1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption 4 * 5 * Copyright (c) 2019, Ericsson AB 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the names of the copyright holders nor the names of its 17 * contributors may be used to endorse or promote products derived from 18 * this software without specific prior written permission. 19 * 20 * Alternatively, this software may be distributed under the terms of the 21 * GNU General Public License ("GPL") version 2 as published by the Free 22 * Software Foundation. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * POSSIBILITY OF SUCH DAMAGE. 35 */ 36 37 #include <crypto/aead.h> 38 #include <crypto/aes.h> 39 #include <crypto/rng.h> 40 #include "crypto.h" 41 #include "msg.h" 42 #include "bcast.h" 43 44 #define TIPC_TX_GRACE_PERIOD msecs_to_jiffies(5000) /* 5s */ 45 #define TIPC_TX_LASTING_TIME msecs_to_jiffies(10000) /* 10s */ 46 #define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */ 47 #define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(15000) /* 15s */ 48 49 #define TIPC_MAX_TFMS_DEF 10 50 #define TIPC_MAX_TFMS_LIM 1000 51 52 #define TIPC_REKEYING_INTV_DEF (60 * 24) /* default: 1 day */ 53 54 /* 55 * TIPC Key ids 56 */ 57 enum { 58 KEY_MASTER = 0, 59 KEY_MIN = KEY_MASTER, 60 KEY_1 = 1, 61 KEY_2, 62 KEY_3, 63 KEY_MAX = KEY_3, 64 }; 65 66 /* 67 * TIPC Crypto statistics 68 */ 69 enum { 70 STAT_OK, 71 STAT_NOK, 72 STAT_ASYNC, 73 STAT_ASYNC_OK, 74 STAT_ASYNC_NOK, 75 STAT_BADKEYS, /* tx only */ 76 STAT_BADMSGS = STAT_BADKEYS, /* rx only */ 77 STAT_NOKEYS, 78 STAT_SWITCHES, 79 80 MAX_STATS, 81 }; 82 83 /* TIPC crypto statistics' header */ 84 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok", 85 "async_nok", "badmsgs", "nokeys", 86 "switches"}; 87 88 /* Max TFMs number per key */ 89 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF; 90 /* Key exchange switch, default: on */ 91 int sysctl_tipc_key_exchange_enabled __read_mostly = 1; 92 93 /* 94 * struct tipc_key - TIPC keys' status indicator 95 * 96 * 7 6 5 4 3 2 1 0 97 * +-----+-----+-----+-----+-----+-----+-----+-----+ 98 * key: | (reserved)|passive idx| active idx|pending idx| 99 * +-----+-----+-----+-----+-----+-----+-----+-----+ 100 */ 101 struct tipc_key { 102 #define KEY_BITS (2) 103 #define KEY_MASK ((1 << KEY_BITS) - 1) 104 union { 105 struct { 106 #if defined(__LITTLE_ENDIAN_BITFIELD) 107 u8 pending:2, 108 active:2, 109 passive:2, /* rx only */ 110 reserved:2; 111 #elif defined(__BIG_ENDIAN_BITFIELD) 112 u8 reserved:2, 113 passive:2, /* rx only */ 114 active:2, 115 pending:2; 116 #else 117 #error "Please fix <asm/byteorder.h>" 118 #endif 119 } __packed; 120 u8 keys; 121 }; 122 }; 123 124 /** 125 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs 126 * @tfm: cipher handle/key 127 * @list: linked list of TFMs 128 */ 129 struct tipc_tfm { 130 struct crypto_aead *tfm; 131 struct list_head list; 132 }; 133 134 /** 135 * struct tipc_aead - TIPC AEAD key structure 136 * @tfm_entry: per-cpu pointer to one entry in TFM list 137 * @crypto: TIPC crypto owns this key 138 * @cloned: reference to the source key in case cloning 139 * @users: the number of the key users (TX/RX) 140 * @salt: the key's SALT value 141 * @authsize: authentication tag size (max = 16) 142 * @mode: crypto mode is applied to the key 143 * @hint: a hint for user key 144 * @rcu: struct rcu_head 145 * @key: the aead key 146 * @gen: the key's generation 147 * @seqno: the key seqno (cluster scope) 148 * @refcnt: the key reference counter 149 */ 150 struct tipc_aead { 151 #define TIPC_AEAD_HINT_LEN (5) 152 struct tipc_tfm * __percpu *tfm_entry; 153 struct tipc_crypto *crypto; 154 struct tipc_aead *cloned; 155 atomic_t users; 156 u32 salt; 157 u8 authsize; 158 u8 mode; 159 char hint[2 * TIPC_AEAD_HINT_LEN + 1]; 160 struct rcu_head rcu; 161 struct tipc_aead_key *key; 162 u16 gen; 163 164 atomic64_t seqno ____cacheline_aligned; 165 refcount_t refcnt ____cacheline_aligned; 166 167 } ____cacheline_aligned; 168 169 /** 170 * struct tipc_crypto_stats - TIPC Crypto statistics 171 * @stat: array of crypto statistics 172 */ 173 struct tipc_crypto_stats { 174 unsigned int stat[MAX_STATS]; 175 }; 176 177 /** 178 * struct tipc_crypto - TIPC TX/RX crypto structure 179 * @net: struct net 180 * @node: TIPC node (RX) 181 * @aead: array of pointers to AEAD keys for encryption/decryption 182 * @peer_rx_active: replicated peer RX active key index 183 * @key_gen: TX/RX key generation 184 * @key: the key states 185 * @skey_mode: session key's mode 186 * @skey: received session key 187 * @wq: common workqueue on TX crypto 188 * @work: delayed work sched for TX/RX 189 * @key_distr: key distributing state 190 * @rekeying_intv: rekeying interval (in minutes) 191 * @stats: the crypto statistics 192 * @name: the crypto name 193 * @sndnxt: the per-peer sndnxt (TX) 194 * @timer1: general timer 1 (jiffies) 195 * @timer2: general timer 2 (jiffies) 196 * @working: the crypto is working or not 197 * @key_master: flag indicates if master key exists 198 * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.) 199 * @nokey: no key indication 200 * @flags: combined flags field 201 * @lock: tipc_key lock 202 */ 203 struct tipc_crypto { 204 struct net *net; 205 struct tipc_node *node; 206 struct tipc_aead __rcu *aead[KEY_MAX + 1]; 207 atomic_t peer_rx_active; 208 u16 key_gen; 209 struct tipc_key key; 210 u8 skey_mode; 211 struct tipc_aead_key *skey; 212 struct workqueue_struct *wq; 213 struct delayed_work work; 214 #define KEY_DISTR_SCHED 1 215 #define KEY_DISTR_COMPL 2 216 atomic_t key_distr; 217 u32 rekeying_intv; 218 219 struct tipc_crypto_stats __percpu *stats; 220 char name[48]; 221 222 atomic64_t sndnxt ____cacheline_aligned; 223 unsigned long timer1; 224 unsigned long timer2; 225 union { 226 struct { 227 u8 working:1; 228 u8 key_master:1; 229 u8 legacy_user:1; 230 u8 nokey: 1; 231 }; 232 u8 flags; 233 }; 234 spinlock_t lock; /* crypto lock */ 235 236 } ____cacheline_aligned; 237 238 /* struct tipc_crypto_tx_ctx - TX context for callbacks */ 239 struct tipc_crypto_tx_ctx { 240 struct tipc_aead *aead; 241 struct tipc_bearer *bearer; 242 struct tipc_media_addr dst; 243 }; 244 245 /* struct tipc_crypto_rx_ctx - RX context for callbacks */ 246 struct tipc_crypto_rx_ctx { 247 struct tipc_aead *aead; 248 struct tipc_bearer *bearer; 249 }; 250 251 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead); 252 static inline void tipc_aead_put(struct tipc_aead *aead); 253 static void tipc_aead_free(struct rcu_head *rp); 254 static int tipc_aead_users(struct tipc_aead __rcu *aead); 255 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim); 256 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim); 257 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val); 258 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead); 259 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, 260 u8 mode); 261 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src); 262 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, 263 unsigned int crypto_ctx_size, 264 u8 **iv, struct aead_request **req, 265 struct scatterlist **sg, int nsg); 266 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, 267 struct tipc_bearer *b, 268 struct tipc_media_addr *dst, 269 struct tipc_node *__dnode); 270 static void tipc_aead_encrypt_done(void *data, int err); 271 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, 272 struct sk_buff *skb, struct tipc_bearer *b); 273 static void tipc_aead_decrypt_done(void *data, int err); 274 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr); 275 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, 276 u8 tx_key, struct sk_buff *skb, 277 struct tipc_crypto *__rx); 278 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, 279 u8 new_passive, 280 u8 new_active, 281 u8 new_pending); 282 static int tipc_crypto_key_attach(struct tipc_crypto *c, 283 struct tipc_aead *aead, u8 pos, 284 bool master_key); 285 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending); 286 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, 287 struct tipc_crypto *rx, 288 struct sk_buff *skb, 289 u8 tx_key); 290 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb); 291 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key); 292 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb, 293 struct tipc_bearer *b, 294 struct tipc_media_addr *dst, 295 struct tipc_node *__dnode, u8 type); 296 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, 297 struct tipc_bearer *b, 298 struct sk_buff **skb, int err); 299 static void tipc_crypto_do_cmd(struct net *net, int cmd); 300 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf); 301 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, 302 char *buf); 303 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey, 304 u16 gen, u8 mode, u32 dnode); 305 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr); 306 static void tipc_crypto_work_tx(struct work_struct *work); 307 static void tipc_crypto_work_rx(struct work_struct *work); 308 static int tipc_aead_key_generate(struct tipc_aead_key *skey); 309 310 #define is_tx(crypto) (!(crypto)->node) 311 #define is_rx(crypto) (!is_tx(crypto)) 312 313 #define key_next(cur) ((cur) % KEY_MAX + 1) 314 315 #define tipc_aead_rcu_ptr(rcu_ptr, lock) \ 316 rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock)) 317 318 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \ 319 do { \ 320 struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr), \ 321 lockdep_is_held(lock)); \ 322 rcu_assign_pointer((rcu_ptr), (ptr)); \ 323 tipc_aead_put(__tmp); \ 324 } while (0) 325 326 #define tipc_crypto_key_detach(rcu_ptr, lock) \ 327 tipc_aead_rcu_replace((rcu_ptr), NULL, lock) 328 329 /** 330 * tipc_aead_key_validate - Validate a AEAD user key 331 * @ukey: pointer to user key data 332 * @info: netlink info pointer 333 */ 334 int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info) 335 { 336 int keylen; 337 338 /* Check if algorithm exists */ 339 if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) { 340 GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)"); 341 return -ENODEV; 342 } 343 344 /* Currently, we only support the "gcm(aes)" cipher algorithm */ 345 if (strcmp(ukey->alg_name, "gcm(aes)")) { 346 GENL_SET_ERR_MSG(info, "not supported yet the algorithm"); 347 return -ENOTSUPP; 348 } 349 350 /* Check if key size is correct */ 351 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; 352 if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 && 353 keylen != TIPC_AES_GCM_KEY_SIZE_192 && 354 keylen != TIPC_AES_GCM_KEY_SIZE_256)) { 355 GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)"); 356 return -EKEYREJECTED; 357 } 358 359 return 0; 360 } 361 362 /** 363 * tipc_aead_key_generate - Generate new session key 364 * @skey: input/output key with new content 365 * 366 * Return: 0 in case of success, otherwise < 0 367 */ 368 static int tipc_aead_key_generate(struct tipc_aead_key *skey) 369 { 370 int rc = 0; 371 372 /* Fill the key's content with a random value via RNG cipher */ 373 rc = crypto_get_default_rng(); 374 if (likely(!rc)) { 375 rc = crypto_rng_get_bytes(crypto_default_rng, skey->key, 376 skey->keylen); 377 crypto_put_default_rng(); 378 } 379 380 return rc; 381 } 382 383 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead) 384 { 385 struct tipc_aead *tmp; 386 387 rcu_read_lock(); 388 tmp = rcu_dereference(aead); 389 if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt))) 390 tmp = NULL; 391 rcu_read_unlock(); 392 393 return tmp; 394 } 395 396 static inline void tipc_aead_put(struct tipc_aead *aead) 397 { 398 if (aead && refcount_dec_and_test(&aead->refcnt)) 399 call_rcu(&aead->rcu, tipc_aead_free); 400 } 401 402 /** 403 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list 404 * @rp: rcu head pointer 405 */ 406 static void tipc_aead_free(struct rcu_head *rp) 407 { 408 struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu); 409 struct tipc_tfm *tfm_entry, *head, *tmp; 410 411 if (aead->cloned) { 412 tipc_aead_put(aead->cloned); 413 } else { 414 head = *get_cpu_ptr(aead->tfm_entry); 415 put_cpu_ptr(aead->tfm_entry); 416 list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) { 417 crypto_free_aead(tfm_entry->tfm); 418 list_del(&tfm_entry->list); 419 kfree(tfm_entry); 420 } 421 /* Free the head */ 422 crypto_free_aead(head->tfm); 423 list_del(&head->list); 424 kfree(head); 425 } 426 free_percpu(aead->tfm_entry); 427 kfree_sensitive(aead->key); 428 kfree(aead); 429 } 430 431 static int tipc_aead_users(struct tipc_aead __rcu *aead) 432 { 433 struct tipc_aead *tmp; 434 int users = 0; 435 436 rcu_read_lock(); 437 tmp = rcu_dereference(aead); 438 if (tmp) 439 users = atomic_read(&tmp->users); 440 rcu_read_unlock(); 441 442 return users; 443 } 444 445 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim) 446 { 447 struct tipc_aead *tmp; 448 449 rcu_read_lock(); 450 tmp = rcu_dereference(aead); 451 if (tmp) 452 atomic_add_unless(&tmp->users, 1, lim); 453 rcu_read_unlock(); 454 } 455 456 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim) 457 { 458 struct tipc_aead *tmp; 459 460 rcu_read_lock(); 461 tmp = rcu_dereference(aead); 462 if (tmp) 463 atomic_add_unless(&rcu_dereference(aead)->users, -1, lim); 464 rcu_read_unlock(); 465 } 466 467 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val) 468 { 469 struct tipc_aead *tmp; 470 int cur; 471 472 rcu_read_lock(); 473 tmp = rcu_dereference(aead); 474 if (tmp) { 475 do { 476 cur = atomic_read(&tmp->users); 477 if (cur == val) 478 break; 479 } while (atomic_cmpxchg(&tmp->users, cur, val) != cur); 480 } 481 rcu_read_unlock(); 482 } 483 484 /** 485 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it 486 * @aead: the AEAD key pointer 487 */ 488 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead) 489 { 490 struct tipc_tfm **tfm_entry; 491 struct crypto_aead *tfm; 492 493 tfm_entry = get_cpu_ptr(aead->tfm_entry); 494 *tfm_entry = list_next_entry(*tfm_entry, list); 495 tfm = (*tfm_entry)->tfm; 496 put_cpu_ptr(tfm_entry); 497 498 return tfm; 499 } 500 501 /** 502 * tipc_aead_init - Initiate TIPC AEAD 503 * @aead: returned new TIPC AEAD key handle pointer 504 * @ukey: pointer to user key data 505 * @mode: the key mode 506 * 507 * Allocate a (list of) new cipher transformation (TFM) with the specific user 508 * key data if valid. The number of the allocated TFMs can be set via the sysfs 509 * "net/tipc/max_tfms" first. 510 * Also, all the other AEAD data are also initialized. 511 * 512 * Return: 0 if the initiation is successful, otherwise: < 0 513 */ 514 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, 515 u8 mode) 516 { 517 struct tipc_tfm *tfm_entry, *head; 518 struct crypto_aead *tfm; 519 struct tipc_aead *tmp; 520 int keylen, err, cpu; 521 int tfm_cnt = 0; 522 523 if (unlikely(*aead)) 524 return -EEXIST; 525 526 /* Allocate a new AEAD */ 527 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC); 528 if (unlikely(!tmp)) 529 return -ENOMEM; 530 531 /* The key consists of two parts: [AES-KEY][SALT] */ 532 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; 533 534 /* Allocate per-cpu TFM entry pointer */ 535 tmp->tfm_entry = alloc_percpu(struct tipc_tfm *); 536 if (!tmp->tfm_entry) { 537 kfree_sensitive(tmp); 538 return -ENOMEM; 539 } 540 541 /* Make a list of TFMs with the user key data */ 542 do { 543 tfm = crypto_alloc_aead(ukey->alg_name, 0, 0); 544 if (IS_ERR(tfm)) { 545 err = PTR_ERR(tfm); 546 break; 547 } 548 549 if (unlikely(!tfm_cnt && 550 crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) { 551 crypto_free_aead(tfm); 552 err = -ENOTSUPP; 553 break; 554 } 555 556 err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE); 557 err |= crypto_aead_setkey(tfm, ukey->key, keylen); 558 if (unlikely(err)) { 559 crypto_free_aead(tfm); 560 break; 561 } 562 563 tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL); 564 if (unlikely(!tfm_entry)) { 565 crypto_free_aead(tfm); 566 err = -ENOMEM; 567 break; 568 } 569 INIT_LIST_HEAD(&tfm_entry->list); 570 tfm_entry->tfm = tfm; 571 572 /* First entry? */ 573 if (!tfm_cnt) { 574 head = tfm_entry; 575 for_each_possible_cpu(cpu) { 576 *per_cpu_ptr(tmp->tfm_entry, cpu) = head; 577 } 578 } else { 579 list_add_tail(&tfm_entry->list, &head->list); 580 } 581 582 } while (++tfm_cnt < sysctl_tipc_max_tfms); 583 584 /* Not any TFM is allocated? */ 585 if (!tfm_cnt) { 586 free_percpu(tmp->tfm_entry); 587 kfree_sensitive(tmp); 588 return err; 589 } 590 591 /* Form a hex string of some last bytes as the key's hint */ 592 bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN, 593 TIPC_AEAD_HINT_LEN); 594 595 /* Initialize the other data */ 596 tmp->mode = mode; 597 tmp->cloned = NULL; 598 tmp->authsize = TIPC_AES_GCM_TAG_SIZE; 599 tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL); 600 if (!tmp->key) { 601 tipc_aead_free(&tmp->rcu); 602 return -ENOMEM; 603 } 604 memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE); 605 atomic_set(&tmp->users, 0); 606 atomic64_set(&tmp->seqno, 0); 607 refcount_set(&tmp->refcnt, 1); 608 609 *aead = tmp; 610 return 0; 611 } 612 613 /** 614 * tipc_aead_clone - Clone a TIPC AEAD key 615 * @dst: dest key for the cloning 616 * @src: source key to clone from 617 * 618 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is 619 * common for the keys. 620 * A reference to the source is hold in the "cloned" pointer for the later 621 * freeing purposes. 622 * 623 * Note: this must be done in cluster-key mode only! 624 * Return: 0 in case of success, otherwise < 0 625 */ 626 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src) 627 { 628 struct tipc_aead *aead; 629 int cpu; 630 631 if (!src) 632 return -ENOKEY; 633 634 if (src->mode != CLUSTER_KEY) 635 return -EINVAL; 636 637 if (unlikely(*dst)) 638 return -EEXIST; 639 640 aead = kzalloc(sizeof(*aead), GFP_ATOMIC); 641 if (unlikely(!aead)) 642 return -ENOMEM; 643 644 aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC); 645 if (unlikely(!aead->tfm_entry)) { 646 kfree_sensitive(aead); 647 return -ENOMEM; 648 } 649 650 for_each_possible_cpu(cpu) { 651 *per_cpu_ptr(aead->tfm_entry, cpu) = 652 *per_cpu_ptr(src->tfm_entry, cpu); 653 } 654 655 memcpy(aead->hint, src->hint, sizeof(src->hint)); 656 aead->mode = src->mode; 657 aead->salt = src->salt; 658 aead->authsize = src->authsize; 659 atomic_set(&aead->users, 0); 660 atomic64_set(&aead->seqno, 0); 661 refcount_set(&aead->refcnt, 1); 662 663 WARN_ON(!refcount_inc_not_zero(&src->refcnt)); 664 aead->cloned = src; 665 666 *dst = aead; 667 return 0; 668 } 669 670 /** 671 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations 672 * @tfm: cipher handle to be registered with the request 673 * @crypto_ctx_size: size of crypto context for callback 674 * @iv: returned pointer to IV data 675 * @req: returned pointer to AEAD request data 676 * @sg: returned pointer to SG lists 677 * @nsg: number of SG lists to be allocated 678 * 679 * Allocate memory to store the crypto context data, AEAD request, IV and SG 680 * lists, the memory layout is as follows: 681 * crypto_ctx || iv || aead_req || sg[] 682 * 683 * Return: the pointer to the memory areas in case of success, otherwise NULL 684 */ 685 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, 686 unsigned int crypto_ctx_size, 687 u8 **iv, struct aead_request **req, 688 struct scatterlist **sg, int nsg) 689 { 690 unsigned int iv_size, req_size; 691 unsigned int len; 692 u8 *mem; 693 694 iv_size = crypto_aead_ivsize(tfm); 695 req_size = sizeof(**req) + crypto_aead_reqsize(tfm); 696 697 len = crypto_ctx_size; 698 len += iv_size; 699 len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1); 700 len = ALIGN(len, crypto_tfm_ctx_alignment()); 701 len += req_size; 702 len = ALIGN(len, __alignof__(struct scatterlist)); 703 len += nsg * sizeof(**sg); 704 705 mem = kmalloc(len, GFP_ATOMIC); 706 if (!mem) 707 return NULL; 708 709 *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size, 710 crypto_aead_alignmask(tfm) + 1); 711 *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size, 712 crypto_tfm_ctx_alignment()); 713 *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size, 714 __alignof__(struct scatterlist)); 715 716 return (void *)mem; 717 } 718 719 /** 720 * tipc_aead_encrypt - Encrypt a message 721 * @aead: TIPC AEAD key for the message encryption 722 * @skb: the input/output skb 723 * @b: TIPC bearer where the message will be delivered after the encryption 724 * @dst: the destination media address 725 * @__dnode: TIPC dest node if "known" 726 * 727 * Return: 728 * * 0 : if the encryption has completed 729 * * -EINPROGRESS/-EBUSY : if a callback will be performed 730 * * < 0 : the encryption has failed 731 */ 732 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, 733 struct tipc_bearer *b, 734 struct tipc_media_addr *dst, 735 struct tipc_node *__dnode) 736 { 737 struct crypto_aead *tfm = tipc_aead_tfm_next(aead); 738 struct tipc_crypto_tx_ctx *tx_ctx; 739 struct aead_request *req; 740 struct sk_buff *trailer; 741 struct scatterlist *sg; 742 struct tipc_ehdr *ehdr; 743 int ehsz, len, tailen, nsg, rc; 744 void *ctx; 745 u32 salt; 746 u8 *iv; 747 748 /* Make sure message len at least 4-byte aligned */ 749 len = ALIGN(skb->len, 4); 750 tailen = len - skb->len + aead->authsize; 751 752 /* Expand skb tail for authentication tag: 753 * As for simplicity, we'd have made sure skb having enough tailroom 754 * for authentication tag @skb allocation. Even when skb is nonlinear 755 * but there is no frag_list, it should be still fine! 756 * Otherwise, we must cow it to be a writable buffer with the tailroom. 757 */ 758 SKB_LINEAR_ASSERT(skb); 759 if (tailen > skb_tailroom(skb)) { 760 pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n", 761 skb_tailroom(skb), tailen); 762 } 763 764 nsg = skb_cow_data(skb, tailen, &trailer); 765 if (unlikely(nsg < 0)) { 766 pr_err("TX: skb_cow_data() returned %d\n", nsg); 767 return nsg; 768 } 769 770 pskb_put(skb, trailer, tailen); 771 772 /* Allocate memory for the AEAD operation */ 773 ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg); 774 if (unlikely(!ctx)) 775 return -ENOMEM; 776 TIPC_SKB_CB(skb)->crypto_ctx = ctx; 777 778 /* Map skb to the sg lists */ 779 sg_init_table(sg, nsg); 780 rc = skb_to_sgvec(skb, sg, 0, skb->len); 781 if (unlikely(rc < 0)) { 782 pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg); 783 goto exit; 784 } 785 786 /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)] 787 * In case we're in cluster-key mode, SALT is varied by xor-ing with 788 * the source address (or w0 of id), otherwise with the dest address 789 * if dest is known. 790 */ 791 ehdr = (struct tipc_ehdr *)skb->data; 792 salt = aead->salt; 793 if (aead->mode == CLUSTER_KEY) 794 salt ^= __be32_to_cpu(ehdr->addr); 795 else if (__dnode) 796 salt ^= tipc_node_get_addr(__dnode); 797 memcpy(iv, &salt, 4); 798 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); 799 800 /* Prepare request */ 801 ehsz = tipc_ehdr_size(ehdr); 802 aead_request_set_tfm(req, tfm); 803 aead_request_set_ad(req, ehsz); 804 aead_request_set_crypt(req, sg, sg, len - ehsz, iv); 805 806 /* Set callback function & data */ 807 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 808 tipc_aead_encrypt_done, skb); 809 tx_ctx = (struct tipc_crypto_tx_ctx *)ctx; 810 tx_ctx->aead = aead; 811 tx_ctx->bearer = b; 812 memcpy(&tx_ctx->dst, dst, sizeof(*dst)); 813 814 /* Hold bearer */ 815 if (unlikely(!tipc_bearer_hold(b))) { 816 rc = -ENODEV; 817 goto exit; 818 } 819 820 /* Get net to avoid freed tipc_crypto when delete namespace */ 821 get_net(aead->crypto->net); 822 823 /* Now, do encrypt */ 824 rc = crypto_aead_encrypt(req); 825 if (rc == -EINPROGRESS || rc == -EBUSY) 826 return rc; 827 828 tipc_bearer_put(b); 829 put_net(aead->crypto->net); 830 831 exit: 832 kfree(ctx); 833 TIPC_SKB_CB(skb)->crypto_ctx = NULL; 834 return rc; 835 } 836 837 static void tipc_aead_encrypt_done(void *data, int err) 838 { 839 struct sk_buff *skb = data; 840 struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; 841 struct tipc_bearer *b = tx_ctx->bearer; 842 struct tipc_aead *aead = tx_ctx->aead; 843 struct tipc_crypto *tx = aead->crypto; 844 struct net *net = tx->net; 845 846 switch (err) { 847 case 0: 848 this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]); 849 rcu_read_lock(); 850 if (likely(test_bit(0, &b->up))) 851 b->media->send_msg(net, skb, b, &tx_ctx->dst); 852 else 853 kfree_skb(skb); 854 rcu_read_unlock(); 855 break; 856 case -EINPROGRESS: 857 return; 858 default: 859 this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]); 860 kfree_skb(skb); 861 break; 862 } 863 864 kfree(tx_ctx); 865 tipc_bearer_put(b); 866 tipc_aead_put(aead); 867 put_net(net); 868 } 869 870 /** 871 * tipc_aead_decrypt - Decrypt an encrypted message 872 * @net: struct net 873 * @aead: TIPC AEAD for the message decryption 874 * @skb: the input/output skb 875 * @b: TIPC bearer where the message has been received 876 * 877 * Return: 878 * * 0 : if the decryption has completed 879 * * -EINPROGRESS/-EBUSY : if a callback will be performed 880 * * < 0 : the decryption has failed 881 */ 882 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, 883 struct sk_buff *skb, struct tipc_bearer *b) 884 { 885 struct tipc_crypto_rx_ctx *rx_ctx; 886 struct aead_request *req; 887 struct crypto_aead *tfm; 888 struct sk_buff *unused; 889 struct scatterlist *sg; 890 struct tipc_ehdr *ehdr; 891 int ehsz, nsg, rc; 892 void *ctx; 893 u32 salt; 894 u8 *iv; 895 896 if (unlikely(!aead)) 897 return -ENOKEY; 898 899 nsg = skb_cow_data(skb, 0, &unused); 900 if (unlikely(nsg < 0)) { 901 pr_err("RX: skb_cow_data() returned %d\n", nsg); 902 return nsg; 903 } 904 905 /* Allocate memory for the AEAD operation */ 906 tfm = tipc_aead_tfm_next(aead); 907 ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg); 908 if (unlikely(!ctx)) 909 return -ENOMEM; 910 TIPC_SKB_CB(skb)->crypto_ctx = ctx; 911 912 /* Map skb to the sg lists */ 913 sg_init_table(sg, nsg); 914 rc = skb_to_sgvec(skb, sg, 0, skb->len); 915 if (unlikely(rc < 0)) { 916 pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg); 917 goto exit; 918 } 919 920 /* Reconstruct IV: */ 921 ehdr = (struct tipc_ehdr *)skb->data; 922 salt = aead->salt; 923 if (aead->mode == CLUSTER_KEY) 924 salt ^= __be32_to_cpu(ehdr->addr); 925 else if (ehdr->destined) 926 salt ^= tipc_own_addr(net); 927 memcpy(iv, &salt, 4); 928 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); 929 930 /* Prepare request */ 931 ehsz = tipc_ehdr_size(ehdr); 932 aead_request_set_tfm(req, tfm); 933 aead_request_set_ad(req, ehsz); 934 aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv); 935 936 /* Set callback function & data */ 937 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 938 tipc_aead_decrypt_done, skb); 939 rx_ctx = (struct tipc_crypto_rx_ctx *)ctx; 940 rx_ctx->aead = aead; 941 rx_ctx->bearer = b; 942 943 /* Hold bearer */ 944 if (unlikely(!tipc_bearer_hold(b))) { 945 rc = -ENODEV; 946 goto exit; 947 } 948 949 /* Now, do decrypt */ 950 rc = crypto_aead_decrypt(req); 951 if (rc == -EINPROGRESS || rc == -EBUSY) 952 return rc; 953 954 tipc_bearer_put(b); 955 956 exit: 957 kfree(ctx); 958 TIPC_SKB_CB(skb)->crypto_ctx = NULL; 959 return rc; 960 } 961 962 static void tipc_aead_decrypt_done(void *data, int err) 963 { 964 struct sk_buff *skb = data; 965 struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; 966 struct tipc_bearer *b = rx_ctx->bearer; 967 struct tipc_aead *aead = rx_ctx->aead; 968 struct tipc_crypto_stats __percpu *stats = aead->crypto->stats; 969 struct net *net = aead->crypto->net; 970 971 switch (err) { 972 case 0: 973 this_cpu_inc(stats->stat[STAT_ASYNC_OK]); 974 break; 975 case -EINPROGRESS: 976 return; 977 default: 978 this_cpu_inc(stats->stat[STAT_ASYNC_NOK]); 979 break; 980 } 981 982 kfree(rx_ctx); 983 tipc_crypto_rcv_complete(net, aead, b, &skb, err); 984 if (likely(skb)) { 985 if (likely(test_bit(0, &b->up))) 986 tipc_rcv(net, skb, b); 987 else 988 kfree_skb(skb); 989 } 990 991 tipc_bearer_put(b); 992 } 993 994 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr) 995 { 996 return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; 997 } 998 999 /** 1000 * tipc_ehdr_validate - Validate an encryption message 1001 * @skb: the message buffer 1002 * 1003 * Return: "true" if this is a valid encryption message, otherwise "false" 1004 */ 1005 bool tipc_ehdr_validate(struct sk_buff *skb) 1006 { 1007 struct tipc_ehdr *ehdr; 1008 int ehsz; 1009 1010 if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE))) 1011 return false; 1012 1013 ehdr = (struct tipc_ehdr *)skb->data; 1014 if (unlikely(ehdr->version != TIPC_EVERSION)) 1015 return false; 1016 ehsz = tipc_ehdr_size(ehdr); 1017 if (unlikely(!pskb_may_pull(skb, ehsz))) 1018 return false; 1019 if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE)) 1020 return false; 1021 1022 return true; 1023 } 1024 1025 /** 1026 * tipc_ehdr_build - Build TIPC encryption message header 1027 * @net: struct net 1028 * @aead: TX AEAD key to be used for the message encryption 1029 * @tx_key: key id used for the message encryption 1030 * @skb: input/output message skb 1031 * @__rx: RX crypto handle if dest is "known" 1032 * 1033 * Return: the header size if the building is successful, otherwise < 0 1034 */ 1035 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, 1036 u8 tx_key, struct sk_buff *skb, 1037 struct tipc_crypto *__rx) 1038 { 1039 struct tipc_msg *hdr = buf_msg(skb); 1040 struct tipc_ehdr *ehdr; 1041 u32 user = msg_user(hdr); 1042 u64 seqno; 1043 int ehsz; 1044 1045 /* Make room for encryption header */ 1046 ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; 1047 WARN_ON(skb_headroom(skb) < ehsz); 1048 ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz); 1049 1050 /* Obtain a seqno first: 1051 * Use the key seqno (= cluster wise) if dest is unknown or we're in 1052 * cluster key mode, otherwise it's better for a per-peer seqno! 1053 */ 1054 if (!__rx || aead->mode == CLUSTER_KEY) 1055 seqno = atomic64_inc_return(&aead->seqno); 1056 else 1057 seqno = atomic64_inc_return(&__rx->sndnxt); 1058 1059 /* Revoke the key if seqno is wrapped around */ 1060 if (unlikely(!seqno)) 1061 return tipc_crypto_key_revoke(net, tx_key); 1062 1063 /* Word 1-2 */ 1064 ehdr->seqno = cpu_to_be64(seqno); 1065 1066 /* Words 0, 3- */ 1067 ehdr->version = TIPC_EVERSION; 1068 ehdr->user = 0; 1069 ehdr->keepalive = 0; 1070 ehdr->tx_key = tx_key; 1071 ehdr->destined = (__rx) ? 1 : 0; 1072 ehdr->rx_key_active = (__rx) ? __rx->key.active : 0; 1073 ehdr->rx_nokey = (__rx) ? __rx->nokey : 0; 1074 ehdr->master_key = aead->crypto->key_master; 1075 ehdr->reserved_1 = 0; 1076 ehdr->reserved_2 = 0; 1077 1078 switch (user) { 1079 case LINK_CONFIG: 1080 ehdr->user = LINK_CONFIG; 1081 memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN); 1082 break; 1083 default: 1084 if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) { 1085 ehdr->user = LINK_PROTOCOL; 1086 ehdr->keepalive = msg_is_keepalive(hdr); 1087 } 1088 ehdr->addr = hdr->hdr[3]; 1089 break; 1090 } 1091 1092 return ehsz; 1093 } 1094 1095 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, 1096 u8 new_passive, 1097 u8 new_active, 1098 u8 new_pending) 1099 { 1100 struct tipc_key old = c->key; 1101 char buf[32]; 1102 1103 c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) | 1104 ((new_active & KEY_MASK) << (KEY_BITS)) | 1105 ((new_pending & KEY_MASK)); 1106 1107 pr_debug("%s: key changing %s ::%pS\n", c->name, 1108 tipc_key_change_dump(old, c->key, buf), 1109 __builtin_return_address(0)); 1110 } 1111 1112 /** 1113 * tipc_crypto_key_init - Initiate a new user / AEAD key 1114 * @c: TIPC crypto to which new key is attached 1115 * @ukey: the user key 1116 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY) 1117 * @master_key: specify this is a cluster master key 1118 * 1119 * A new TIPC AEAD key will be allocated and initiated with the specified user 1120 * key, then attached to the TIPC crypto. 1121 * 1122 * Return: new key id in case of success, otherwise: < 0 1123 */ 1124 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey, 1125 u8 mode, bool master_key) 1126 { 1127 struct tipc_aead *aead = NULL; 1128 int rc = 0; 1129 1130 /* Initiate with the new user key */ 1131 rc = tipc_aead_init(&aead, ukey, mode); 1132 1133 /* Attach it to the crypto */ 1134 if (likely(!rc)) { 1135 rc = tipc_crypto_key_attach(c, aead, 0, master_key); 1136 if (rc < 0) 1137 tipc_aead_free(&aead->rcu); 1138 } 1139 1140 return rc; 1141 } 1142 1143 /** 1144 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto 1145 * @c: TIPC crypto to which the new AEAD key is attached 1146 * @aead: the new AEAD key pointer 1147 * @pos: desired slot in the crypto key array, = 0 if any! 1148 * @master_key: specify this is a cluster master key 1149 * 1150 * Return: new key id in case of success, otherwise: -EBUSY 1151 */ 1152 static int tipc_crypto_key_attach(struct tipc_crypto *c, 1153 struct tipc_aead *aead, u8 pos, 1154 bool master_key) 1155 { 1156 struct tipc_key key; 1157 int rc = -EBUSY; 1158 u8 new_key; 1159 1160 spin_lock_bh(&c->lock); 1161 key = c->key; 1162 if (master_key) { 1163 new_key = KEY_MASTER; 1164 goto attach; 1165 } 1166 if (key.active && key.passive) 1167 goto exit; 1168 if (key.pending) { 1169 if (tipc_aead_users(c->aead[key.pending]) > 0) 1170 goto exit; 1171 /* if (pos): ok with replacing, will be aligned when needed */ 1172 /* Replace it */ 1173 new_key = key.pending; 1174 } else { 1175 if (pos) { 1176 if (key.active && pos != key_next(key.active)) { 1177 key.passive = pos; 1178 new_key = pos; 1179 goto attach; 1180 } else if (!key.active && !key.passive) { 1181 key.pending = pos; 1182 new_key = pos; 1183 goto attach; 1184 } 1185 } 1186 key.pending = key_next(key.active ?: key.passive); 1187 new_key = key.pending; 1188 } 1189 1190 attach: 1191 aead->crypto = c; 1192 aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen; 1193 tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock); 1194 if (likely(c->key.keys != key.keys)) 1195 tipc_crypto_key_set_state(c, key.passive, key.active, 1196 key.pending); 1197 c->working = 1; 1198 c->nokey = 0; 1199 c->key_master |= master_key; 1200 rc = new_key; 1201 1202 exit: 1203 spin_unlock_bh(&c->lock); 1204 return rc; 1205 } 1206 1207 void tipc_crypto_key_flush(struct tipc_crypto *c) 1208 { 1209 struct tipc_crypto *tx, *rx; 1210 int k; 1211 1212 spin_lock_bh(&c->lock); 1213 if (is_rx(c)) { 1214 /* Try to cancel pending work */ 1215 rx = c; 1216 tx = tipc_net(rx->net)->crypto_tx; 1217 if (cancel_delayed_work(&rx->work)) { 1218 kfree(rx->skey); 1219 rx->skey = NULL; 1220 atomic_xchg(&rx->key_distr, 0); 1221 tipc_node_put(rx->node); 1222 } 1223 /* RX stopping => decrease TX key users if any */ 1224 k = atomic_xchg(&rx->peer_rx_active, 0); 1225 if (k) { 1226 tipc_aead_users_dec(tx->aead[k], 0); 1227 /* Mark the point TX key users changed */ 1228 tx->timer1 = jiffies; 1229 } 1230 } 1231 1232 c->flags = 0; 1233 tipc_crypto_key_set_state(c, 0, 0, 0); 1234 for (k = KEY_MIN; k <= KEY_MAX; k++) 1235 tipc_crypto_key_detach(c->aead[k], &c->lock); 1236 atomic64_set(&c->sndnxt, 0); 1237 spin_unlock_bh(&c->lock); 1238 } 1239 1240 /** 1241 * tipc_crypto_key_try_align - Align RX keys if possible 1242 * @rx: RX crypto handle 1243 * @new_pending: new pending slot if aligned (= TX key from peer) 1244 * 1245 * Peer has used an unknown key slot, this only happens when peer has left and 1246 * rejoned, or we are newcomer. 1247 * That means, there must be no active key but a pending key at unaligned slot. 1248 * If so, we try to move the pending key to the new slot. 1249 * Note: A potential passive key can exist, it will be shifted correspondingly! 1250 * 1251 * Return: "true" if key is successfully aligned, otherwise "false" 1252 */ 1253 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending) 1254 { 1255 struct tipc_aead *tmp1, *tmp2 = NULL; 1256 struct tipc_key key; 1257 bool aligned = false; 1258 u8 new_passive = 0; 1259 int x; 1260 1261 spin_lock(&rx->lock); 1262 key = rx->key; 1263 if (key.pending == new_pending) { 1264 aligned = true; 1265 goto exit; 1266 } 1267 if (key.active) 1268 goto exit; 1269 if (!key.pending) 1270 goto exit; 1271 if (tipc_aead_users(rx->aead[key.pending]) > 0) 1272 goto exit; 1273 1274 /* Try to "isolate" this pending key first */ 1275 tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock); 1276 if (!refcount_dec_if_one(&tmp1->refcnt)) 1277 goto exit; 1278 rcu_assign_pointer(rx->aead[key.pending], NULL); 1279 1280 /* Move passive key if any */ 1281 if (key.passive) { 1282 tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock)); 1283 x = (key.passive - key.pending + new_pending) % KEY_MAX; 1284 new_passive = (x <= 0) ? x + KEY_MAX : x; 1285 } 1286 1287 /* Re-allocate the key(s) */ 1288 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending); 1289 rcu_assign_pointer(rx->aead[new_pending], tmp1); 1290 if (new_passive) 1291 rcu_assign_pointer(rx->aead[new_passive], tmp2); 1292 refcount_set(&tmp1->refcnt, 1); 1293 aligned = true; 1294 pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending, 1295 new_pending); 1296 1297 exit: 1298 spin_unlock(&rx->lock); 1299 return aligned; 1300 } 1301 1302 /** 1303 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption 1304 * @tx: TX crypto handle 1305 * @rx: RX crypto handle (can be NULL) 1306 * @skb: the message skb which will be decrypted later 1307 * @tx_key: peer TX key id 1308 * 1309 * This function looks up the existing TX keys and pick one which is suitable 1310 * for the message decryption, that must be a cluster key and not used before 1311 * on the same message (i.e. recursive). 1312 * 1313 * Return: the TX AEAD key handle in case of success, otherwise NULL 1314 */ 1315 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, 1316 struct tipc_crypto *rx, 1317 struct sk_buff *skb, 1318 u8 tx_key) 1319 { 1320 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb); 1321 struct tipc_aead *aead = NULL; 1322 struct tipc_key key = tx->key; 1323 u8 k, i = 0; 1324 1325 /* Initialize data if not yet */ 1326 if (!skb_cb->tx_clone_deferred) { 1327 skb_cb->tx_clone_deferred = 1; 1328 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); 1329 } 1330 1331 skb_cb->tx_clone_ctx.rx = rx; 1332 if (++skb_cb->tx_clone_ctx.recurs > 2) 1333 return NULL; 1334 1335 /* Pick one TX key */ 1336 spin_lock(&tx->lock); 1337 if (tx_key == KEY_MASTER) { 1338 aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock); 1339 goto done; 1340 } 1341 do { 1342 k = (i == 0) ? key.pending : 1343 ((i == 1) ? key.active : key.passive); 1344 if (!k) 1345 continue; 1346 aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock); 1347 if (!aead) 1348 continue; 1349 if (aead->mode != CLUSTER_KEY || 1350 aead == skb_cb->tx_clone_ctx.last) { 1351 aead = NULL; 1352 continue; 1353 } 1354 /* Ok, found one cluster key */ 1355 skb_cb->tx_clone_ctx.last = aead; 1356 WARN_ON(skb->next); 1357 skb->next = skb_clone(skb, GFP_ATOMIC); 1358 if (unlikely(!skb->next)) 1359 pr_warn("Failed to clone skb for next round if any\n"); 1360 break; 1361 } while (++i < 3); 1362 1363 done: 1364 if (likely(aead)) 1365 WARN_ON(!refcount_inc_not_zero(&aead->refcnt)); 1366 spin_unlock(&tx->lock); 1367 1368 return aead; 1369 } 1370 1371 /** 1372 * tipc_crypto_key_synch: Synch own key data according to peer key status 1373 * @rx: RX crypto handle 1374 * @skb: TIPCv2 message buffer (incl. the ehdr from peer) 1375 * 1376 * This function updates the peer node related data as the peer RX active key 1377 * has changed, so the number of TX keys' users on this node are increased and 1378 * decreased correspondingly. 1379 * 1380 * It also considers if peer has no key, then we need to make own master key 1381 * (if any) taking over i.e. starting grace period and also trigger key 1382 * distributing process. 1383 * 1384 * The "per-peer" sndnxt is also reset when the peer key has switched. 1385 */ 1386 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb) 1387 { 1388 struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb); 1389 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx; 1390 struct tipc_msg *hdr = buf_msg(skb); 1391 u32 self = tipc_own_addr(rx->net); 1392 u8 cur, new; 1393 unsigned long delay; 1394 1395 /* Update RX 'key_master' flag according to peer, also mark "legacy" if 1396 * a peer has no master key. 1397 */ 1398 rx->key_master = ehdr->master_key; 1399 if (!rx->key_master) 1400 tx->legacy_user = 1; 1401 1402 /* For later cases, apply only if message is destined to this node */ 1403 if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self) 1404 return; 1405 1406 /* Case 1: Peer has no keys, let's make master key take over */ 1407 if (ehdr->rx_nokey) { 1408 /* Set or extend grace period */ 1409 tx->timer2 = jiffies; 1410 /* Schedule key distributing for the peer if not yet */ 1411 if (tx->key.keys && 1412 !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) { 1413 get_random_bytes(&delay, 2); 1414 delay %= 5; 1415 delay = msecs_to_jiffies(500 * ++delay); 1416 if (queue_delayed_work(tx->wq, &rx->work, delay)) 1417 tipc_node_get(rx->node); 1418 } 1419 } else { 1420 /* Cancel a pending key distributing if any */ 1421 atomic_xchg(&rx->key_distr, 0); 1422 } 1423 1424 /* Case 2: Peer RX active key has changed, let's update own TX users */ 1425 cur = atomic_read(&rx->peer_rx_active); 1426 new = ehdr->rx_key_active; 1427 if (tx->key.keys && 1428 cur != new && 1429 atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) { 1430 if (new) 1431 tipc_aead_users_inc(tx->aead[new], INT_MAX); 1432 if (cur) 1433 tipc_aead_users_dec(tx->aead[cur], 0); 1434 1435 atomic64_set(&rx->sndnxt, 0); 1436 /* Mark the point TX key users changed */ 1437 tx->timer1 = jiffies; 1438 1439 pr_debug("%s: key users changed %d-- %d++, peer %s\n", 1440 tx->name, cur, new, rx->name); 1441 } 1442 } 1443 1444 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key) 1445 { 1446 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1447 struct tipc_key key; 1448 1449 spin_lock_bh(&tx->lock); 1450 key = tx->key; 1451 WARN_ON(!key.active || tx_key != key.active); 1452 1453 /* Free the active key */ 1454 tipc_crypto_key_set_state(tx, key.passive, 0, key.pending); 1455 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); 1456 spin_unlock_bh(&tx->lock); 1457 1458 pr_warn("%s: key is revoked\n", tx->name); 1459 return -EKEYREVOKED; 1460 } 1461 1462 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net, 1463 struct tipc_node *node) 1464 { 1465 struct tipc_crypto *c; 1466 1467 if (*crypto) 1468 return -EEXIST; 1469 1470 /* Allocate crypto */ 1471 c = kzalloc(sizeof(*c), GFP_ATOMIC); 1472 if (!c) 1473 return -ENOMEM; 1474 1475 /* Allocate workqueue on TX */ 1476 if (!node) { 1477 c->wq = alloc_ordered_workqueue("tipc_crypto", 0); 1478 if (!c->wq) { 1479 kfree(c); 1480 return -ENOMEM; 1481 } 1482 } 1483 1484 /* Allocate statistic structure */ 1485 c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC); 1486 if (!c->stats) { 1487 if (c->wq) 1488 destroy_workqueue(c->wq); 1489 kfree_sensitive(c); 1490 return -ENOMEM; 1491 } 1492 1493 c->flags = 0; 1494 c->net = net; 1495 c->node = node; 1496 get_random_bytes(&c->key_gen, 2); 1497 tipc_crypto_key_set_state(c, 0, 0, 0); 1498 atomic_set(&c->key_distr, 0); 1499 atomic_set(&c->peer_rx_active, 0); 1500 atomic64_set(&c->sndnxt, 0); 1501 c->timer1 = jiffies; 1502 c->timer2 = jiffies; 1503 c->rekeying_intv = TIPC_REKEYING_INTV_DEF; 1504 spin_lock_init(&c->lock); 1505 scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX", 1506 (is_rx(c)) ? tipc_node_get_id_str(c->node) : 1507 tipc_own_id_string(c->net)); 1508 1509 if (is_rx(c)) 1510 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx); 1511 else 1512 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx); 1513 1514 *crypto = c; 1515 return 0; 1516 } 1517 1518 void tipc_crypto_stop(struct tipc_crypto **crypto) 1519 { 1520 struct tipc_crypto *c = *crypto; 1521 u8 k; 1522 1523 if (!c) 1524 return; 1525 1526 /* Flush any queued works & destroy wq */ 1527 if (is_tx(c)) { 1528 c->rekeying_intv = 0; 1529 cancel_delayed_work_sync(&c->work); 1530 destroy_workqueue(c->wq); 1531 } 1532 1533 /* Release AEAD keys */ 1534 rcu_read_lock(); 1535 for (k = KEY_MIN; k <= KEY_MAX; k++) 1536 tipc_aead_put(rcu_dereference(c->aead[k])); 1537 rcu_read_unlock(); 1538 pr_debug("%s: has been stopped\n", c->name); 1539 1540 /* Free this crypto statistics */ 1541 free_percpu(c->stats); 1542 1543 *crypto = NULL; 1544 kfree_sensitive(c); 1545 } 1546 1547 void tipc_crypto_timeout(struct tipc_crypto *rx) 1548 { 1549 struct tipc_net *tn = tipc_net(rx->net); 1550 struct tipc_crypto *tx = tn->crypto_tx; 1551 struct tipc_key key; 1552 int cmd; 1553 1554 /* TX pending: taking all users & stable -> active */ 1555 spin_lock(&tx->lock); 1556 key = tx->key; 1557 if (key.active && tipc_aead_users(tx->aead[key.active]) > 0) 1558 goto s1; 1559 if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0) 1560 goto s1; 1561 if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME)) 1562 goto s1; 1563 1564 tipc_crypto_key_set_state(tx, key.passive, key.pending, 0); 1565 if (key.active) 1566 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); 1567 this_cpu_inc(tx->stats->stat[STAT_SWITCHES]); 1568 pr_info("%s: key[%d] is activated\n", tx->name, key.pending); 1569 1570 s1: 1571 spin_unlock(&tx->lock); 1572 1573 /* RX pending: having user -> active */ 1574 spin_lock(&rx->lock); 1575 key = rx->key; 1576 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0) 1577 goto s2; 1578 1579 if (key.active) 1580 key.passive = key.active; 1581 key.active = key.pending; 1582 rx->timer2 = jiffies; 1583 tipc_crypto_key_set_state(rx, key.passive, key.active, 0); 1584 this_cpu_inc(rx->stats->stat[STAT_SWITCHES]); 1585 pr_info("%s: key[%d] is activated\n", rx->name, key.pending); 1586 goto s5; 1587 1588 s2: 1589 /* RX pending: not working -> remove */ 1590 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10) 1591 goto s3; 1592 1593 tipc_crypto_key_set_state(rx, key.passive, key.active, 0); 1594 tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock); 1595 pr_debug("%s: key[%d] is removed\n", rx->name, key.pending); 1596 goto s5; 1597 1598 s3: 1599 /* RX active: timed out or no user -> pending */ 1600 if (!key.active) 1601 goto s4; 1602 if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) && 1603 tipc_aead_users(rx->aead[key.active]) > 0) 1604 goto s4; 1605 1606 if (key.pending) 1607 key.passive = key.active; 1608 else 1609 key.pending = key.active; 1610 rx->timer2 = jiffies; 1611 tipc_crypto_key_set_state(rx, key.passive, 0, key.pending); 1612 tipc_aead_users_set(rx->aead[key.pending], 0); 1613 pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active); 1614 goto s5; 1615 1616 s4: 1617 /* RX passive: outdated or not working -> free */ 1618 if (!key.passive) 1619 goto s5; 1620 if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) && 1621 tipc_aead_users(rx->aead[key.passive]) > -10) 1622 goto s5; 1623 1624 tipc_crypto_key_set_state(rx, 0, key.active, key.pending); 1625 tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock); 1626 pr_debug("%s: key[%d] is freed\n", rx->name, key.passive); 1627 1628 s5: 1629 spin_unlock(&rx->lock); 1630 1631 /* Relax it here, the flag will be set again if it really is, but only 1632 * when we are not in grace period for safety! 1633 */ 1634 if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) 1635 tx->legacy_user = 0; 1636 1637 /* Limit max_tfms & do debug commands if needed */ 1638 if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM)) 1639 return; 1640 1641 cmd = sysctl_tipc_max_tfms; 1642 sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF; 1643 tipc_crypto_do_cmd(rx->net, cmd); 1644 } 1645 1646 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb, 1647 struct tipc_bearer *b, 1648 struct tipc_media_addr *dst, 1649 struct tipc_node *__dnode, u8 type) 1650 { 1651 struct sk_buff *skb; 1652 1653 skb = skb_clone(_skb, GFP_ATOMIC); 1654 if (skb) { 1655 TIPC_SKB_CB(skb)->xmit_type = type; 1656 tipc_crypto_xmit(net, &skb, b, dst, __dnode); 1657 if (skb) 1658 b->media->send_msg(net, skb, b, dst); 1659 } 1660 } 1661 1662 /** 1663 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit 1664 * @net: struct net 1665 * @skb: input/output message skb pointer 1666 * @b: bearer used for xmit later 1667 * @dst: destination media address 1668 * @__dnode: destination node for reference if any 1669 * 1670 * First, build an encryption message header on the top of the message, then 1671 * encrypt the original TIPC message by using the pending, master or active 1672 * key with this preference order. 1673 * If the encryption is successful, the encrypted skb is returned directly or 1674 * via the callback. 1675 * Otherwise, the skb is freed! 1676 * 1677 * Return: 1678 * * 0 : the encryption has succeeded (or no encryption) 1679 * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made 1680 * * -ENOKEK : the encryption has failed due to no key 1681 * * -EKEYREVOKED : the encryption has failed due to key revoked 1682 * * -ENOMEM : the encryption has failed due to no memory 1683 * * < 0 : the encryption has failed due to other reasons 1684 */ 1685 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb, 1686 struct tipc_bearer *b, struct tipc_media_addr *dst, 1687 struct tipc_node *__dnode) 1688 { 1689 struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode); 1690 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1691 struct tipc_crypto_stats __percpu *stats = tx->stats; 1692 struct tipc_msg *hdr = buf_msg(*skb); 1693 struct tipc_key key = tx->key; 1694 struct tipc_aead *aead = NULL; 1695 u32 user = msg_user(hdr); 1696 u32 type = msg_type(hdr); 1697 int rc = -ENOKEY; 1698 u8 tx_key = 0; 1699 1700 /* No encryption? */ 1701 if (!tx->working) 1702 return 0; 1703 1704 /* Pending key if peer has active on it or probing time */ 1705 if (unlikely(key.pending)) { 1706 tx_key = key.pending; 1707 if (!tx->key_master && !key.active) 1708 goto encrypt; 1709 if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key) 1710 goto encrypt; 1711 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) { 1712 pr_debug("%s: probing for key[%d]\n", tx->name, 1713 key.pending); 1714 goto encrypt; 1715 } 1716 if (user == LINK_CONFIG || user == LINK_PROTOCOL) 1717 tipc_crypto_clone_msg(net, *skb, b, dst, __dnode, 1718 SKB_PROBING); 1719 } 1720 1721 /* Master key if this is a *vital* message or in grace period */ 1722 if (tx->key_master) { 1723 tx_key = KEY_MASTER; 1724 if (!key.active) 1725 goto encrypt; 1726 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) { 1727 pr_debug("%s: gracing for msg (%d %d)\n", tx->name, 1728 user, type); 1729 goto encrypt; 1730 } 1731 if (user == LINK_CONFIG || 1732 (user == LINK_PROTOCOL && type == RESET_MSG) || 1733 (user == MSG_CRYPTO && type == KEY_DISTR_MSG) || 1734 time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) { 1735 if (__rx && __rx->key_master && 1736 !atomic_read(&__rx->peer_rx_active)) 1737 goto encrypt; 1738 if (!__rx) { 1739 if (likely(!tx->legacy_user)) 1740 goto encrypt; 1741 tipc_crypto_clone_msg(net, *skb, b, dst, 1742 __dnode, SKB_GRACING); 1743 } 1744 } 1745 } 1746 1747 /* Else, use the active key if any */ 1748 if (likely(key.active)) { 1749 tx_key = key.active; 1750 goto encrypt; 1751 } 1752 1753 goto exit; 1754 1755 encrypt: 1756 aead = tipc_aead_get(tx->aead[tx_key]); 1757 if (unlikely(!aead)) 1758 goto exit; 1759 rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx); 1760 if (likely(rc > 0)) 1761 rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode); 1762 1763 exit: 1764 switch (rc) { 1765 case 0: 1766 this_cpu_inc(stats->stat[STAT_OK]); 1767 break; 1768 case -EINPROGRESS: 1769 case -EBUSY: 1770 this_cpu_inc(stats->stat[STAT_ASYNC]); 1771 *skb = NULL; 1772 return rc; 1773 default: 1774 this_cpu_inc(stats->stat[STAT_NOK]); 1775 if (rc == -ENOKEY) 1776 this_cpu_inc(stats->stat[STAT_NOKEYS]); 1777 else if (rc == -EKEYREVOKED) 1778 this_cpu_inc(stats->stat[STAT_BADKEYS]); 1779 kfree_skb(*skb); 1780 *skb = NULL; 1781 break; 1782 } 1783 1784 tipc_aead_put(aead); 1785 return rc; 1786 } 1787 1788 /** 1789 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer 1790 * @net: struct net 1791 * @rx: RX crypto handle 1792 * @skb: input/output message skb pointer 1793 * @b: bearer where the message has been received 1794 * 1795 * If the decryption is successful, the decrypted skb is returned directly or 1796 * as the callback, the encryption header and auth tag will be trimed out 1797 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete(). 1798 * Otherwise, the skb will be freed! 1799 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX 1800 * cluster key(s) can be taken for decryption (- recursive). 1801 * 1802 * Return: 1803 * * 0 : the decryption has successfully completed 1804 * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made 1805 * * -ENOKEY : the decryption has failed due to no key 1806 * * -EBADMSG : the decryption has failed due to bad message 1807 * * -ENOMEM : the decryption has failed due to no memory 1808 * * < 0 : the decryption has failed due to other reasons 1809 */ 1810 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx, 1811 struct sk_buff **skb, struct tipc_bearer *b) 1812 { 1813 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1814 struct tipc_crypto_stats __percpu *stats; 1815 struct tipc_aead *aead = NULL; 1816 struct tipc_key key; 1817 int rc = -ENOKEY; 1818 u8 tx_key, n; 1819 1820 tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key; 1821 1822 /* New peer? 1823 * Let's try with TX key (i.e. cluster mode) & verify the skb first! 1824 */ 1825 if (unlikely(!rx || tx_key == KEY_MASTER)) 1826 goto pick_tx; 1827 1828 /* Pick RX key according to TX key if any */ 1829 key = rx->key; 1830 if (tx_key == key.active || tx_key == key.pending || 1831 tx_key == key.passive) 1832 goto decrypt; 1833 1834 /* Unknown key, let's try to align RX key(s) */ 1835 if (tipc_crypto_key_try_align(rx, tx_key)) 1836 goto decrypt; 1837 1838 pick_tx: 1839 /* No key suitable? Try to pick one from TX... */ 1840 aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key); 1841 if (aead) 1842 goto decrypt; 1843 goto exit; 1844 1845 decrypt: 1846 rcu_read_lock(); 1847 if (!aead) 1848 aead = tipc_aead_get(rx->aead[tx_key]); 1849 rc = tipc_aead_decrypt(net, aead, *skb, b); 1850 rcu_read_unlock(); 1851 1852 exit: 1853 stats = ((rx) ?: tx)->stats; 1854 switch (rc) { 1855 case 0: 1856 this_cpu_inc(stats->stat[STAT_OK]); 1857 break; 1858 case -EINPROGRESS: 1859 case -EBUSY: 1860 this_cpu_inc(stats->stat[STAT_ASYNC]); 1861 *skb = NULL; 1862 return rc; 1863 default: 1864 this_cpu_inc(stats->stat[STAT_NOK]); 1865 if (rc == -ENOKEY) { 1866 kfree_skb(*skb); 1867 *skb = NULL; 1868 if (rx) { 1869 /* Mark rx->nokey only if we dont have a 1870 * pending received session key, nor a newer 1871 * one i.e. in the next slot. 1872 */ 1873 n = key_next(tx_key); 1874 rx->nokey = !(rx->skey || 1875 rcu_access_pointer(rx->aead[n])); 1876 pr_debug_ratelimited("%s: nokey %d, key %d/%x\n", 1877 rx->name, rx->nokey, 1878 tx_key, rx->key.keys); 1879 tipc_node_put(rx->node); 1880 } 1881 this_cpu_inc(stats->stat[STAT_NOKEYS]); 1882 return rc; 1883 } else if (rc == -EBADMSG) { 1884 this_cpu_inc(stats->stat[STAT_BADMSGS]); 1885 } 1886 break; 1887 } 1888 1889 tipc_crypto_rcv_complete(net, aead, b, skb, rc); 1890 return rc; 1891 } 1892 1893 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, 1894 struct tipc_bearer *b, 1895 struct sk_buff **skb, int err) 1896 { 1897 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb); 1898 struct tipc_crypto *rx = aead->crypto; 1899 struct tipc_aead *tmp = NULL; 1900 struct tipc_ehdr *ehdr; 1901 struct tipc_node *n; 1902 1903 /* Is this completed by TX? */ 1904 if (unlikely(is_tx(aead->crypto))) { 1905 rx = skb_cb->tx_clone_ctx.rx; 1906 pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n", 1907 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead, 1908 (*skb)->next, skb_cb->flags); 1909 pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n", 1910 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last, 1911 aead->crypto->aead[1], aead->crypto->aead[2], 1912 aead->crypto->aead[3]); 1913 if (unlikely(err)) { 1914 if (err == -EBADMSG && (*skb)->next) 1915 tipc_rcv(net, (*skb)->next, b); 1916 goto free_skb; 1917 } 1918 1919 if (likely((*skb)->next)) { 1920 kfree_skb((*skb)->next); 1921 (*skb)->next = NULL; 1922 } 1923 ehdr = (struct tipc_ehdr *)(*skb)->data; 1924 if (!rx) { 1925 WARN_ON(ehdr->user != LINK_CONFIG); 1926 n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0, 1927 true); 1928 rx = tipc_node_crypto_rx(n); 1929 if (unlikely(!rx)) 1930 goto free_skb; 1931 } 1932 1933 /* Ignore cloning if it was TX master key */ 1934 if (ehdr->tx_key == KEY_MASTER) 1935 goto rcv; 1936 if (tipc_aead_clone(&tmp, aead) < 0) 1937 goto rcv; 1938 WARN_ON(!refcount_inc_not_zero(&tmp->refcnt)); 1939 if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) { 1940 tipc_aead_free(&tmp->rcu); 1941 goto rcv; 1942 } 1943 tipc_aead_put(aead); 1944 aead = tmp; 1945 } 1946 1947 if (unlikely(err)) { 1948 tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN); 1949 goto free_skb; 1950 } 1951 1952 /* Set the RX key's user */ 1953 tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1); 1954 1955 /* Mark this point, RX works */ 1956 rx->timer1 = jiffies; 1957 1958 rcv: 1959 /* Remove ehdr & auth. tag prior to tipc_rcv() */ 1960 ehdr = (struct tipc_ehdr *)(*skb)->data; 1961 1962 /* Mark this point, RX passive still works */ 1963 if (rx->key.passive && ehdr->tx_key == rx->key.passive) 1964 rx->timer2 = jiffies; 1965 1966 skb_reset_network_header(*skb); 1967 skb_pull(*skb, tipc_ehdr_size(ehdr)); 1968 if (pskb_trim(*skb, (*skb)->len - aead->authsize)) 1969 goto free_skb; 1970 1971 /* Validate TIPCv2 message */ 1972 if (unlikely(!tipc_msg_validate(skb))) { 1973 pr_err_ratelimited("Packet dropped after decryption!\n"); 1974 goto free_skb; 1975 } 1976 1977 /* Ok, everything's fine, try to synch own keys according to peers' */ 1978 tipc_crypto_key_synch(rx, *skb); 1979 1980 /* Re-fetch skb cb as skb might be changed in tipc_msg_validate */ 1981 skb_cb = TIPC_SKB_CB(*skb); 1982 1983 /* Mark skb decrypted */ 1984 skb_cb->decrypted = 1; 1985 1986 /* Clear clone cxt if any */ 1987 if (likely(!skb_cb->tx_clone_deferred)) 1988 goto exit; 1989 skb_cb->tx_clone_deferred = 0; 1990 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); 1991 goto exit; 1992 1993 free_skb: 1994 kfree_skb(*skb); 1995 *skb = NULL; 1996 1997 exit: 1998 tipc_aead_put(aead); 1999 if (rx) 2000 tipc_node_put(rx->node); 2001 } 2002 2003 static void tipc_crypto_do_cmd(struct net *net, int cmd) 2004 { 2005 struct tipc_net *tn = tipc_net(net); 2006 struct tipc_crypto *tx = tn->crypto_tx, *rx; 2007 struct list_head *p; 2008 unsigned int stat; 2009 int i, j, cpu; 2010 char buf[200]; 2011 2012 /* Currently only one command is supported */ 2013 switch (cmd) { 2014 case 0xfff1: 2015 goto print_stats; 2016 default: 2017 return; 2018 } 2019 2020 print_stats: 2021 /* Print a header */ 2022 pr_info("\n=============== TIPC Crypto Statistics ===============\n\n"); 2023 2024 /* Print key status */ 2025 pr_info("Key status:\n"); 2026 pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net), 2027 tipc_crypto_key_dump(tx, buf)); 2028 2029 rcu_read_lock(); 2030 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { 2031 rx = tipc_node_crypto_rx_by_list(p); 2032 pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node), 2033 tipc_crypto_key_dump(rx, buf)); 2034 } 2035 rcu_read_unlock(); 2036 2037 /* Print crypto statistics */ 2038 for (i = 0, j = 0; i < MAX_STATS; i++) 2039 j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]); 2040 pr_info("Counter %s", buf); 2041 2042 memset(buf, '-', 115); 2043 buf[115] = '\0'; 2044 pr_info("%s\n", buf); 2045 2046 j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net)); 2047 for_each_possible_cpu(cpu) { 2048 for (i = 0; i < MAX_STATS; i++) { 2049 stat = per_cpu_ptr(tx->stats, cpu)->stat[i]; 2050 j += scnprintf(buf + j, 200 - j, "|%11d ", stat); 2051 } 2052 pr_info("%s", buf); 2053 j = scnprintf(buf, 200, "%12s", " "); 2054 } 2055 2056 rcu_read_lock(); 2057 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { 2058 rx = tipc_node_crypto_rx_by_list(p); 2059 j = scnprintf(buf, 200, "RX(%7.7s) ", 2060 tipc_node_get_id_str(rx->node)); 2061 for_each_possible_cpu(cpu) { 2062 for (i = 0; i < MAX_STATS; i++) { 2063 stat = per_cpu_ptr(rx->stats, cpu)->stat[i]; 2064 j += scnprintf(buf + j, 200 - j, "|%11d ", 2065 stat); 2066 } 2067 pr_info("%s", buf); 2068 j = scnprintf(buf, 200, "%12s", " "); 2069 } 2070 } 2071 rcu_read_unlock(); 2072 2073 pr_info("\n======================== Done ========================\n"); 2074 } 2075 2076 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf) 2077 { 2078 struct tipc_key key = c->key; 2079 struct tipc_aead *aead; 2080 int k, i = 0; 2081 char *s; 2082 2083 for (k = KEY_MIN; k <= KEY_MAX; k++) { 2084 if (k == KEY_MASTER) { 2085 if (is_rx(c)) 2086 continue; 2087 if (time_before(jiffies, 2088 c->timer2 + TIPC_TX_GRACE_PERIOD)) 2089 s = "ACT"; 2090 else 2091 s = "PAS"; 2092 } else { 2093 if (k == key.passive) 2094 s = "PAS"; 2095 else if (k == key.active) 2096 s = "ACT"; 2097 else if (k == key.pending) 2098 s = "PEN"; 2099 else 2100 s = "-"; 2101 } 2102 i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s); 2103 2104 rcu_read_lock(); 2105 aead = rcu_dereference(c->aead[k]); 2106 if (aead) 2107 i += scnprintf(buf + i, 200 - i, 2108 "{\"0x...%s\", \"%s\"}/%d:%d", 2109 aead->hint, 2110 (aead->mode == CLUSTER_KEY) ? "c" : "p", 2111 atomic_read(&aead->users), 2112 refcount_read(&aead->refcnt)); 2113 rcu_read_unlock(); 2114 i += scnprintf(buf + i, 200 - i, "\n"); 2115 } 2116 2117 if (is_rx(c)) 2118 i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n", 2119 atomic_read(&c->peer_rx_active)); 2120 2121 return buf; 2122 } 2123 2124 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, 2125 char *buf) 2126 { 2127 struct tipc_key *key = &old; 2128 int k, i = 0; 2129 char *s; 2130 2131 /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */ 2132 again: 2133 i += scnprintf(buf + i, 32 - i, "["); 2134 for (k = KEY_1; k <= KEY_3; k++) { 2135 if (k == key->passive) 2136 s = "pas"; 2137 else if (k == key->active) 2138 s = "act"; 2139 else if (k == key->pending) 2140 s = "pen"; 2141 else 2142 s = "-"; 2143 i += scnprintf(buf + i, 32 - i, 2144 (k != KEY_3) ? "%s " : "%s", s); 2145 } 2146 if (key != &new) { 2147 i += scnprintf(buf + i, 32 - i, "] -> "); 2148 key = &new; 2149 goto again; 2150 } 2151 i += scnprintf(buf + i, 32 - i, "]"); 2152 return buf; 2153 } 2154 2155 /** 2156 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point 2157 * @net: the struct net 2158 * @skb: the receiving message buffer 2159 */ 2160 void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb) 2161 { 2162 struct tipc_crypto *rx; 2163 struct tipc_msg *hdr; 2164 2165 if (unlikely(skb_linearize(skb))) 2166 goto exit; 2167 2168 hdr = buf_msg(skb); 2169 rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr)); 2170 if (unlikely(!rx)) 2171 goto exit; 2172 2173 switch (msg_type(hdr)) { 2174 case KEY_DISTR_MSG: 2175 if (tipc_crypto_key_rcv(rx, hdr)) 2176 goto exit; 2177 break; 2178 default: 2179 break; 2180 } 2181 2182 tipc_node_put(rx->node); 2183 2184 exit: 2185 kfree_skb(skb); 2186 } 2187 2188 /** 2189 * tipc_crypto_key_distr - Distribute a TX key 2190 * @tx: the TX crypto 2191 * @key: the key's index 2192 * @dest: the destination tipc node, = NULL if distributing to all nodes 2193 * 2194 * Return: 0 in case of success, otherwise < 0 2195 */ 2196 int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key, 2197 struct tipc_node *dest) 2198 { 2199 struct tipc_aead *aead; 2200 u32 dnode = tipc_node_get_addr(dest); 2201 int rc = -ENOKEY; 2202 2203 if (!sysctl_tipc_key_exchange_enabled) 2204 return 0; 2205 2206 if (key) { 2207 rcu_read_lock(); 2208 aead = tipc_aead_get(tx->aead[key]); 2209 if (likely(aead)) { 2210 rc = tipc_crypto_key_xmit(tx->net, aead->key, 2211 aead->gen, aead->mode, 2212 dnode); 2213 tipc_aead_put(aead); 2214 } 2215 rcu_read_unlock(); 2216 } 2217 2218 return rc; 2219 } 2220 2221 /** 2222 * tipc_crypto_key_xmit - Send a session key 2223 * @net: the struct net 2224 * @skey: the session key to be sent 2225 * @gen: the key's generation 2226 * @mode: the key's mode 2227 * @dnode: the destination node address, = 0 if broadcasting to all nodes 2228 * 2229 * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG' 2230 * as its data section, then xmit-ed through the uc/bc link. 2231 * 2232 * Return: 0 in case of success, otherwise < 0 2233 */ 2234 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey, 2235 u16 gen, u8 mode, u32 dnode) 2236 { 2237 struct sk_buff_head pkts; 2238 struct tipc_msg *hdr; 2239 struct sk_buff *skb; 2240 u16 size, cong_link_cnt; 2241 u8 *data; 2242 int rc; 2243 2244 size = tipc_aead_key_size(skey); 2245 skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC); 2246 if (!skb) 2247 return -ENOMEM; 2248 2249 hdr = buf_msg(skb); 2250 tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG, 2251 INT_H_SIZE, dnode); 2252 msg_set_size(hdr, INT_H_SIZE + size); 2253 msg_set_key_gen(hdr, gen); 2254 msg_set_key_mode(hdr, mode); 2255 2256 data = msg_data(hdr); 2257 *((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen); 2258 memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME); 2259 memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key, 2260 skey->keylen); 2261 2262 __skb_queue_head_init(&pkts); 2263 __skb_queue_tail(&pkts, skb); 2264 if (dnode) 2265 rc = tipc_node_xmit(net, &pkts, dnode, 0); 2266 else 2267 rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt); 2268 2269 return rc; 2270 } 2271 2272 /** 2273 * tipc_crypto_key_rcv - Receive a session key 2274 * @rx: the RX crypto 2275 * @hdr: the TIPC v2 message incl. the receiving session key in its data 2276 * 2277 * This function retrieves the session key in the message from peer, then 2278 * schedules a RX work to attach the key to the corresponding RX crypto. 2279 * 2280 * Return: "true" if the key has been scheduled for attaching, otherwise 2281 * "false". 2282 */ 2283 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr) 2284 { 2285 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx; 2286 struct tipc_aead_key *skey = NULL; 2287 u16 key_gen = msg_key_gen(hdr); 2288 u32 size = msg_data_sz(hdr); 2289 u8 *data = msg_data(hdr); 2290 unsigned int keylen; 2291 2292 /* Verify whether the size can exist in the packet */ 2293 if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) { 2294 pr_debug("%s: message data size is too small\n", rx->name); 2295 goto exit; 2296 } 2297 2298 keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME))); 2299 2300 /* Verify the supplied size values */ 2301 if (unlikely(keylen > TIPC_AEAD_KEY_SIZE_MAX || 2302 size != keylen + sizeof(struct tipc_aead_key))) { 2303 pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name); 2304 goto exit; 2305 } 2306 2307 spin_lock(&rx->lock); 2308 if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) { 2309 pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name, 2310 rx->skey, key_gen, rx->key_gen); 2311 goto exit_unlock; 2312 } 2313 2314 /* Allocate memory for the key */ 2315 skey = kmalloc(size, GFP_ATOMIC); 2316 if (unlikely(!skey)) { 2317 pr_err("%s: unable to allocate memory for skey\n", rx->name); 2318 goto exit_unlock; 2319 } 2320 2321 /* Copy key from msg data */ 2322 skey->keylen = keylen; 2323 memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME); 2324 memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32), 2325 skey->keylen); 2326 2327 rx->key_gen = key_gen; 2328 rx->skey_mode = msg_key_mode(hdr); 2329 rx->skey = skey; 2330 rx->nokey = 0; 2331 mb(); /* for nokey flag */ 2332 2333 exit_unlock: 2334 spin_unlock(&rx->lock); 2335 2336 exit: 2337 /* Schedule the key attaching on this crypto */ 2338 if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0))) 2339 return true; 2340 2341 return false; 2342 } 2343 2344 /** 2345 * tipc_crypto_work_rx - Scheduled RX works handler 2346 * @work: the struct RX work 2347 * 2348 * The function processes the previous scheduled works i.e. distributing TX key 2349 * or attaching a received session key on RX crypto. 2350 */ 2351 static void tipc_crypto_work_rx(struct work_struct *work) 2352 { 2353 struct delayed_work *dwork = to_delayed_work(work); 2354 struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work); 2355 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx; 2356 unsigned long delay = msecs_to_jiffies(5000); 2357 bool resched = false; 2358 u8 key; 2359 int rc; 2360 2361 /* Case 1: Distribute TX key to peer if scheduled */ 2362 if (atomic_cmpxchg(&rx->key_distr, 2363 KEY_DISTR_SCHED, 2364 KEY_DISTR_COMPL) == KEY_DISTR_SCHED) { 2365 /* Always pick the newest one for distributing */ 2366 key = tx->key.pending ?: tx->key.active; 2367 rc = tipc_crypto_key_distr(tx, key, rx->node); 2368 if (unlikely(rc)) 2369 pr_warn("%s: unable to distr key[%d] to %s, err %d\n", 2370 tx->name, key, tipc_node_get_id_str(rx->node), 2371 rc); 2372 2373 /* Sched for key_distr releasing */ 2374 resched = true; 2375 } else { 2376 atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0); 2377 } 2378 2379 /* Case 2: Attach a pending received session key from peer if any */ 2380 if (rx->skey) { 2381 rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false); 2382 if (unlikely(rc < 0)) 2383 pr_warn("%s: unable to attach received skey, err %d\n", 2384 rx->name, rc); 2385 switch (rc) { 2386 case -EBUSY: 2387 case -ENOMEM: 2388 /* Resched the key attaching */ 2389 resched = true; 2390 break; 2391 default: 2392 synchronize_rcu(); 2393 kfree(rx->skey); 2394 rx->skey = NULL; 2395 break; 2396 } 2397 } 2398 2399 if (resched && queue_delayed_work(tx->wq, &rx->work, delay)) 2400 return; 2401 2402 tipc_node_put(rx->node); 2403 } 2404 2405 /** 2406 * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval 2407 * @tx: TX crypto 2408 * @changed: if the rekeying needs to be rescheduled with new interval 2409 * @new_intv: new rekeying interval (when "changed" = true) 2410 */ 2411 void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed, 2412 u32 new_intv) 2413 { 2414 unsigned long delay; 2415 bool now = false; 2416 2417 if (changed) { 2418 if (new_intv == TIPC_REKEYING_NOW) 2419 now = true; 2420 else 2421 tx->rekeying_intv = new_intv; 2422 cancel_delayed_work_sync(&tx->work); 2423 } 2424 2425 if (tx->rekeying_intv || now) { 2426 delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000; 2427 queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay)); 2428 } 2429 } 2430 2431 /** 2432 * tipc_crypto_work_tx - Scheduled TX works handler 2433 * @work: the struct TX work 2434 * 2435 * The function processes the previous scheduled work, i.e. key rekeying, by 2436 * generating a new session key based on current one, then attaching it to the 2437 * TX crypto and finally distributing it to peers. It also re-schedules the 2438 * rekeying if needed. 2439 */ 2440 static void tipc_crypto_work_tx(struct work_struct *work) 2441 { 2442 struct delayed_work *dwork = to_delayed_work(work); 2443 struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work); 2444 struct tipc_aead_key *skey = NULL; 2445 struct tipc_key key = tx->key; 2446 struct tipc_aead *aead; 2447 int rc = -ENOMEM; 2448 2449 if (unlikely(key.pending)) 2450 goto resched; 2451 2452 /* Take current key as a template */ 2453 rcu_read_lock(); 2454 aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]); 2455 if (unlikely(!aead)) { 2456 rcu_read_unlock(); 2457 /* At least one key should exist for securing */ 2458 return; 2459 } 2460 2461 /* Lets duplicate it first */ 2462 skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC); 2463 rcu_read_unlock(); 2464 2465 /* Now, generate new key, initiate & distribute it */ 2466 if (likely(skey)) { 2467 rc = tipc_aead_key_generate(skey) ?: 2468 tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false); 2469 if (likely(rc > 0)) 2470 rc = tipc_crypto_key_distr(tx, rc, NULL); 2471 kfree_sensitive(skey); 2472 } 2473 2474 if (unlikely(rc)) 2475 pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc); 2476 2477 resched: 2478 /* Re-schedule rekeying if any */ 2479 tipc_crypto_rekeying_sched(tx, false, 0); 2480 } 2481