xref: /linux/net/tipc/crypto.c (revision 43bb48c38e817b5f89fce340f49436a605e47e66)
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3  * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
4  *
5  * Copyright (c) 2019, Ericsson AB
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the names of the copyright holders nor the names of its
17  *    contributors may be used to endorse or promote products derived from
18  *    this software without specific prior written permission.
19  *
20  * Alternatively, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") version 2 as published by the Free
22  * Software Foundation.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
28  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include <crypto/aead.h>
38 #include <crypto/aes.h>
39 #include <crypto/rng.h>
40 #include "crypto.h"
41 #include "msg.h"
42 #include "bcast.h"
43 
44 #define TIPC_TX_GRACE_PERIOD	msecs_to_jiffies(5000) /* 5s */
45 #define TIPC_TX_LASTING_TIME	msecs_to_jiffies(10000) /* 10s */
46 #define TIPC_RX_ACTIVE_LIM	msecs_to_jiffies(3000) /* 3s */
47 #define TIPC_RX_PASSIVE_LIM	msecs_to_jiffies(15000) /* 15s */
48 
49 #define TIPC_MAX_TFMS_DEF	10
50 #define TIPC_MAX_TFMS_LIM	1000
51 
52 #define TIPC_REKEYING_INTV_DEF	(60 * 24) /* default: 1 day */
53 
54 /**
55  * TIPC Key ids
56  */
57 enum {
58 	KEY_MASTER = 0,
59 	KEY_MIN = KEY_MASTER,
60 	KEY_1 = 1,
61 	KEY_2,
62 	KEY_3,
63 	KEY_MAX = KEY_3,
64 };
65 
66 /**
67  * TIPC Crypto statistics
68  */
69 enum {
70 	STAT_OK,
71 	STAT_NOK,
72 	STAT_ASYNC,
73 	STAT_ASYNC_OK,
74 	STAT_ASYNC_NOK,
75 	STAT_BADKEYS, /* tx only */
76 	STAT_BADMSGS = STAT_BADKEYS, /* rx only */
77 	STAT_NOKEYS,
78 	STAT_SWITCHES,
79 
80 	MAX_STATS,
81 };
82 
83 /* TIPC crypto statistics' header */
84 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
85 					"async_nok", "badmsgs", "nokeys",
86 					"switches"};
87 
88 /* Max TFMs number per key */
89 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
90 /* Key exchange switch, default: on */
91 int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
92 
93 /**
94  * struct tipc_key - TIPC keys' status indicator
95  *
96  *         7     6     5     4     3     2     1     0
97  *      +-----+-----+-----+-----+-----+-----+-----+-----+
98  * key: | (reserved)|passive idx| active idx|pending idx|
99  *      +-----+-----+-----+-----+-----+-----+-----+-----+
100  */
101 struct tipc_key {
102 #define KEY_BITS (2)
103 #define KEY_MASK ((1 << KEY_BITS) - 1)
104 	union {
105 		struct {
106 #if defined(__LITTLE_ENDIAN_BITFIELD)
107 			u8 pending:2,
108 			   active:2,
109 			   passive:2, /* rx only */
110 			   reserved:2;
111 #elif defined(__BIG_ENDIAN_BITFIELD)
112 			u8 reserved:2,
113 			   passive:2, /* rx only */
114 			   active:2,
115 			   pending:2;
116 #else
117 #error  "Please fix <asm/byteorder.h>"
118 #endif
119 		} __packed;
120 		u8 keys;
121 	};
122 };
123 
124 /**
125  * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
126  */
127 struct tipc_tfm {
128 	struct crypto_aead *tfm;
129 	struct list_head list;
130 };
131 
132 /**
133  * struct tipc_aead - TIPC AEAD key structure
134  * @tfm_entry: per-cpu pointer to one entry in TFM list
135  * @crypto: TIPC crypto owns this key
136  * @cloned: reference to the source key in case cloning
137  * @users: the number of the key users (TX/RX)
138  * @salt: the key's SALT value
139  * @authsize: authentication tag size (max = 16)
140  * @mode: crypto mode is applied to the key
141  * @hint[]: a hint for user key
142  * @rcu: struct rcu_head
143  * @key: the aead key
144  * @gen: the key's generation
145  * @seqno: the key seqno (cluster scope)
146  * @refcnt: the key reference counter
147  */
148 struct tipc_aead {
149 #define TIPC_AEAD_HINT_LEN (5)
150 	struct tipc_tfm * __percpu *tfm_entry;
151 	struct tipc_crypto *crypto;
152 	struct tipc_aead *cloned;
153 	atomic_t users;
154 	u32 salt;
155 	u8 authsize;
156 	u8 mode;
157 	char hint[2 * TIPC_AEAD_HINT_LEN + 1];
158 	struct rcu_head rcu;
159 	struct tipc_aead_key *key;
160 	u16 gen;
161 
162 	atomic64_t seqno ____cacheline_aligned;
163 	refcount_t refcnt ____cacheline_aligned;
164 
165 } ____cacheline_aligned;
166 
167 /**
168  * struct tipc_crypto_stats - TIPC Crypto statistics
169  */
170 struct tipc_crypto_stats {
171 	unsigned int stat[MAX_STATS];
172 };
173 
174 /**
175  * struct tipc_crypto - TIPC TX/RX crypto structure
176  * @net: struct net
177  * @node: TIPC node (RX)
178  * @aead: array of pointers to AEAD keys for encryption/decryption
179  * @peer_rx_active: replicated peer RX active key index
180  * @key_gen: TX/RX key generation
181  * @key: the key states
182  * @skey_mode: session key's mode
183  * @skey: received session key
184  * @wq: common workqueue on TX crypto
185  * @work: delayed work sched for TX/RX
186  * @key_distr: key distributing state
187  * @rekeying_intv: rekeying interval (in minutes)
188  * @stats: the crypto statistics
189  * @name: the crypto name
190  * @sndnxt: the per-peer sndnxt (TX)
191  * @timer1: general timer 1 (jiffies)
192  * @timer2: general timer 2 (jiffies)
193  * @working: the crypto is working or not
194  * @key_master: flag indicates if master key exists
195  * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
196  * @nokey: no key indication
197  * @lock: tipc_key lock
198  */
199 struct tipc_crypto {
200 	struct net *net;
201 	struct tipc_node *node;
202 	struct tipc_aead __rcu *aead[KEY_MAX + 1];
203 	atomic_t peer_rx_active;
204 	u16 key_gen;
205 	struct tipc_key key;
206 	u8 skey_mode;
207 	struct tipc_aead_key *skey;
208 	struct workqueue_struct *wq;
209 	struct delayed_work work;
210 #define KEY_DISTR_SCHED		1
211 #define KEY_DISTR_COMPL		2
212 	atomic_t key_distr;
213 	u32 rekeying_intv;
214 
215 	struct tipc_crypto_stats __percpu *stats;
216 	char name[48];
217 
218 	atomic64_t sndnxt ____cacheline_aligned;
219 	unsigned long timer1;
220 	unsigned long timer2;
221 	union {
222 		struct {
223 			u8 working:1;
224 			u8 key_master:1;
225 			u8 legacy_user:1;
226 			u8 nokey: 1;
227 		};
228 		u8 flags;
229 	};
230 	spinlock_t lock; /* crypto lock */
231 
232 } ____cacheline_aligned;
233 
234 /* struct tipc_crypto_tx_ctx - TX context for callbacks */
235 struct tipc_crypto_tx_ctx {
236 	struct tipc_aead *aead;
237 	struct tipc_bearer *bearer;
238 	struct tipc_media_addr dst;
239 };
240 
241 /* struct tipc_crypto_rx_ctx - RX context for callbacks */
242 struct tipc_crypto_rx_ctx {
243 	struct tipc_aead *aead;
244 	struct tipc_bearer *bearer;
245 };
246 
247 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
248 static inline void tipc_aead_put(struct tipc_aead *aead);
249 static void tipc_aead_free(struct rcu_head *rp);
250 static int tipc_aead_users(struct tipc_aead __rcu *aead);
251 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
252 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
253 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
254 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
255 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
256 			  u8 mode);
257 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
258 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
259 				 unsigned int crypto_ctx_size,
260 				 u8 **iv, struct aead_request **req,
261 				 struct scatterlist **sg, int nsg);
262 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
263 			     struct tipc_bearer *b,
264 			     struct tipc_media_addr *dst,
265 			     struct tipc_node *__dnode);
266 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
267 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
268 			     struct sk_buff *skb, struct tipc_bearer *b);
269 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
270 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
271 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
272 			   u8 tx_key, struct sk_buff *skb,
273 			   struct tipc_crypto *__rx);
274 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
275 					     u8 new_passive,
276 					     u8 new_active,
277 					     u8 new_pending);
278 static int tipc_crypto_key_attach(struct tipc_crypto *c,
279 				  struct tipc_aead *aead, u8 pos,
280 				  bool master_key);
281 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
282 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
283 						 struct tipc_crypto *rx,
284 						 struct sk_buff *skb,
285 						 u8 tx_key);
286 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
287 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
288 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
289 					 struct tipc_bearer *b,
290 					 struct tipc_media_addr *dst,
291 					 struct tipc_node *__dnode, u8 type);
292 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
293 				     struct tipc_bearer *b,
294 				     struct sk_buff **skb, int err);
295 static void tipc_crypto_do_cmd(struct net *net, int cmd);
296 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
297 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
298 				  char *buf);
299 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
300 				u16 gen, u8 mode, u32 dnode);
301 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
302 static void tipc_crypto_work_tx(struct work_struct *work);
303 static void tipc_crypto_work_rx(struct work_struct *work);
304 static int tipc_aead_key_generate(struct tipc_aead_key *skey);
305 
306 #define is_tx(crypto) (!(crypto)->node)
307 #define is_rx(crypto) (!is_tx(crypto))
308 
309 #define key_next(cur) ((cur) % KEY_MAX + 1)
310 
311 #define tipc_aead_rcu_ptr(rcu_ptr, lock)				\
312 	rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
313 
314 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)			\
315 do {									\
316 	typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr),	\
317 						lockdep_is_held(lock));	\
318 	rcu_assign_pointer((rcu_ptr), (ptr));				\
319 	tipc_aead_put(__tmp);						\
320 } while (0)
321 
322 #define tipc_crypto_key_detach(rcu_ptr, lock)				\
323 	tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
324 
325 /**
326  * tipc_aead_key_validate - Validate a AEAD user key
327  */
328 int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
329 {
330 	int keylen;
331 
332 	/* Check if algorithm exists */
333 	if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
334 		GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
335 		return -ENODEV;
336 	}
337 
338 	/* Currently, we only support the "gcm(aes)" cipher algorithm */
339 	if (strcmp(ukey->alg_name, "gcm(aes)")) {
340 		GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
341 		return -ENOTSUPP;
342 	}
343 
344 	/* Check if key size is correct */
345 	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
346 	if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
347 		     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
348 		     keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
349 		GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
350 		return -EKEYREJECTED;
351 	}
352 
353 	return 0;
354 }
355 
356 /**
357  * tipc_aead_key_generate - Generate new session key
358  * @skey: input/output key with new content
359  *
360  * Return: 0 in case of success, otherwise < 0
361  */
362 static int tipc_aead_key_generate(struct tipc_aead_key *skey)
363 {
364 	int rc = 0;
365 
366 	/* Fill the key's content with a random value via RNG cipher */
367 	rc = crypto_get_default_rng();
368 	if (likely(!rc)) {
369 		rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
370 					  skey->keylen);
371 		crypto_put_default_rng();
372 	}
373 
374 	return rc;
375 }
376 
377 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
378 {
379 	struct tipc_aead *tmp;
380 
381 	rcu_read_lock();
382 	tmp = rcu_dereference(aead);
383 	if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
384 		tmp = NULL;
385 	rcu_read_unlock();
386 
387 	return tmp;
388 }
389 
390 static inline void tipc_aead_put(struct tipc_aead *aead)
391 {
392 	if (aead && refcount_dec_and_test(&aead->refcnt))
393 		call_rcu(&aead->rcu, tipc_aead_free);
394 }
395 
396 /**
397  * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
398  * @rp: rcu head pointer
399  */
400 static void tipc_aead_free(struct rcu_head *rp)
401 {
402 	struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
403 	struct tipc_tfm *tfm_entry, *head, *tmp;
404 
405 	if (aead->cloned) {
406 		tipc_aead_put(aead->cloned);
407 	} else {
408 		head = *get_cpu_ptr(aead->tfm_entry);
409 		put_cpu_ptr(aead->tfm_entry);
410 		list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
411 			crypto_free_aead(tfm_entry->tfm);
412 			list_del(&tfm_entry->list);
413 			kfree(tfm_entry);
414 		}
415 		/* Free the head */
416 		crypto_free_aead(head->tfm);
417 		list_del(&head->list);
418 		kfree(head);
419 	}
420 	free_percpu(aead->tfm_entry);
421 	kfree_sensitive(aead->key);
422 	kfree(aead);
423 }
424 
425 static int tipc_aead_users(struct tipc_aead __rcu *aead)
426 {
427 	struct tipc_aead *tmp;
428 	int users = 0;
429 
430 	rcu_read_lock();
431 	tmp = rcu_dereference(aead);
432 	if (tmp)
433 		users = atomic_read(&tmp->users);
434 	rcu_read_unlock();
435 
436 	return users;
437 }
438 
439 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
440 {
441 	struct tipc_aead *tmp;
442 
443 	rcu_read_lock();
444 	tmp = rcu_dereference(aead);
445 	if (tmp)
446 		atomic_add_unless(&tmp->users, 1, lim);
447 	rcu_read_unlock();
448 }
449 
450 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
451 {
452 	struct tipc_aead *tmp;
453 
454 	rcu_read_lock();
455 	tmp = rcu_dereference(aead);
456 	if (tmp)
457 		atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
458 	rcu_read_unlock();
459 }
460 
461 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
462 {
463 	struct tipc_aead *tmp;
464 	int cur;
465 
466 	rcu_read_lock();
467 	tmp = rcu_dereference(aead);
468 	if (tmp) {
469 		do {
470 			cur = atomic_read(&tmp->users);
471 			if (cur == val)
472 				break;
473 		} while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
474 	}
475 	rcu_read_unlock();
476 }
477 
478 /**
479  * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
480  */
481 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
482 {
483 	struct tipc_tfm **tfm_entry;
484 	struct crypto_aead *tfm;
485 
486 	tfm_entry = get_cpu_ptr(aead->tfm_entry);
487 	*tfm_entry = list_next_entry(*tfm_entry, list);
488 	tfm = (*tfm_entry)->tfm;
489 	put_cpu_ptr(tfm_entry);
490 
491 	return tfm;
492 }
493 
494 /**
495  * tipc_aead_init - Initiate TIPC AEAD
496  * @aead: returned new TIPC AEAD key handle pointer
497  * @ukey: pointer to user key data
498  * @mode: the key mode
499  *
500  * Allocate a (list of) new cipher transformation (TFM) with the specific user
501  * key data if valid. The number of the allocated TFMs can be set via the sysfs
502  * "net/tipc/max_tfms" first.
503  * Also, all the other AEAD data are also initialized.
504  *
505  * Return: 0 if the initiation is successful, otherwise: < 0
506  */
507 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
508 			  u8 mode)
509 {
510 	struct tipc_tfm *tfm_entry, *head;
511 	struct crypto_aead *tfm;
512 	struct tipc_aead *tmp;
513 	int keylen, err, cpu;
514 	int tfm_cnt = 0;
515 
516 	if (unlikely(*aead))
517 		return -EEXIST;
518 
519 	/* Allocate a new AEAD */
520 	tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
521 	if (unlikely(!tmp))
522 		return -ENOMEM;
523 
524 	/* The key consists of two parts: [AES-KEY][SALT] */
525 	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
526 
527 	/* Allocate per-cpu TFM entry pointer */
528 	tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
529 	if (!tmp->tfm_entry) {
530 		kfree_sensitive(tmp);
531 		return -ENOMEM;
532 	}
533 
534 	/* Make a list of TFMs with the user key data */
535 	do {
536 		tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
537 		if (IS_ERR(tfm)) {
538 			err = PTR_ERR(tfm);
539 			break;
540 		}
541 
542 		if (unlikely(!tfm_cnt &&
543 			     crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
544 			crypto_free_aead(tfm);
545 			err = -ENOTSUPP;
546 			break;
547 		}
548 
549 		err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
550 		err |= crypto_aead_setkey(tfm, ukey->key, keylen);
551 		if (unlikely(err)) {
552 			crypto_free_aead(tfm);
553 			break;
554 		}
555 
556 		tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
557 		if (unlikely(!tfm_entry)) {
558 			crypto_free_aead(tfm);
559 			err = -ENOMEM;
560 			break;
561 		}
562 		INIT_LIST_HEAD(&tfm_entry->list);
563 		tfm_entry->tfm = tfm;
564 
565 		/* First entry? */
566 		if (!tfm_cnt) {
567 			head = tfm_entry;
568 			for_each_possible_cpu(cpu) {
569 				*per_cpu_ptr(tmp->tfm_entry, cpu) = head;
570 			}
571 		} else {
572 			list_add_tail(&tfm_entry->list, &head->list);
573 		}
574 
575 	} while (++tfm_cnt < sysctl_tipc_max_tfms);
576 
577 	/* Not any TFM is allocated? */
578 	if (!tfm_cnt) {
579 		free_percpu(tmp->tfm_entry);
580 		kfree_sensitive(tmp);
581 		return err;
582 	}
583 
584 	/* Form a hex string of some last bytes as the key's hint */
585 	bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
586 		TIPC_AEAD_HINT_LEN);
587 
588 	/* Initialize the other data */
589 	tmp->mode = mode;
590 	tmp->cloned = NULL;
591 	tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
592 	tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
593 	memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
594 	atomic_set(&tmp->users, 0);
595 	atomic64_set(&tmp->seqno, 0);
596 	refcount_set(&tmp->refcnt, 1);
597 
598 	*aead = tmp;
599 	return 0;
600 }
601 
602 /**
603  * tipc_aead_clone - Clone a TIPC AEAD key
604  * @dst: dest key for the cloning
605  * @src: source key to clone from
606  *
607  * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
608  * common for the keys.
609  * A reference to the source is hold in the "cloned" pointer for the later
610  * freeing purposes.
611  *
612  * Note: this must be done in cluster-key mode only!
613  * Return: 0 in case of success, otherwise < 0
614  */
615 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
616 {
617 	struct tipc_aead *aead;
618 	int cpu;
619 
620 	if (!src)
621 		return -ENOKEY;
622 
623 	if (src->mode != CLUSTER_KEY)
624 		return -EINVAL;
625 
626 	if (unlikely(*dst))
627 		return -EEXIST;
628 
629 	aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
630 	if (unlikely(!aead))
631 		return -ENOMEM;
632 
633 	aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
634 	if (unlikely(!aead->tfm_entry)) {
635 		kfree_sensitive(aead);
636 		return -ENOMEM;
637 	}
638 
639 	for_each_possible_cpu(cpu) {
640 		*per_cpu_ptr(aead->tfm_entry, cpu) =
641 				*per_cpu_ptr(src->tfm_entry, cpu);
642 	}
643 
644 	memcpy(aead->hint, src->hint, sizeof(src->hint));
645 	aead->mode = src->mode;
646 	aead->salt = src->salt;
647 	aead->authsize = src->authsize;
648 	atomic_set(&aead->users, 0);
649 	atomic64_set(&aead->seqno, 0);
650 	refcount_set(&aead->refcnt, 1);
651 
652 	WARN_ON(!refcount_inc_not_zero(&src->refcnt));
653 	aead->cloned = src;
654 
655 	*dst = aead;
656 	return 0;
657 }
658 
659 /**
660  * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
661  * @tfm: cipher handle to be registered with the request
662  * @crypto_ctx_size: size of crypto context for callback
663  * @iv: returned pointer to IV data
664  * @req: returned pointer to AEAD request data
665  * @sg: returned pointer to SG lists
666  * @nsg: number of SG lists to be allocated
667  *
668  * Allocate memory to store the crypto context data, AEAD request, IV and SG
669  * lists, the memory layout is as follows:
670  * crypto_ctx || iv || aead_req || sg[]
671  *
672  * Return: the pointer to the memory areas in case of success, otherwise NULL
673  */
674 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
675 				 unsigned int crypto_ctx_size,
676 				 u8 **iv, struct aead_request **req,
677 				 struct scatterlist **sg, int nsg)
678 {
679 	unsigned int iv_size, req_size;
680 	unsigned int len;
681 	u8 *mem;
682 
683 	iv_size = crypto_aead_ivsize(tfm);
684 	req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
685 
686 	len = crypto_ctx_size;
687 	len += iv_size;
688 	len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
689 	len = ALIGN(len, crypto_tfm_ctx_alignment());
690 	len += req_size;
691 	len = ALIGN(len, __alignof__(struct scatterlist));
692 	len += nsg * sizeof(**sg);
693 
694 	mem = kmalloc(len, GFP_ATOMIC);
695 	if (!mem)
696 		return NULL;
697 
698 	*iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
699 			      crypto_aead_alignmask(tfm) + 1);
700 	*req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
701 						crypto_tfm_ctx_alignment());
702 	*sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
703 					      __alignof__(struct scatterlist));
704 
705 	return (void *)mem;
706 }
707 
708 /**
709  * tipc_aead_encrypt - Encrypt a message
710  * @aead: TIPC AEAD key for the message encryption
711  * @skb: the input/output skb
712  * @b: TIPC bearer where the message will be delivered after the encryption
713  * @dst: the destination media address
714  * @__dnode: TIPC dest node if "known"
715  *
716  * Return:
717  * 0                   : if the encryption has completed
718  * -EINPROGRESS/-EBUSY : if a callback will be performed
719  * < 0                 : the encryption has failed
720  */
721 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
722 			     struct tipc_bearer *b,
723 			     struct tipc_media_addr *dst,
724 			     struct tipc_node *__dnode)
725 {
726 	struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
727 	struct tipc_crypto_tx_ctx *tx_ctx;
728 	struct aead_request *req;
729 	struct sk_buff *trailer;
730 	struct scatterlist *sg;
731 	struct tipc_ehdr *ehdr;
732 	int ehsz, len, tailen, nsg, rc;
733 	void *ctx;
734 	u32 salt;
735 	u8 *iv;
736 
737 	/* Make sure message len at least 4-byte aligned */
738 	len = ALIGN(skb->len, 4);
739 	tailen = len - skb->len + aead->authsize;
740 
741 	/* Expand skb tail for authentication tag:
742 	 * As for simplicity, we'd have made sure skb having enough tailroom
743 	 * for authentication tag @skb allocation. Even when skb is nonlinear
744 	 * but there is no frag_list, it should be still fine!
745 	 * Otherwise, we must cow it to be a writable buffer with the tailroom.
746 	 */
747 	SKB_LINEAR_ASSERT(skb);
748 	if (tailen > skb_tailroom(skb)) {
749 		pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
750 			 skb_tailroom(skb), tailen);
751 	}
752 
753 	if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
754 		nsg = 1;
755 		trailer = skb;
756 	} else {
757 		/* TODO: We could avoid skb_cow_data() if skb has no frag_list
758 		 * e.g. by skb_fill_page_desc() to add another page to the skb
759 		 * with the wanted tailen... However, page skbs look not often,
760 		 * so take it easy now!
761 		 * Cloned skbs e.g. from link_xmit() seems no choice though :(
762 		 */
763 		nsg = skb_cow_data(skb, tailen, &trailer);
764 		if (unlikely(nsg < 0)) {
765 			pr_err("TX: skb_cow_data() returned %d\n", nsg);
766 			return nsg;
767 		}
768 	}
769 
770 	pskb_put(skb, trailer, tailen);
771 
772 	/* Allocate memory for the AEAD operation */
773 	ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
774 	if (unlikely(!ctx))
775 		return -ENOMEM;
776 	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
777 
778 	/* Map skb to the sg lists */
779 	sg_init_table(sg, nsg);
780 	rc = skb_to_sgvec(skb, sg, 0, skb->len);
781 	if (unlikely(rc < 0)) {
782 		pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
783 		goto exit;
784 	}
785 
786 	/* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
787 	 * In case we're in cluster-key mode, SALT is varied by xor-ing with
788 	 * the source address (or w0 of id), otherwise with the dest address
789 	 * if dest is known.
790 	 */
791 	ehdr = (struct tipc_ehdr *)skb->data;
792 	salt = aead->salt;
793 	if (aead->mode == CLUSTER_KEY)
794 		salt ^= ehdr->addr; /* __be32 */
795 	else if (__dnode)
796 		salt ^= tipc_node_get_addr(__dnode);
797 	memcpy(iv, &salt, 4);
798 	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
799 
800 	/* Prepare request */
801 	ehsz = tipc_ehdr_size(ehdr);
802 	aead_request_set_tfm(req, tfm);
803 	aead_request_set_ad(req, ehsz);
804 	aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
805 
806 	/* Set callback function & data */
807 	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
808 				  tipc_aead_encrypt_done, skb);
809 	tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
810 	tx_ctx->aead = aead;
811 	tx_ctx->bearer = b;
812 	memcpy(&tx_ctx->dst, dst, sizeof(*dst));
813 
814 	/* Hold bearer */
815 	if (unlikely(!tipc_bearer_hold(b))) {
816 		rc = -ENODEV;
817 		goto exit;
818 	}
819 
820 	/* Now, do encrypt */
821 	rc = crypto_aead_encrypt(req);
822 	if (rc == -EINPROGRESS || rc == -EBUSY)
823 		return rc;
824 
825 	tipc_bearer_put(b);
826 
827 exit:
828 	kfree(ctx);
829 	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
830 	return rc;
831 }
832 
833 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
834 {
835 	struct sk_buff *skb = base->data;
836 	struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
837 	struct tipc_bearer *b = tx_ctx->bearer;
838 	struct tipc_aead *aead = tx_ctx->aead;
839 	struct tipc_crypto *tx = aead->crypto;
840 	struct net *net = tx->net;
841 
842 	switch (err) {
843 	case 0:
844 		this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
845 		rcu_read_lock();
846 		if (likely(test_bit(0, &b->up)))
847 			b->media->send_msg(net, skb, b, &tx_ctx->dst);
848 		else
849 			kfree_skb(skb);
850 		rcu_read_unlock();
851 		break;
852 	case -EINPROGRESS:
853 		return;
854 	default:
855 		this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
856 		kfree_skb(skb);
857 		break;
858 	}
859 
860 	kfree(tx_ctx);
861 	tipc_bearer_put(b);
862 	tipc_aead_put(aead);
863 }
864 
865 /**
866  * tipc_aead_decrypt - Decrypt an encrypted message
867  * @net: struct net
868  * @aead: TIPC AEAD for the message decryption
869  * @skb: the input/output skb
870  * @b: TIPC bearer where the message has been received
871  *
872  * Return:
873  * 0                   : if the decryption has completed
874  * -EINPROGRESS/-EBUSY : if a callback will be performed
875  * < 0                 : the decryption has failed
876  */
877 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
878 			     struct sk_buff *skb, struct tipc_bearer *b)
879 {
880 	struct tipc_crypto_rx_ctx *rx_ctx;
881 	struct aead_request *req;
882 	struct crypto_aead *tfm;
883 	struct sk_buff *unused;
884 	struct scatterlist *sg;
885 	struct tipc_ehdr *ehdr;
886 	int ehsz, nsg, rc;
887 	void *ctx;
888 	u32 salt;
889 	u8 *iv;
890 
891 	if (unlikely(!aead))
892 		return -ENOKEY;
893 
894 	/* Cow skb data if needed */
895 	if (likely(!skb_cloned(skb) &&
896 		   (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) {
897 		nsg = 1 + skb_shinfo(skb)->nr_frags;
898 	} else {
899 		nsg = skb_cow_data(skb, 0, &unused);
900 		if (unlikely(nsg < 0)) {
901 			pr_err("RX: skb_cow_data() returned %d\n", nsg);
902 			return nsg;
903 		}
904 	}
905 
906 	/* Allocate memory for the AEAD operation */
907 	tfm = tipc_aead_tfm_next(aead);
908 	ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
909 	if (unlikely(!ctx))
910 		return -ENOMEM;
911 	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
912 
913 	/* Map skb to the sg lists */
914 	sg_init_table(sg, nsg);
915 	rc = skb_to_sgvec(skb, sg, 0, skb->len);
916 	if (unlikely(rc < 0)) {
917 		pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
918 		goto exit;
919 	}
920 
921 	/* Reconstruct IV: */
922 	ehdr = (struct tipc_ehdr *)skb->data;
923 	salt = aead->salt;
924 	if (aead->mode == CLUSTER_KEY)
925 		salt ^= ehdr->addr; /* __be32 */
926 	else if (ehdr->destined)
927 		salt ^= tipc_own_addr(net);
928 	memcpy(iv, &salt, 4);
929 	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
930 
931 	/* Prepare request */
932 	ehsz = tipc_ehdr_size(ehdr);
933 	aead_request_set_tfm(req, tfm);
934 	aead_request_set_ad(req, ehsz);
935 	aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
936 
937 	/* Set callback function & data */
938 	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
939 				  tipc_aead_decrypt_done, skb);
940 	rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
941 	rx_ctx->aead = aead;
942 	rx_ctx->bearer = b;
943 
944 	/* Hold bearer */
945 	if (unlikely(!tipc_bearer_hold(b))) {
946 		rc = -ENODEV;
947 		goto exit;
948 	}
949 
950 	/* Now, do decrypt */
951 	rc = crypto_aead_decrypt(req);
952 	if (rc == -EINPROGRESS || rc == -EBUSY)
953 		return rc;
954 
955 	tipc_bearer_put(b);
956 
957 exit:
958 	kfree(ctx);
959 	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
960 	return rc;
961 }
962 
963 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
964 {
965 	struct sk_buff *skb = base->data;
966 	struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
967 	struct tipc_bearer *b = rx_ctx->bearer;
968 	struct tipc_aead *aead = rx_ctx->aead;
969 	struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
970 	struct net *net = aead->crypto->net;
971 
972 	switch (err) {
973 	case 0:
974 		this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
975 		break;
976 	case -EINPROGRESS:
977 		return;
978 	default:
979 		this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
980 		break;
981 	}
982 
983 	kfree(rx_ctx);
984 	tipc_crypto_rcv_complete(net, aead, b, &skb, err);
985 	if (likely(skb)) {
986 		if (likely(test_bit(0, &b->up)))
987 			tipc_rcv(net, skb, b);
988 		else
989 			kfree_skb(skb);
990 	}
991 
992 	tipc_bearer_put(b);
993 }
994 
995 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
996 {
997 	return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
998 }
999 
1000 /**
1001  * tipc_ehdr_validate - Validate an encryption message
1002  * @skb: the message buffer
1003  *
1004  * Returns "true" if this is a valid encryption message, otherwise "false"
1005  */
1006 bool tipc_ehdr_validate(struct sk_buff *skb)
1007 {
1008 	struct tipc_ehdr *ehdr;
1009 	int ehsz;
1010 
1011 	if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1012 		return false;
1013 
1014 	ehdr = (struct tipc_ehdr *)skb->data;
1015 	if (unlikely(ehdr->version != TIPC_EVERSION))
1016 		return false;
1017 	ehsz = tipc_ehdr_size(ehdr);
1018 	if (unlikely(!pskb_may_pull(skb, ehsz)))
1019 		return false;
1020 	if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1021 		return false;
1022 
1023 	return true;
1024 }
1025 
1026 /**
1027  * tipc_ehdr_build - Build TIPC encryption message header
1028  * @net: struct net
1029  * @aead: TX AEAD key to be used for the message encryption
1030  * @tx_key: key id used for the message encryption
1031  * @skb: input/output message skb
1032  * @__rx: RX crypto handle if dest is "known"
1033  *
1034  * Return: the header size if the building is successful, otherwise < 0
1035  */
1036 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1037 			   u8 tx_key, struct sk_buff *skb,
1038 			   struct tipc_crypto *__rx)
1039 {
1040 	struct tipc_msg *hdr = buf_msg(skb);
1041 	struct tipc_ehdr *ehdr;
1042 	u32 user = msg_user(hdr);
1043 	u64 seqno;
1044 	int ehsz;
1045 
1046 	/* Make room for encryption header */
1047 	ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1048 	WARN_ON(skb_headroom(skb) < ehsz);
1049 	ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1050 
1051 	/* Obtain a seqno first:
1052 	 * Use the key seqno (= cluster wise) if dest is unknown or we're in
1053 	 * cluster key mode, otherwise it's better for a per-peer seqno!
1054 	 */
1055 	if (!__rx || aead->mode == CLUSTER_KEY)
1056 		seqno = atomic64_inc_return(&aead->seqno);
1057 	else
1058 		seqno = atomic64_inc_return(&__rx->sndnxt);
1059 
1060 	/* Revoke the key if seqno is wrapped around */
1061 	if (unlikely(!seqno))
1062 		return tipc_crypto_key_revoke(net, tx_key);
1063 
1064 	/* Word 1-2 */
1065 	ehdr->seqno = cpu_to_be64(seqno);
1066 
1067 	/* Words 0, 3- */
1068 	ehdr->version = TIPC_EVERSION;
1069 	ehdr->user = 0;
1070 	ehdr->keepalive = 0;
1071 	ehdr->tx_key = tx_key;
1072 	ehdr->destined = (__rx) ? 1 : 0;
1073 	ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1074 	ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1075 	ehdr->master_key = aead->crypto->key_master;
1076 	ehdr->reserved_1 = 0;
1077 	ehdr->reserved_2 = 0;
1078 
1079 	switch (user) {
1080 	case LINK_CONFIG:
1081 		ehdr->user = LINK_CONFIG;
1082 		memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1083 		break;
1084 	default:
1085 		if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1086 			ehdr->user = LINK_PROTOCOL;
1087 			ehdr->keepalive = msg_is_keepalive(hdr);
1088 		}
1089 		ehdr->addr = hdr->hdr[3];
1090 		break;
1091 	}
1092 
1093 	return ehsz;
1094 }
1095 
1096 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1097 					     u8 new_passive,
1098 					     u8 new_active,
1099 					     u8 new_pending)
1100 {
1101 	struct tipc_key old = c->key;
1102 	char buf[32];
1103 
1104 	c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1105 		      ((new_active  & KEY_MASK) << (KEY_BITS)) |
1106 		      ((new_pending & KEY_MASK));
1107 
1108 	pr_debug("%s: key changing %s ::%pS\n", c->name,
1109 		 tipc_key_change_dump(old, c->key, buf),
1110 		 __builtin_return_address(0));
1111 }
1112 
1113 /**
1114  * tipc_crypto_key_init - Initiate a new user / AEAD key
1115  * @c: TIPC crypto to which new key is attached
1116  * @ukey: the user key
1117  * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1118  * @master_key: specify this is a cluster master key
1119  *
1120  * A new TIPC AEAD key will be allocated and initiated with the specified user
1121  * key, then attached to the TIPC crypto.
1122  *
1123  * Return: new key id in case of success, otherwise: < 0
1124  */
1125 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1126 			 u8 mode, bool master_key)
1127 {
1128 	struct tipc_aead *aead = NULL;
1129 	int rc = 0;
1130 
1131 	/* Initiate with the new user key */
1132 	rc = tipc_aead_init(&aead, ukey, mode);
1133 
1134 	/* Attach it to the crypto */
1135 	if (likely(!rc)) {
1136 		rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1137 		if (rc < 0)
1138 			tipc_aead_free(&aead->rcu);
1139 	}
1140 
1141 	return rc;
1142 }
1143 
1144 /**
1145  * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1146  * @c: TIPC crypto to which the new AEAD key is attached
1147  * @aead: the new AEAD key pointer
1148  * @pos: desired slot in the crypto key array, = 0 if any!
1149  * @master_key: specify this is a cluster master key
1150  *
1151  * Return: new key id in case of success, otherwise: -EBUSY
1152  */
1153 static int tipc_crypto_key_attach(struct tipc_crypto *c,
1154 				  struct tipc_aead *aead, u8 pos,
1155 				  bool master_key)
1156 {
1157 	struct tipc_key key;
1158 	int rc = -EBUSY;
1159 	u8 new_key;
1160 
1161 	spin_lock_bh(&c->lock);
1162 	key = c->key;
1163 	if (master_key) {
1164 		new_key = KEY_MASTER;
1165 		goto attach;
1166 	}
1167 	if (key.active && key.passive)
1168 		goto exit;
1169 	if (key.pending) {
1170 		if (tipc_aead_users(c->aead[key.pending]) > 0)
1171 			goto exit;
1172 		/* if (pos): ok with replacing, will be aligned when needed */
1173 		/* Replace it */
1174 		new_key = key.pending;
1175 	} else {
1176 		if (pos) {
1177 			if (key.active && pos != key_next(key.active)) {
1178 				key.passive = pos;
1179 				new_key = pos;
1180 				goto attach;
1181 			} else if (!key.active && !key.passive) {
1182 				key.pending = pos;
1183 				new_key = pos;
1184 				goto attach;
1185 			}
1186 		}
1187 		key.pending = key_next(key.active ?: key.passive);
1188 		new_key = key.pending;
1189 	}
1190 
1191 attach:
1192 	aead->crypto = c;
1193 	aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1194 	tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1195 	if (likely(c->key.keys != key.keys))
1196 		tipc_crypto_key_set_state(c, key.passive, key.active,
1197 					  key.pending);
1198 	c->working = 1;
1199 	c->nokey = 0;
1200 	c->key_master |= master_key;
1201 	rc = new_key;
1202 
1203 exit:
1204 	spin_unlock_bh(&c->lock);
1205 	return rc;
1206 }
1207 
1208 void tipc_crypto_key_flush(struct tipc_crypto *c)
1209 {
1210 	struct tipc_crypto *tx, *rx;
1211 	int k;
1212 
1213 	spin_lock_bh(&c->lock);
1214 	if (is_rx(c)) {
1215 		/* Try to cancel pending work */
1216 		rx = c;
1217 		tx = tipc_net(rx->net)->crypto_tx;
1218 		if (cancel_delayed_work(&rx->work)) {
1219 			kfree(rx->skey);
1220 			rx->skey = NULL;
1221 			atomic_xchg(&rx->key_distr, 0);
1222 			tipc_node_put(rx->node);
1223 		}
1224 		/* RX stopping => decrease TX key users if any */
1225 		k = atomic_xchg(&rx->peer_rx_active, 0);
1226 		if (k) {
1227 			tipc_aead_users_dec(tx->aead[k], 0);
1228 			/* Mark the point TX key users changed */
1229 			tx->timer1 = jiffies;
1230 		}
1231 	}
1232 
1233 	c->flags = 0;
1234 	tipc_crypto_key_set_state(c, 0, 0, 0);
1235 	for (k = KEY_MIN; k <= KEY_MAX; k++)
1236 		tipc_crypto_key_detach(c->aead[k], &c->lock);
1237 	atomic64_set(&c->sndnxt, 0);
1238 	spin_unlock_bh(&c->lock);
1239 }
1240 
1241 /**
1242  * tipc_crypto_key_try_align - Align RX keys if possible
1243  * @rx: RX crypto handle
1244  * @new_pending: new pending slot if aligned (= TX key from peer)
1245  *
1246  * Peer has used an unknown key slot, this only happens when peer has left and
1247  * rejoned, or we are newcomer.
1248  * That means, there must be no active key but a pending key at unaligned slot.
1249  * If so, we try to move the pending key to the new slot.
1250  * Note: A potential passive key can exist, it will be shifted correspondingly!
1251  *
1252  * Return: "true" if key is successfully aligned, otherwise "false"
1253  */
1254 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1255 {
1256 	struct tipc_aead *tmp1, *tmp2 = NULL;
1257 	struct tipc_key key;
1258 	bool aligned = false;
1259 	u8 new_passive = 0;
1260 	int x;
1261 
1262 	spin_lock(&rx->lock);
1263 	key = rx->key;
1264 	if (key.pending == new_pending) {
1265 		aligned = true;
1266 		goto exit;
1267 	}
1268 	if (key.active)
1269 		goto exit;
1270 	if (!key.pending)
1271 		goto exit;
1272 	if (tipc_aead_users(rx->aead[key.pending]) > 0)
1273 		goto exit;
1274 
1275 	/* Try to "isolate" this pending key first */
1276 	tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1277 	if (!refcount_dec_if_one(&tmp1->refcnt))
1278 		goto exit;
1279 	rcu_assign_pointer(rx->aead[key.pending], NULL);
1280 
1281 	/* Move passive key if any */
1282 	if (key.passive) {
1283 		tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1284 		x = (key.passive - key.pending + new_pending) % KEY_MAX;
1285 		new_passive = (x <= 0) ? x + KEY_MAX : x;
1286 	}
1287 
1288 	/* Re-allocate the key(s) */
1289 	tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1290 	rcu_assign_pointer(rx->aead[new_pending], tmp1);
1291 	if (new_passive)
1292 		rcu_assign_pointer(rx->aead[new_passive], tmp2);
1293 	refcount_set(&tmp1->refcnt, 1);
1294 	aligned = true;
1295 	pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1296 			    new_pending);
1297 
1298 exit:
1299 	spin_unlock(&rx->lock);
1300 	return aligned;
1301 }
1302 
1303 /**
1304  * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1305  * @tx: TX crypto handle
1306  * @rx: RX crypto handle (can be NULL)
1307  * @skb: the message skb which will be decrypted later
1308  * @tx_key: peer TX key id
1309  *
1310  * This function looks up the existing TX keys and pick one which is suitable
1311  * for the message decryption, that must be a cluster key and not used before
1312  * on the same message (i.e. recursive).
1313  *
1314  * Return: the TX AEAD key handle in case of success, otherwise NULL
1315  */
1316 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1317 						 struct tipc_crypto *rx,
1318 						 struct sk_buff *skb,
1319 						 u8 tx_key)
1320 {
1321 	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1322 	struct tipc_aead *aead = NULL;
1323 	struct tipc_key key = tx->key;
1324 	u8 k, i = 0;
1325 
1326 	/* Initialize data if not yet */
1327 	if (!skb_cb->tx_clone_deferred) {
1328 		skb_cb->tx_clone_deferred = 1;
1329 		memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1330 	}
1331 
1332 	skb_cb->tx_clone_ctx.rx = rx;
1333 	if (++skb_cb->tx_clone_ctx.recurs > 2)
1334 		return NULL;
1335 
1336 	/* Pick one TX key */
1337 	spin_lock(&tx->lock);
1338 	if (tx_key == KEY_MASTER) {
1339 		aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1340 		goto done;
1341 	}
1342 	do {
1343 		k = (i == 0) ? key.pending :
1344 			((i == 1) ? key.active : key.passive);
1345 		if (!k)
1346 			continue;
1347 		aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1348 		if (!aead)
1349 			continue;
1350 		if (aead->mode != CLUSTER_KEY ||
1351 		    aead == skb_cb->tx_clone_ctx.last) {
1352 			aead = NULL;
1353 			continue;
1354 		}
1355 		/* Ok, found one cluster key */
1356 		skb_cb->tx_clone_ctx.last = aead;
1357 		WARN_ON(skb->next);
1358 		skb->next = skb_clone(skb, GFP_ATOMIC);
1359 		if (unlikely(!skb->next))
1360 			pr_warn("Failed to clone skb for next round if any\n");
1361 		break;
1362 	} while (++i < 3);
1363 
1364 done:
1365 	if (likely(aead))
1366 		WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1367 	spin_unlock(&tx->lock);
1368 
1369 	return aead;
1370 }
1371 
1372 /**
1373  * tipc_crypto_key_synch: Synch own key data according to peer key status
1374  * @rx: RX crypto handle
1375  * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1376  *
1377  * This function updates the peer node related data as the peer RX active key
1378  * has changed, so the number of TX keys' users on this node are increased and
1379  * decreased correspondingly.
1380  *
1381  * It also considers if peer has no key, then we need to make own master key
1382  * (if any) taking over i.e. starting grace period and also trigger key
1383  * distributing process.
1384  *
1385  * The "per-peer" sndnxt is also reset when the peer key has switched.
1386  */
1387 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1388 {
1389 	struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1390 	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1391 	struct tipc_msg *hdr = buf_msg(skb);
1392 	u32 self = tipc_own_addr(rx->net);
1393 	u8 cur, new;
1394 	unsigned long delay;
1395 
1396 	/* Update RX 'key_master' flag according to peer, also mark "legacy" if
1397 	 * a peer has no master key.
1398 	 */
1399 	rx->key_master = ehdr->master_key;
1400 	if (!rx->key_master)
1401 		tx->legacy_user = 1;
1402 
1403 	/* For later cases, apply only if message is destined to this node */
1404 	if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1405 		return;
1406 
1407 	/* Case 1: Peer has no keys, let's make master key take over */
1408 	if (ehdr->rx_nokey) {
1409 		/* Set or extend grace period */
1410 		tx->timer2 = jiffies;
1411 		/* Schedule key distributing for the peer if not yet */
1412 		if (tx->key.keys &&
1413 		    !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1414 			get_random_bytes(&delay, 2);
1415 			delay %= 5;
1416 			delay = msecs_to_jiffies(500 * ++delay);
1417 			if (queue_delayed_work(tx->wq, &rx->work, delay))
1418 				tipc_node_get(rx->node);
1419 		}
1420 	} else {
1421 		/* Cancel a pending key distributing if any */
1422 		atomic_xchg(&rx->key_distr, 0);
1423 	}
1424 
1425 	/* Case 2: Peer RX active key has changed, let's update own TX users */
1426 	cur = atomic_read(&rx->peer_rx_active);
1427 	new = ehdr->rx_key_active;
1428 	if (tx->key.keys &&
1429 	    cur != new &&
1430 	    atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1431 		if (new)
1432 			tipc_aead_users_inc(tx->aead[new], INT_MAX);
1433 		if (cur)
1434 			tipc_aead_users_dec(tx->aead[cur], 0);
1435 
1436 		atomic64_set(&rx->sndnxt, 0);
1437 		/* Mark the point TX key users changed */
1438 		tx->timer1 = jiffies;
1439 
1440 		pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1441 			 tx->name, cur, new, rx->name);
1442 	}
1443 }
1444 
1445 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1446 {
1447 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1448 	struct tipc_key key;
1449 
1450 	spin_lock(&tx->lock);
1451 	key = tx->key;
1452 	WARN_ON(!key.active || tx_key != key.active);
1453 
1454 	/* Free the active key */
1455 	tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1456 	tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1457 	spin_unlock(&tx->lock);
1458 
1459 	pr_warn("%s: key is revoked\n", tx->name);
1460 	return -EKEYREVOKED;
1461 }
1462 
1463 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1464 		      struct tipc_node *node)
1465 {
1466 	struct tipc_crypto *c;
1467 
1468 	if (*crypto)
1469 		return -EEXIST;
1470 
1471 	/* Allocate crypto */
1472 	c = kzalloc(sizeof(*c), GFP_ATOMIC);
1473 	if (!c)
1474 		return -ENOMEM;
1475 
1476 	/* Allocate workqueue on TX */
1477 	if (!node) {
1478 		c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1479 		if (!c->wq) {
1480 			kfree(c);
1481 			return -ENOMEM;
1482 		}
1483 	}
1484 
1485 	/* Allocate statistic structure */
1486 	c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1487 	if (!c->stats) {
1488 		kfree_sensitive(c);
1489 		return -ENOMEM;
1490 	}
1491 
1492 	c->flags = 0;
1493 	c->net = net;
1494 	c->node = node;
1495 	get_random_bytes(&c->key_gen, 2);
1496 	tipc_crypto_key_set_state(c, 0, 0, 0);
1497 	atomic_set(&c->key_distr, 0);
1498 	atomic_set(&c->peer_rx_active, 0);
1499 	atomic64_set(&c->sndnxt, 0);
1500 	c->timer1 = jiffies;
1501 	c->timer2 = jiffies;
1502 	c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1503 	spin_lock_init(&c->lock);
1504 	scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1505 		  (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1506 			       tipc_own_id_string(c->net));
1507 
1508 	if (is_rx(c))
1509 		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1510 	else
1511 		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1512 
1513 	*crypto = c;
1514 	return 0;
1515 }
1516 
1517 void tipc_crypto_stop(struct tipc_crypto **crypto)
1518 {
1519 	struct tipc_crypto *c = *crypto;
1520 	u8 k;
1521 
1522 	if (!c)
1523 		return;
1524 
1525 	/* Flush any queued works & destroy wq */
1526 	if (is_tx(c)) {
1527 		c->rekeying_intv = 0;
1528 		cancel_delayed_work_sync(&c->work);
1529 		destroy_workqueue(c->wq);
1530 	}
1531 
1532 	/* Release AEAD keys */
1533 	rcu_read_lock();
1534 	for (k = KEY_MIN; k <= KEY_MAX; k++)
1535 		tipc_aead_put(rcu_dereference(c->aead[k]));
1536 	rcu_read_unlock();
1537 	pr_debug("%s: has been stopped\n", c->name);
1538 
1539 	/* Free this crypto statistics */
1540 	free_percpu(c->stats);
1541 
1542 	*crypto = NULL;
1543 	kfree_sensitive(c);
1544 }
1545 
1546 void tipc_crypto_timeout(struct tipc_crypto *rx)
1547 {
1548 	struct tipc_net *tn = tipc_net(rx->net);
1549 	struct tipc_crypto *tx = tn->crypto_tx;
1550 	struct tipc_key key;
1551 	int cmd;
1552 
1553 	/* TX pending: taking all users & stable -> active */
1554 	spin_lock(&tx->lock);
1555 	key = tx->key;
1556 	if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1557 		goto s1;
1558 	if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1559 		goto s1;
1560 	if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1561 		goto s1;
1562 
1563 	tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1564 	if (key.active)
1565 		tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1566 	this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1567 	pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1568 
1569 s1:
1570 	spin_unlock(&tx->lock);
1571 
1572 	/* RX pending: having user -> active */
1573 	spin_lock(&rx->lock);
1574 	key = rx->key;
1575 	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1576 		goto s2;
1577 
1578 	if (key.active)
1579 		key.passive = key.active;
1580 	key.active = key.pending;
1581 	rx->timer2 = jiffies;
1582 	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1583 	this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1584 	pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1585 	goto s5;
1586 
1587 s2:
1588 	/* RX pending: not working -> remove */
1589 	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1590 		goto s3;
1591 
1592 	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1593 	tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1594 	pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1595 	goto s5;
1596 
1597 s3:
1598 	/* RX active: timed out or no user -> pending */
1599 	if (!key.active)
1600 		goto s4;
1601 	if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1602 	    tipc_aead_users(rx->aead[key.active]) > 0)
1603 		goto s4;
1604 
1605 	if (key.pending)
1606 		key.passive = key.active;
1607 	else
1608 		key.pending = key.active;
1609 	rx->timer2 = jiffies;
1610 	tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1611 	tipc_aead_users_set(rx->aead[key.pending], 0);
1612 	pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1613 	goto s5;
1614 
1615 s4:
1616 	/* RX passive: outdated or not working -> free */
1617 	if (!key.passive)
1618 		goto s5;
1619 	if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1620 	    tipc_aead_users(rx->aead[key.passive]) > -10)
1621 		goto s5;
1622 
1623 	tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1624 	tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1625 	pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1626 
1627 s5:
1628 	spin_unlock(&rx->lock);
1629 
1630 	/* Relax it here, the flag will be set again if it really is, but only
1631 	 * when we are not in grace period for safety!
1632 	 */
1633 	if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1634 		tx->legacy_user = 0;
1635 
1636 	/* Limit max_tfms & do debug commands if needed */
1637 	if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1638 		return;
1639 
1640 	cmd = sysctl_tipc_max_tfms;
1641 	sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1642 	tipc_crypto_do_cmd(rx->net, cmd);
1643 }
1644 
1645 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1646 					 struct tipc_bearer *b,
1647 					 struct tipc_media_addr *dst,
1648 					 struct tipc_node *__dnode, u8 type)
1649 {
1650 	struct sk_buff *skb;
1651 
1652 	skb = skb_clone(_skb, GFP_ATOMIC);
1653 	if (skb) {
1654 		TIPC_SKB_CB(skb)->xmit_type = type;
1655 		tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1656 		if (skb)
1657 			b->media->send_msg(net, skb, b, dst);
1658 	}
1659 }
1660 
1661 /**
1662  * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1663  * @net: struct net
1664  * @skb: input/output message skb pointer
1665  * @b: bearer used for xmit later
1666  * @dst: destination media address
1667  * @__dnode: destination node for reference if any
1668  *
1669  * First, build an encryption message header on the top of the message, then
1670  * encrypt the original TIPC message by using the pending, master or active
1671  * key with this preference order.
1672  * If the encryption is successful, the encrypted skb is returned directly or
1673  * via the callback.
1674  * Otherwise, the skb is freed!
1675  *
1676  * Return:
1677  * 0                   : the encryption has succeeded (or no encryption)
1678  * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1679  * -ENOKEK             : the encryption has failed due to no key
1680  * -EKEYREVOKED        : the encryption has failed due to key revoked
1681  * -ENOMEM             : the encryption has failed due to no memory
1682  * < 0                 : the encryption has failed due to other reasons
1683  */
1684 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1685 		     struct tipc_bearer *b, struct tipc_media_addr *dst,
1686 		     struct tipc_node *__dnode)
1687 {
1688 	struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1689 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1690 	struct tipc_crypto_stats __percpu *stats = tx->stats;
1691 	struct tipc_msg *hdr = buf_msg(*skb);
1692 	struct tipc_key key = tx->key;
1693 	struct tipc_aead *aead = NULL;
1694 	u32 user = msg_user(hdr);
1695 	u32 type = msg_type(hdr);
1696 	int rc = -ENOKEY;
1697 	u8 tx_key = 0;
1698 
1699 	/* No encryption? */
1700 	if (!tx->working)
1701 		return 0;
1702 
1703 	/* Pending key if peer has active on it or probing time */
1704 	if (unlikely(key.pending)) {
1705 		tx_key = key.pending;
1706 		if (!tx->key_master && !key.active)
1707 			goto encrypt;
1708 		if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1709 			goto encrypt;
1710 		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1711 			pr_debug("%s: probing for key[%d]\n", tx->name,
1712 				 key.pending);
1713 			goto encrypt;
1714 		}
1715 		if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1716 			tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1717 					      SKB_PROBING);
1718 	}
1719 
1720 	/* Master key if this is a *vital* message or in grace period */
1721 	if (tx->key_master) {
1722 		tx_key = KEY_MASTER;
1723 		if (!key.active)
1724 			goto encrypt;
1725 		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1726 			pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1727 				 user, type);
1728 			goto encrypt;
1729 		}
1730 		if (user == LINK_CONFIG ||
1731 		    (user == LINK_PROTOCOL && type == RESET_MSG) ||
1732 		    (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1733 		    time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1734 			if (__rx && __rx->key_master &&
1735 			    !atomic_read(&__rx->peer_rx_active))
1736 				goto encrypt;
1737 			if (!__rx) {
1738 				if (likely(!tx->legacy_user))
1739 					goto encrypt;
1740 				tipc_crypto_clone_msg(net, *skb, b, dst,
1741 						      __dnode, SKB_GRACING);
1742 			}
1743 		}
1744 	}
1745 
1746 	/* Else, use the active key if any */
1747 	if (likely(key.active)) {
1748 		tx_key = key.active;
1749 		goto encrypt;
1750 	}
1751 
1752 	goto exit;
1753 
1754 encrypt:
1755 	aead = tipc_aead_get(tx->aead[tx_key]);
1756 	if (unlikely(!aead))
1757 		goto exit;
1758 	rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1759 	if (likely(rc > 0))
1760 		rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1761 
1762 exit:
1763 	switch (rc) {
1764 	case 0:
1765 		this_cpu_inc(stats->stat[STAT_OK]);
1766 		break;
1767 	case -EINPROGRESS:
1768 	case -EBUSY:
1769 		this_cpu_inc(stats->stat[STAT_ASYNC]);
1770 		*skb = NULL;
1771 		return rc;
1772 	default:
1773 		this_cpu_inc(stats->stat[STAT_NOK]);
1774 		if (rc == -ENOKEY)
1775 			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1776 		else if (rc == -EKEYREVOKED)
1777 			this_cpu_inc(stats->stat[STAT_BADKEYS]);
1778 		kfree_skb(*skb);
1779 		*skb = NULL;
1780 		break;
1781 	}
1782 
1783 	tipc_aead_put(aead);
1784 	return rc;
1785 }
1786 
1787 /**
1788  * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1789  * @net: struct net
1790  * @rx: RX crypto handle
1791  * @skb: input/output message skb pointer
1792  * @b: bearer where the message has been received
1793  *
1794  * If the decryption is successful, the decrypted skb is returned directly or
1795  * as the callback, the encryption header and auth tag will be trimed out
1796  * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1797  * Otherwise, the skb will be freed!
1798  * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1799  * cluster key(s) can be taken for decryption (- recursive).
1800  *
1801  * Return:
1802  * 0                   : the decryption has successfully completed
1803  * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1804  * -ENOKEY             : the decryption has failed due to no key
1805  * -EBADMSG            : the decryption has failed due to bad message
1806  * -ENOMEM             : the decryption has failed due to no memory
1807  * < 0                 : the decryption has failed due to other reasons
1808  */
1809 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1810 		    struct sk_buff **skb, struct tipc_bearer *b)
1811 {
1812 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1813 	struct tipc_crypto_stats __percpu *stats;
1814 	struct tipc_aead *aead = NULL;
1815 	struct tipc_key key;
1816 	int rc = -ENOKEY;
1817 	u8 tx_key, n;
1818 
1819 	tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1820 
1821 	/* New peer?
1822 	 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1823 	 */
1824 	if (unlikely(!rx || tx_key == KEY_MASTER))
1825 		goto pick_tx;
1826 
1827 	/* Pick RX key according to TX key if any */
1828 	key = rx->key;
1829 	if (tx_key == key.active || tx_key == key.pending ||
1830 	    tx_key == key.passive)
1831 		goto decrypt;
1832 
1833 	/* Unknown key, let's try to align RX key(s) */
1834 	if (tipc_crypto_key_try_align(rx, tx_key))
1835 		goto decrypt;
1836 
1837 pick_tx:
1838 	/* No key suitable? Try to pick one from TX... */
1839 	aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1840 	if (aead)
1841 		goto decrypt;
1842 	goto exit;
1843 
1844 decrypt:
1845 	rcu_read_lock();
1846 	if (!aead)
1847 		aead = tipc_aead_get(rx->aead[tx_key]);
1848 	rc = tipc_aead_decrypt(net, aead, *skb, b);
1849 	rcu_read_unlock();
1850 
1851 exit:
1852 	stats = ((rx) ?: tx)->stats;
1853 	switch (rc) {
1854 	case 0:
1855 		this_cpu_inc(stats->stat[STAT_OK]);
1856 		break;
1857 	case -EINPROGRESS:
1858 	case -EBUSY:
1859 		this_cpu_inc(stats->stat[STAT_ASYNC]);
1860 		*skb = NULL;
1861 		return rc;
1862 	default:
1863 		this_cpu_inc(stats->stat[STAT_NOK]);
1864 		if (rc == -ENOKEY) {
1865 			kfree_skb(*skb);
1866 			*skb = NULL;
1867 			if (rx) {
1868 				/* Mark rx->nokey only if we dont have a
1869 				 * pending received session key, nor a newer
1870 				 * one i.e. in the next slot.
1871 				 */
1872 				n = key_next(tx_key);
1873 				rx->nokey = !(rx->skey ||
1874 					      rcu_access_pointer(rx->aead[n]));
1875 				pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1876 						     rx->name, rx->nokey,
1877 						     tx_key, rx->key.keys);
1878 				tipc_node_put(rx->node);
1879 			}
1880 			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1881 			return rc;
1882 		} else if (rc == -EBADMSG) {
1883 			this_cpu_inc(stats->stat[STAT_BADMSGS]);
1884 		}
1885 		break;
1886 	}
1887 
1888 	tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1889 	return rc;
1890 }
1891 
1892 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1893 				     struct tipc_bearer *b,
1894 				     struct sk_buff **skb, int err)
1895 {
1896 	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1897 	struct tipc_crypto *rx = aead->crypto;
1898 	struct tipc_aead *tmp = NULL;
1899 	struct tipc_ehdr *ehdr;
1900 	struct tipc_node *n;
1901 
1902 	/* Is this completed by TX? */
1903 	if (unlikely(is_tx(aead->crypto))) {
1904 		rx = skb_cb->tx_clone_ctx.rx;
1905 		pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1906 			 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1907 			 (*skb)->next, skb_cb->flags);
1908 		pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1909 			 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1910 			 aead->crypto->aead[1], aead->crypto->aead[2],
1911 			 aead->crypto->aead[3]);
1912 		if (unlikely(err)) {
1913 			if (err == -EBADMSG && (*skb)->next)
1914 				tipc_rcv(net, (*skb)->next, b);
1915 			goto free_skb;
1916 		}
1917 
1918 		if (likely((*skb)->next)) {
1919 			kfree_skb((*skb)->next);
1920 			(*skb)->next = NULL;
1921 		}
1922 		ehdr = (struct tipc_ehdr *)(*skb)->data;
1923 		if (!rx) {
1924 			WARN_ON(ehdr->user != LINK_CONFIG);
1925 			n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1926 					     true);
1927 			rx = tipc_node_crypto_rx(n);
1928 			if (unlikely(!rx))
1929 				goto free_skb;
1930 		}
1931 
1932 		/* Ignore cloning if it was TX master key */
1933 		if (ehdr->tx_key == KEY_MASTER)
1934 			goto rcv;
1935 		if (tipc_aead_clone(&tmp, aead) < 0)
1936 			goto rcv;
1937 		if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1938 			tipc_aead_free(&tmp->rcu);
1939 			goto rcv;
1940 		}
1941 		tipc_aead_put(aead);
1942 		aead = tipc_aead_get(tmp);
1943 	}
1944 
1945 	if (unlikely(err)) {
1946 		tipc_aead_users_dec(aead, INT_MIN);
1947 		goto free_skb;
1948 	}
1949 
1950 	/* Set the RX key's user */
1951 	tipc_aead_users_set(aead, 1);
1952 
1953 	/* Mark this point, RX works */
1954 	rx->timer1 = jiffies;
1955 
1956 rcv:
1957 	/* Remove ehdr & auth. tag prior to tipc_rcv() */
1958 	ehdr = (struct tipc_ehdr *)(*skb)->data;
1959 
1960 	/* Mark this point, RX passive still works */
1961 	if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1962 		rx->timer2 = jiffies;
1963 
1964 	skb_reset_network_header(*skb);
1965 	skb_pull(*skb, tipc_ehdr_size(ehdr));
1966 	pskb_trim(*skb, (*skb)->len - aead->authsize);
1967 
1968 	/* Validate TIPCv2 message */
1969 	if (unlikely(!tipc_msg_validate(skb))) {
1970 		pr_err_ratelimited("Packet dropped after decryption!\n");
1971 		goto free_skb;
1972 	}
1973 
1974 	/* Ok, everything's fine, try to synch own keys according to peers' */
1975 	tipc_crypto_key_synch(rx, *skb);
1976 
1977 	/* Mark skb decrypted */
1978 	skb_cb->decrypted = 1;
1979 
1980 	/* Clear clone cxt if any */
1981 	if (likely(!skb_cb->tx_clone_deferred))
1982 		goto exit;
1983 	skb_cb->tx_clone_deferred = 0;
1984 	memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1985 	goto exit;
1986 
1987 free_skb:
1988 	kfree_skb(*skb);
1989 	*skb = NULL;
1990 
1991 exit:
1992 	tipc_aead_put(aead);
1993 	if (rx)
1994 		tipc_node_put(rx->node);
1995 }
1996 
1997 static void tipc_crypto_do_cmd(struct net *net, int cmd)
1998 {
1999 	struct tipc_net *tn = tipc_net(net);
2000 	struct tipc_crypto *tx = tn->crypto_tx, *rx;
2001 	struct list_head *p;
2002 	unsigned int stat;
2003 	int i, j, cpu;
2004 	char buf[200];
2005 
2006 	/* Currently only one command is supported */
2007 	switch (cmd) {
2008 	case 0xfff1:
2009 		goto print_stats;
2010 	default:
2011 		return;
2012 	}
2013 
2014 print_stats:
2015 	/* Print a header */
2016 	pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2017 
2018 	/* Print key status */
2019 	pr_info("Key status:\n");
2020 	pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2021 		tipc_crypto_key_dump(tx, buf));
2022 
2023 	rcu_read_lock();
2024 	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2025 		rx = tipc_node_crypto_rx_by_list(p);
2026 		pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2027 			tipc_crypto_key_dump(rx, buf));
2028 	}
2029 	rcu_read_unlock();
2030 
2031 	/* Print crypto statistics */
2032 	for (i = 0, j = 0; i < MAX_STATS; i++)
2033 		j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2034 	pr_info("Counter     %s", buf);
2035 
2036 	memset(buf, '-', 115);
2037 	buf[115] = '\0';
2038 	pr_info("%s\n", buf);
2039 
2040 	j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2041 	for_each_possible_cpu(cpu) {
2042 		for (i = 0; i < MAX_STATS; i++) {
2043 			stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2044 			j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2045 		}
2046 		pr_info("%s", buf);
2047 		j = scnprintf(buf, 200, "%12s", " ");
2048 	}
2049 
2050 	rcu_read_lock();
2051 	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2052 		rx = tipc_node_crypto_rx_by_list(p);
2053 		j = scnprintf(buf, 200, "RX(%7.7s) ",
2054 			      tipc_node_get_id_str(rx->node));
2055 		for_each_possible_cpu(cpu) {
2056 			for (i = 0; i < MAX_STATS; i++) {
2057 				stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2058 				j += scnprintf(buf + j, 200 - j, "|%11d ",
2059 					       stat);
2060 			}
2061 			pr_info("%s", buf);
2062 			j = scnprintf(buf, 200, "%12s", " ");
2063 		}
2064 	}
2065 	rcu_read_unlock();
2066 
2067 	pr_info("\n======================== Done ========================\n");
2068 }
2069 
2070 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2071 {
2072 	struct tipc_key key = c->key;
2073 	struct tipc_aead *aead;
2074 	int k, i = 0;
2075 	char *s;
2076 
2077 	for (k = KEY_MIN; k <= KEY_MAX; k++) {
2078 		if (k == KEY_MASTER) {
2079 			if (is_rx(c))
2080 				continue;
2081 			if (time_before(jiffies,
2082 					c->timer2 + TIPC_TX_GRACE_PERIOD))
2083 				s = "ACT";
2084 			else
2085 				s = "PAS";
2086 		} else {
2087 			if (k == key.passive)
2088 				s = "PAS";
2089 			else if (k == key.active)
2090 				s = "ACT";
2091 			else if (k == key.pending)
2092 				s = "PEN";
2093 			else
2094 				s = "-";
2095 		}
2096 		i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2097 
2098 		rcu_read_lock();
2099 		aead = rcu_dereference(c->aead[k]);
2100 		if (aead)
2101 			i += scnprintf(buf + i, 200 - i,
2102 				       "{\"0x...%s\", \"%s\"}/%d:%d",
2103 				       aead->hint,
2104 				       (aead->mode == CLUSTER_KEY) ? "c" : "p",
2105 				       atomic_read(&aead->users),
2106 				       refcount_read(&aead->refcnt));
2107 		rcu_read_unlock();
2108 		i += scnprintf(buf + i, 200 - i, "\n");
2109 	}
2110 
2111 	if (is_rx(c))
2112 		i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2113 			       atomic_read(&c->peer_rx_active));
2114 
2115 	return buf;
2116 }
2117 
2118 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2119 				  char *buf)
2120 {
2121 	struct tipc_key *key = &old;
2122 	int k, i = 0;
2123 	char *s;
2124 
2125 	/* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2126 again:
2127 	i += scnprintf(buf + i, 32 - i, "[");
2128 	for (k = KEY_1; k <= KEY_3; k++) {
2129 		if (k == key->passive)
2130 			s = "pas";
2131 		else if (k == key->active)
2132 			s = "act";
2133 		else if (k == key->pending)
2134 			s = "pen";
2135 		else
2136 			s = "-";
2137 		i += scnprintf(buf + i, 32 - i,
2138 			       (k != KEY_3) ? "%s " : "%s", s);
2139 	}
2140 	if (key != &new) {
2141 		i += scnprintf(buf + i, 32 - i, "] -> ");
2142 		key = &new;
2143 		goto again;
2144 	}
2145 	i += scnprintf(buf + i, 32 - i, "]");
2146 	return buf;
2147 }
2148 
2149 /**
2150  * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2151  * @net: the struct net
2152  * @skb: the receiving message buffer
2153  */
2154 void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2155 {
2156 	struct tipc_crypto *rx;
2157 	struct tipc_msg *hdr;
2158 
2159 	if (unlikely(skb_linearize(skb)))
2160 		goto exit;
2161 
2162 	hdr = buf_msg(skb);
2163 	rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2164 	if (unlikely(!rx))
2165 		goto exit;
2166 
2167 	switch (msg_type(hdr)) {
2168 	case KEY_DISTR_MSG:
2169 		if (tipc_crypto_key_rcv(rx, hdr))
2170 			goto exit;
2171 		break;
2172 	default:
2173 		break;
2174 	}
2175 
2176 	tipc_node_put(rx->node);
2177 
2178 exit:
2179 	kfree_skb(skb);
2180 }
2181 
2182 /**
2183  * tipc_crypto_key_distr - Distribute a TX key
2184  * @tx: the TX crypto
2185  * @key: the key's index
2186  * @dest: the destination tipc node, = NULL if distributing to all nodes
2187  *
2188  * Return: 0 in case of success, otherwise < 0
2189  */
2190 int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2191 			  struct tipc_node *dest)
2192 {
2193 	struct tipc_aead *aead;
2194 	u32 dnode = tipc_node_get_addr(dest);
2195 	int rc = -ENOKEY;
2196 
2197 	if (!sysctl_tipc_key_exchange_enabled)
2198 		return 0;
2199 
2200 	if (key) {
2201 		rcu_read_lock();
2202 		aead = tipc_aead_get(tx->aead[key]);
2203 		if (likely(aead)) {
2204 			rc = tipc_crypto_key_xmit(tx->net, aead->key,
2205 						  aead->gen, aead->mode,
2206 						  dnode);
2207 			tipc_aead_put(aead);
2208 		}
2209 		rcu_read_unlock();
2210 	}
2211 
2212 	return rc;
2213 }
2214 
2215 /**
2216  * tipc_crypto_key_xmit - Send a session key
2217  * @net: the struct net
2218  * @skey: the session key to be sent
2219  * @gen: the key's generation
2220  * @mode: the key's mode
2221  * @dnode: the destination node address, = 0 if broadcasting to all nodes
2222  *
2223  * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2224  * as its data section, then xmit-ed through the uc/bc link.
2225  *
2226  * Return: 0 in case of success, otherwise < 0
2227  */
2228 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2229 				u16 gen, u8 mode, u32 dnode)
2230 {
2231 	struct sk_buff_head pkts;
2232 	struct tipc_msg *hdr;
2233 	struct sk_buff *skb;
2234 	u16 size, cong_link_cnt;
2235 	u8 *data;
2236 	int rc;
2237 
2238 	size = tipc_aead_key_size(skey);
2239 	skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2240 	if (!skb)
2241 		return -ENOMEM;
2242 
2243 	hdr = buf_msg(skb);
2244 	tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2245 		      INT_H_SIZE, dnode);
2246 	msg_set_size(hdr, INT_H_SIZE + size);
2247 	msg_set_key_gen(hdr, gen);
2248 	msg_set_key_mode(hdr, mode);
2249 
2250 	data = msg_data(hdr);
2251 	*((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2252 	memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2253 	memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2254 	       skey->keylen);
2255 
2256 	__skb_queue_head_init(&pkts);
2257 	__skb_queue_tail(&pkts, skb);
2258 	if (dnode)
2259 		rc = tipc_node_xmit(net, &pkts, dnode, 0);
2260 	else
2261 		rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2262 
2263 	return rc;
2264 }
2265 
2266 /**
2267  * tipc_crypto_key_rcv - Receive a session key
2268  * @rx: the RX crypto
2269  * @hdr: the TIPC v2 message incl. the receiving session key in its data
2270  *
2271  * This function retrieves the session key in the message from peer, then
2272  * schedules a RX work to attach the key to the corresponding RX crypto.
2273  *
2274  * Return: "true" if the key has been scheduled for attaching, otherwise
2275  * "false".
2276  */
2277 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2278 {
2279 	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2280 	struct tipc_aead_key *skey = NULL;
2281 	u16 key_gen = msg_key_gen(hdr);
2282 	u16 size = msg_data_sz(hdr);
2283 	u8 *data = msg_data(hdr);
2284 
2285 	spin_lock(&rx->lock);
2286 	if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2287 		pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2288 		       rx->skey, key_gen, rx->key_gen);
2289 		goto exit;
2290 	}
2291 
2292 	/* Allocate memory for the key */
2293 	skey = kmalloc(size, GFP_ATOMIC);
2294 	if (unlikely(!skey)) {
2295 		pr_err("%s: unable to allocate memory for skey\n", rx->name);
2296 		goto exit;
2297 	}
2298 
2299 	/* Copy key from msg data */
2300 	skey->keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2301 	memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2302 	memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2303 	       skey->keylen);
2304 
2305 	/* Sanity check */
2306 	if (unlikely(size != tipc_aead_key_size(skey))) {
2307 		kfree(skey);
2308 		skey = NULL;
2309 		goto exit;
2310 	}
2311 
2312 	rx->key_gen = key_gen;
2313 	rx->skey_mode = msg_key_mode(hdr);
2314 	rx->skey = skey;
2315 	rx->nokey = 0;
2316 	mb(); /* for nokey flag */
2317 
2318 exit:
2319 	spin_unlock(&rx->lock);
2320 
2321 	/* Schedule the key attaching on this crypto */
2322 	if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2323 		return true;
2324 
2325 	return false;
2326 }
2327 
2328 /**
2329  * tipc_crypto_work_rx - Scheduled RX works handler
2330  * @work: the struct RX work
2331  *
2332  * The function processes the previous scheduled works i.e. distributing TX key
2333  * or attaching a received session key on RX crypto.
2334  */
2335 static void tipc_crypto_work_rx(struct work_struct *work)
2336 {
2337 	struct delayed_work *dwork = to_delayed_work(work);
2338 	struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2339 	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2340 	unsigned long delay = msecs_to_jiffies(5000);
2341 	bool resched = false;
2342 	u8 key;
2343 	int rc;
2344 
2345 	/* Case 1: Distribute TX key to peer if scheduled */
2346 	if (atomic_cmpxchg(&rx->key_distr,
2347 			   KEY_DISTR_SCHED,
2348 			   KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2349 		/* Always pick the newest one for distributing */
2350 		key = tx->key.pending ?: tx->key.active;
2351 		rc = tipc_crypto_key_distr(tx, key, rx->node);
2352 		if (unlikely(rc))
2353 			pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2354 				tx->name, key, tipc_node_get_id_str(rx->node),
2355 				rc);
2356 
2357 		/* Sched for key_distr releasing */
2358 		resched = true;
2359 	} else {
2360 		atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2361 	}
2362 
2363 	/* Case 2: Attach a pending received session key from peer if any */
2364 	if (rx->skey) {
2365 		rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2366 		if (unlikely(rc < 0))
2367 			pr_warn("%s: unable to attach received skey, err %d\n",
2368 				rx->name, rc);
2369 		switch (rc) {
2370 		case -EBUSY:
2371 		case -ENOMEM:
2372 			/* Resched the key attaching */
2373 			resched = true;
2374 			break;
2375 		default:
2376 			synchronize_rcu();
2377 			kfree(rx->skey);
2378 			rx->skey = NULL;
2379 			break;
2380 		}
2381 	}
2382 
2383 	if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2384 		return;
2385 
2386 	tipc_node_put(rx->node);
2387 }
2388 
2389 /**
2390  * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2391  * @tx: TX crypto
2392  * @changed: if the rekeying needs to be rescheduled with new interval
2393  * @new_intv: new rekeying interval (when "changed" = true)
2394  */
2395 void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2396 				u32 new_intv)
2397 {
2398 	unsigned long delay;
2399 	bool now = false;
2400 
2401 	if (changed) {
2402 		if (new_intv == TIPC_REKEYING_NOW)
2403 			now = true;
2404 		else
2405 			tx->rekeying_intv = new_intv;
2406 		cancel_delayed_work_sync(&tx->work);
2407 	}
2408 
2409 	if (tx->rekeying_intv || now) {
2410 		delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2411 		queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2412 	}
2413 }
2414 
2415 /**
2416  * tipc_crypto_work_tx - Scheduled TX works handler
2417  * @work: the struct TX work
2418  *
2419  * The function processes the previous scheduled work, i.e. key rekeying, by
2420  * generating a new session key based on current one, then attaching it to the
2421  * TX crypto and finally distributing it to peers. It also re-schedules the
2422  * rekeying if needed.
2423  */
2424 static void tipc_crypto_work_tx(struct work_struct *work)
2425 {
2426 	struct delayed_work *dwork = to_delayed_work(work);
2427 	struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2428 	struct tipc_aead_key *skey = NULL;
2429 	struct tipc_key key = tx->key;
2430 	struct tipc_aead *aead;
2431 	int rc = -ENOMEM;
2432 
2433 	if (unlikely(key.pending))
2434 		goto resched;
2435 
2436 	/* Take current key as a template */
2437 	rcu_read_lock();
2438 	aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2439 	if (unlikely(!aead)) {
2440 		rcu_read_unlock();
2441 		/* At least one key should exist for securing */
2442 		return;
2443 	}
2444 
2445 	/* Lets duplicate it first */
2446 	skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2447 	rcu_read_unlock();
2448 
2449 	/* Now, generate new key, initiate & distribute it */
2450 	if (likely(skey)) {
2451 		rc = tipc_aead_key_generate(skey) ?:
2452 		     tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2453 		if (likely(rc > 0))
2454 			rc = tipc_crypto_key_distr(tx, rc, NULL);
2455 		kfree_sensitive(skey);
2456 	}
2457 
2458 	if (unlikely(rc))
2459 		pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2460 
2461 resched:
2462 	/* Re-schedule rekeying if any */
2463 	tipc_crypto_rekeying_sched(tx, false, 0);
2464 }
2465