580 if (TIPC_SKB_CB(*skb)->probe) 1581 goto encrypt; 1582 if (!__rx && 1583 time_after(jiffies, tx->timer2 + TIPC_TX_PROBE_LIM)) { 1584 tx->timer2 = jiffies; 1585 probe = skb_clone(*skb, GFP_ATOMIC); 1586 if (probe) { 1587 TIPC_SKB_CB(probe)->probe = 1; 1588 tipc_crypto_xmit(net, &probe, b, dst, __dnode); 1589 if (probe) 1590 b->media->send_msg(net, probe, b, dst); 1591 } 1592 } 1593 } 1594 /* Else, use the active key if any */ 1595 if (likely(key.active)) { 1596 tx_key = key.active; 1597 goto encrypt; 1598 } 1599 goto exit; 1600 1601 encrypt: 1602 aead = tipc_aead_get(tx->aead[tx_key]); 1603 if (unlikely(!aead)) 1604 goto exit; 1605 rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx); 1606 if (likely(rc > 0)) 1607 rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode); 1608 1609 exit: 1610 switch (rc) { 1611 case 0: 1612 this_cpu_inc(stats->stat[STAT_OK]); 1613 break; 1614 case -EINPROGRESS: 1615 case -EBUSY: 1616 this_cpu_inc(stats->stat[STAT_ASYNC]); 1617 *skb = NULL; 1618 return rc; 1619 default: 1620 this_cpu_inc(stats->stat[STAT_NOK]); 1621 if (rc == -ENOKEY) 1622 this_cpu_inc(stats->stat[STAT_NOKEYS]); 1623 else if (rc == -EKEYREVOKED) 1624 this_cpu_inc(stats->stat[STAT_BADKEYS]); 1625 kfree_skb(*skb); 1626 *skb = NULL; 1627 break; 1628 } 1629 1630 tipc_aead_put(aead); 1631 return rc; 1632 } 1633 1634 /** 1635 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer 1636 * @net: struct net 1637 * @rx: RX crypto handle 1638 * @skb: input/output message skb pointer 1639 * @b: bearer where the message has been received 1640 * 1641 * If the decryption is successful, the decrypted skb is returned directly or 1642 * as the callback, the encryption header and auth tag will be trimed out 1643 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete(). 1644 * Otherwise, the skb will be freed! 1645 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX 1646 * cluster key(s) can be taken for decryption (- recursive). 1647 * 1648 * Return: 1649 * 0 : the decryption has successfully completed 1650 * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made 1651 * -ENOKEY : the decryption has failed due to no key 1652 * -EBADMSG : the decryption has failed due to bad message 1653 * -ENOMEM : the decryption has failed due to no memory 1654 * < 0 : the decryption has failed due to other reasons 1655 */ 1656 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx, 1657 struct sk_buff **skb, struct tipc_bearer *b) 1658 { 1659 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1660 struct tipc_crypto_stats __percpu *stats; 1661 struct tipc_aead *aead = NULL; 1662 struct tipc_key key; 1663 int rc = -ENOKEY; 1664 u8 tx_key = 0; 1665 1666 /* New peer? 1667 * Let's try with TX key (i.e. cluster mode) & verify the skb first! 1668 */ 1669 if (unlikely(!rx)) 1670 goto pick_tx; 1671 1672 /* Pick RX key according to TX key, three cases are possible: 1673 * 1) The current active key (likely) or; 1674 * 2) The pending (new or deactivated) key (if any) or; 1675 * 3) The passive or old active key (i.e. users > 0); 1676 */ 1677 tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key; 1678 key = rx->key; 1679 if (likely(tx_key == key.active)) 1680 goto decrypt; 1681 if (tx_key == key.pending) 1682 goto decrypt; 1683 if (tx_key == key.passive) { 1684 rx->timer2 = jiffies; 1685 if (tipc_aead_users(rx->aead[key.passive]) > 0) 1686 goto decrypt; 1687 } 1688 1689 /* Unknown key, let's try to align RX key(s) */ 1690 if (tipc_crypto_key_try_align(rx, tx_key)) 1691 goto decrypt; 1692 1693 pick_tx: 1694 /* No key suitable? Try to pick one from TX... */ 1695 aead = tipc_crypto_key_pick_tx(tx, rx, *skb); 1696 if (aead) 1697 goto decrypt; 1698 goto exit; 1699 1700 decrypt: 1701 rcu_read_lock(); 1702 if (!aead) 1703 aead = tipc_aead_get(rx->aead[tx_key]); 1704 rc = tipc_aead_decrypt(net, aead, *skb, b); 1705 rcu_read_unlock(); 1706 1707 exit: 1708 stats = ((rx) ?: tx)->stats; 1709 switch (rc) { 1710 case 0: 1711 this_cpu_inc(stats->stat[STAT_OK]); 1712 break; 1713 case -EINPROGRESS: 1714 case -EBUSY: 1715 this_cpu_inc(stats->stat[STAT_ASYNC]); 1716 *skb = NULL; 1717 return rc; 1718 default: 1719 this_cpu_inc(stats->stat[STAT_NOK]); 1720 if (rc == -ENOKEY) { 1721 kfree_skb(*skb); 1722 *skb = NULL; 1723 if (rx) 1724 tipc_node_put(rx->node); 1725 this_cpu_inc(stats->stat[STAT_NOKEYS]); 1726 return rc; 1727 } else if (rc == -EBADMSG) { 1728 this_cpu_inc(stats->stat[STAT_BADMSGS]); 1729 } 1730 break; 1731 } 1732 1733 tipc_crypto_rcv_complete(net, aead, b, skb, rc); 1734 return rc; 1735 } 1736 1737 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, 1738 struct tipc_bearer *b, 1739 struct sk_buff **skb, int err) 1740 { 1741 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb); 1742 struct tipc_crypto *rx = aead->crypto; 1743 struct tipc_aead *tmp = NULL; 1744 struct tipc_ehdr *ehdr; 1745 struct tipc_node *n; 1746 u8 rx_key_active; 1747 bool destined; 1748 1749 /* Is this completed by TX? */ 1750 if (unlikely(!rx->node)) { 1751 rx = skb_cb->tx_clone_ctx.rx; 1752 #ifdef TIPC_CRYPTO_DEBUG 1753 pr_info("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n", 1754 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead, 1755 (*skb)->next, skb_cb->flags); 1756 pr_info("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n", 1757 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last, 1758 aead->crypto->aead[1], aead->crypto->aead[2], 1759 aead->crypto->aead[3]); 1760 #endif 1761 if (unlikely(err)) { 1762 if (err == -EBADMSG && (*skb)->next) 1763 tipc_rcv(net, (*skb)->next, b); 1764 goto free_skb; 1765 } 1766 1767 if (likely((*skb)->next)) { 1768 kfree_skb((*skb)->next); 1769 (*skb)->next = NULL; 1770 } 1771 ehdr = (struct tipc_ehdr *)(*skb)->data; 1772 if (!rx) { 1773 WARN_ON(ehdr->user != LINK_CONFIG); 1774 n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0, 1775 true); 1776 rx = tipc_node_crypto_rx(n); 1777 if (unlikely(!rx)) 1778 goto free_skb; 1779 } 1780 1781 /* Skip cloning this time as we had a RX pending key */ 1782 if (rx->key.pending) 1783 goto rcv; 1784 if (tipc_aead_clone(&tmp, aead) < 0) 1785 goto rcv; 1786 if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key) < 0) { 1787 tipc_aead_free(&tmp->rcu); 1788 goto rcv; 1789 } 1790 tipc_aead_put(aead); 1791 aead = tipc_aead_get(tmp); 1792 } 1793 1794 if (unlikely(err)) { 1795 tipc_aead_users_dec(aead, INT_MIN); 1796 goto free_skb; 1797 } 1798 1799 /* Set the RX key's user */ 1800 tipc_aead_users_set(aead, 1); 1801 1802 rcv: 1803 /* Mark this point, RX works */ 1804 rx->timer1 = jiffies; 1805 1806 /* Remove ehdr & auth. tag prior to tipc_rcv() */ 1807 ehdr = (struct tipc_ehdr *)(*skb)->data; 1808 destined = ehdr->destined; 1809 rx_key_active = ehdr->rx_key_active; 1810 skb_pull(*skb, tipc_ehdr_size(ehdr)); 1811 pskb_trim(*skb, (*skb)->len - aead->authsize); 1812 1813 /* Validate TIPCv2 message */ 1814 if (unlikely(!tipc_msg_validate(skb))) { 1815 pr_err_ratelimited("Packet dropped after decryption!\n"); 1816 goto free_skb; 1817 } 1818 1819 /* Update peer RX active key & TX users */ 1820 if (destined) 1821 tipc_crypto_key_synch(rx, rx_key_active, buf_msg(*skb)); 1822 1823 /* Mark skb decrypted */ 1824 skb_cb->decrypted = 1; 1825 1826 /* Clear clone cxt if any */ 1827 if (likely(!skb_cb->tx_clone_deferred)) 1828 goto exit; 1829 skb_cb->tx_clone_deferred = 0; 1830 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); 1831 goto exit; 1832 1833 free_skb: 1834 kfree_skb(*skb); 1835 *skb = NULL; 1836 1837 exit: 1838 tipc_aead_put(aead); 1839 if (rx) 1840 tipc_node_put(rx->node); 1841 } 1842 1843 static void tipc_crypto_do_cmd(struct net *net, int cmd) 1844 { 1845 struct tipc_net *tn = tipc_net(net); 1846 struct tipc_crypto *tx = tn->crypto_tx, *rx; 1847 struct list_head *p; 1848 unsigned int stat; 1849 int i, j, cpu; 1850 char buf[200]; 1851 1852 /* Currently only one command is supported */ 1853 switch (cmd) { 1854 case 0xfff1: 1855 goto print_stats; 1856 default: 1857 return; 1858 } 1859 1860 print_stats: 1861 /* Print a header */ 1862 pr_info("\n=============== TIPC Crypto Statistics ===============\n\n"); 1863 1864 /* Print key status */ 1865 pr_info("Key status:\n"); 1866 pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net), 1867 tipc_crypto_key_dump(tx, buf)); 1868 1869 rcu_read_lock(); 1870 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { 1871 rx = tipc_node_crypto_rx_by_list(p); 1872 pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node), 1873 tipc_crypto_key_dump(rx, buf)); 1874 } 1875 rcu_read_unlock(); 1876 1877 /* Print crypto statistics */ 1878 for (i = 0, j = 0; i < MAX_STATS; i++) 1879 j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]); 1880 pr_info("\nCounter %s", buf); 1881 1882 memset(buf, '-', 115); 1883 buf[115] = '\0'; 1884 pr_info("%s\n", buf); 1885 1886 j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net)); 1887 for_each_possible_cpu(cpu) { 1888 for (i = 0; i < MAX_STATS; i++) { 1889 stat = per_cpu_ptr(tx->stats, cpu)->stat[i]; 1890 j += scnprintf(buf + j, 200 - j, "|%11d ", stat); 1891 } 1892 pr_info("%s", buf); 1893 j = scnprintf(buf, 200, "%12s", " "); 1894 } 1895 1896 rcu_read_lock(); 1897 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { 1898 rx = tipc_node_crypto_rx_by_list(p); 1899 j = scnprintf(buf, 200, "RX(%7.7s) ", 1900 tipc_node_get_id_str(rx->node)); 1901 for_each_possible_cpu(cpu) { 1902 for (i = 0; i < MAX_STATS; i++) { 1903 stat = per_cpu_ptr(rx->stats, cpu)->stat[i]; 1904 j += scnprintf(buf + j, 200 - j, "|%11d ", 1905 stat); 1906 } 1907 pr_info("%s", buf); 1908 j = scnprintf(buf, 200, "%12s", " "); 1909 } 1910 } 1911 rcu_read_unlock(); 1912 1913 pr_info("\n======================== Done ========================\n"); 1914 } 1915 1916 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf) 1917 { 1918 struct tipc_key key = c->key; 1919 struct tipc_aead *aead; 1920 int k, i = 0; 1921 char *s; 1922 1923 for (k = KEY_MIN; k <= KEY_MAX; k++) { 1924 if (k == key.passive) 1925 s = "PAS"; 1926 else if (k == key.active) 1927 s = "ACT"; 1928 else if (k == key.pending) 1929 s = "PEN"; 1930 else 1931 s = "-"; 1932 i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s); 1933 1934 rcu_read_lock(); 1935 aead = rcu_dereference(c->aead[k]); 1936 if (aead) 1937 i += scnprintf(buf + i, 200 - i, 1938 "{\"%s...\", \"%s\"}/%d:%d", 1939 aead->hint, 1940 (aead->mode == CLUSTER_KEY) ? "c" : "p", 1941 atomic_read(&aead->users), 1942 refcount_read(&aead->refcnt)); 1943 rcu_read_unlock(); 1944 i += scnprintf(buf + i, 200 - i, "\n"); 1945 } 1946 1947 if (c->node) 1948 i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n", 1949 atomic_read(&c->peer_rx_active)); 1950 1951 return buf; 1952 } 1953 1954 #ifdef TIPC_CRYPTO_DEBUG 1955 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, 1956 char *buf) 1957 { 1958 struct tipc_key *key = &old; 1959 int k, i = 0; 1960 char *s; 1961 1962 /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */ 1963 again: 1964 i += scnprintf(buf + i, 32 - i, "["); 1965 for (k = KEY_MIN; k <= KEY_MAX; k++) { 1966 if (k == key->passive) 1967 s = "pas"; 1968 else if (k == key->active) 1969 s = "act"; 1970 else if (k == key->pending) 1971 s = "pen"; 1972 else 1973 s = "-"; 1974 i += scnprintf(buf + i, 32 - i, 1975 (k != KEY_MAX) ? "%s " : "%s", s); 1976 } 1977 if (key != &new) { 1978 i += scnprintf(buf + i, 32 - i, "] -> "); 1979 key = &new; 1980 goto again; 1981 } 1982 i += scnprintf(buf + i, 32 - i, "]"); 1983 return buf; 1984 } 1985 #endif 1986