1 /* 2 * net/switchdev/switchdev.c - Switch device API 3 * Copyright (c) 2014-2015 Jiri Pirko <jiri@resnulli.us> 4 * Copyright (c) 2014-2015 Scott Feldman <sfeldma@gmail.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/types.h> 14 #include <linux/init.h> 15 #include <linux/mutex.h> 16 #include <linux/notifier.h> 17 #include <linux/netdevice.h> 18 #include <linux/etherdevice.h> 19 #include <linux/if_bridge.h> 20 #include <linux/list.h> 21 #include <linux/workqueue.h> 22 #include <linux/if_vlan.h> 23 #include <linux/rtnetlink.h> 24 #include <net/switchdev.h> 25 26 /** 27 * switchdev_trans_item_enqueue - Enqueue data item to transaction queue 28 * 29 * @trans: transaction 30 * @data: pointer to data being queued 31 * @destructor: data destructor 32 * @tritem: transaction item being queued 33 * 34 * Enqeueue data item to transaction queue. tritem is typically placed in 35 * cointainter pointed at by data pointer. Destructor is called on 36 * transaction abort and after successful commit phase in case 37 * the caller did not dequeue the item before. 38 */ 39 void switchdev_trans_item_enqueue(struct switchdev_trans *trans, 40 void *data, void (*destructor)(void const *), 41 struct switchdev_trans_item *tritem) 42 { 43 tritem->data = data; 44 tritem->destructor = destructor; 45 list_add_tail(&tritem->list, &trans->item_list); 46 } 47 EXPORT_SYMBOL_GPL(switchdev_trans_item_enqueue); 48 49 static struct switchdev_trans_item * 50 __switchdev_trans_item_dequeue(struct switchdev_trans *trans) 51 { 52 struct switchdev_trans_item *tritem; 53 54 if (list_empty(&trans->item_list)) 55 return NULL; 56 tritem = list_first_entry(&trans->item_list, 57 struct switchdev_trans_item, list); 58 list_del(&tritem->list); 59 return tritem; 60 } 61 62 /** 63 * switchdev_trans_item_dequeue - Dequeue data item from transaction queue 64 * 65 * @trans: transaction 66 */ 67 void *switchdev_trans_item_dequeue(struct switchdev_trans *trans) 68 { 69 struct switchdev_trans_item *tritem; 70 71 tritem = __switchdev_trans_item_dequeue(trans); 72 BUG_ON(!tritem); 73 return tritem->data; 74 } 75 EXPORT_SYMBOL_GPL(switchdev_trans_item_dequeue); 76 77 static void switchdev_trans_init(struct switchdev_trans *trans) 78 { 79 INIT_LIST_HEAD(&trans->item_list); 80 } 81 82 static void switchdev_trans_items_destroy(struct switchdev_trans *trans) 83 { 84 struct switchdev_trans_item *tritem; 85 86 while ((tritem = __switchdev_trans_item_dequeue(trans))) 87 tritem->destructor(tritem->data); 88 } 89 90 static void switchdev_trans_items_warn_destroy(struct net_device *dev, 91 struct switchdev_trans *trans) 92 { 93 WARN(!list_empty(&trans->item_list), "%s: transaction item queue is not empty.\n", 94 dev->name); 95 switchdev_trans_items_destroy(trans); 96 } 97 98 static LIST_HEAD(deferred); 99 static DEFINE_SPINLOCK(deferred_lock); 100 101 typedef void switchdev_deferred_func_t(struct net_device *dev, 102 const void *data); 103 104 struct switchdev_deferred_item { 105 struct list_head list; 106 struct net_device *dev; 107 switchdev_deferred_func_t *func; 108 unsigned long data[0]; 109 }; 110 111 static struct switchdev_deferred_item *switchdev_deferred_dequeue(void) 112 { 113 struct switchdev_deferred_item *dfitem; 114 115 spin_lock_bh(&deferred_lock); 116 if (list_empty(&deferred)) { 117 dfitem = NULL; 118 goto unlock; 119 } 120 dfitem = list_first_entry(&deferred, 121 struct switchdev_deferred_item, list); 122 list_del(&dfitem->list); 123 unlock: 124 spin_unlock_bh(&deferred_lock); 125 return dfitem; 126 } 127 128 /** 129 * switchdev_deferred_process - Process ops in deferred queue 130 * 131 * Called to flush the ops currently queued in deferred ops queue. 132 * rtnl_lock must be held. 133 */ 134 void switchdev_deferred_process(void) 135 { 136 struct switchdev_deferred_item *dfitem; 137 138 ASSERT_RTNL(); 139 140 while ((dfitem = switchdev_deferred_dequeue())) { 141 dfitem->func(dfitem->dev, dfitem->data); 142 dev_put(dfitem->dev); 143 kfree(dfitem); 144 } 145 } 146 EXPORT_SYMBOL_GPL(switchdev_deferred_process); 147 148 static void switchdev_deferred_process_work(struct work_struct *work) 149 { 150 rtnl_lock(); 151 switchdev_deferred_process(); 152 rtnl_unlock(); 153 } 154 155 static DECLARE_WORK(deferred_process_work, switchdev_deferred_process_work); 156 157 static int switchdev_deferred_enqueue(struct net_device *dev, 158 const void *data, size_t data_len, 159 switchdev_deferred_func_t *func) 160 { 161 struct switchdev_deferred_item *dfitem; 162 163 dfitem = kmalloc(sizeof(*dfitem) + data_len, GFP_ATOMIC); 164 if (!dfitem) 165 return -ENOMEM; 166 dfitem->dev = dev; 167 dfitem->func = func; 168 memcpy(dfitem->data, data, data_len); 169 dev_hold(dev); 170 spin_lock_bh(&deferred_lock); 171 list_add_tail(&dfitem->list, &deferred); 172 spin_unlock_bh(&deferred_lock); 173 schedule_work(&deferred_process_work); 174 return 0; 175 } 176 177 /** 178 * switchdev_port_attr_get - Get port attribute 179 * 180 * @dev: port device 181 * @attr: attribute to get 182 */ 183 int switchdev_port_attr_get(struct net_device *dev, struct switchdev_attr *attr) 184 { 185 const struct switchdev_ops *ops = dev->switchdev_ops; 186 struct net_device *lower_dev; 187 struct list_head *iter; 188 struct switchdev_attr first = { 189 .id = SWITCHDEV_ATTR_ID_UNDEFINED 190 }; 191 int err = -EOPNOTSUPP; 192 193 if (ops && ops->switchdev_port_attr_get) 194 return ops->switchdev_port_attr_get(dev, attr); 195 196 if (attr->flags & SWITCHDEV_F_NO_RECURSE) 197 return err; 198 199 /* Switch device port(s) may be stacked under 200 * bond/team/vlan dev, so recurse down to get attr on 201 * each port. Return -ENODATA if attr values don't 202 * compare across ports. 203 */ 204 205 netdev_for_each_lower_dev(dev, lower_dev, iter) { 206 err = switchdev_port_attr_get(lower_dev, attr); 207 if (err) 208 break; 209 if (first.id == SWITCHDEV_ATTR_ID_UNDEFINED) 210 first = *attr; 211 else if (memcmp(&first, attr, sizeof(*attr))) 212 return -ENODATA; 213 } 214 215 return err; 216 } 217 EXPORT_SYMBOL_GPL(switchdev_port_attr_get); 218 219 static int __switchdev_port_attr_set(struct net_device *dev, 220 const struct switchdev_attr *attr, 221 struct switchdev_trans *trans) 222 { 223 const struct switchdev_ops *ops = dev->switchdev_ops; 224 struct net_device *lower_dev; 225 struct list_head *iter; 226 int err = -EOPNOTSUPP; 227 228 if (ops && ops->switchdev_port_attr_set) { 229 err = ops->switchdev_port_attr_set(dev, attr, trans); 230 goto done; 231 } 232 233 if (attr->flags & SWITCHDEV_F_NO_RECURSE) 234 goto done; 235 236 /* Switch device port(s) may be stacked under 237 * bond/team/vlan dev, so recurse down to set attr on 238 * each port. 239 */ 240 241 netdev_for_each_lower_dev(dev, lower_dev, iter) { 242 err = __switchdev_port_attr_set(lower_dev, attr, trans); 243 if (err) 244 break; 245 } 246 247 done: 248 if (err == -EOPNOTSUPP && attr->flags & SWITCHDEV_F_SKIP_EOPNOTSUPP) 249 err = 0; 250 251 return err; 252 } 253 254 static int switchdev_port_attr_set_now(struct net_device *dev, 255 const struct switchdev_attr *attr) 256 { 257 struct switchdev_trans trans; 258 int err; 259 260 switchdev_trans_init(&trans); 261 262 /* Phase I: prepare for attr set. Driver/device should fail 263 * here if there are going to be issues in the commit phase, 264 * such as lack of resources or support. The driver/device 265 * should reserve resources needed for the commit phase here, 266 * but should not commit the attr. 267 */ 268 269 trans.ph_prepare = true; 270 err = __switchdev_port_attr_set(dev, attr, &trans); 271 if (err) { 272 /* Prepare phase failed: abort the transaction. Any 273 * resources reserved in the prepare phase are 274 * released. 275 */ 276 277 if (err != -EOPNOTSUPP) 278 switchdev_trans_items_destroy(&trans); 279 280 return err; 281 } 282 283 /* Phase II: commit attr set. This cannot fail as a fault 284 * of driver/device. If it does, it's a bug in the driver/device 285 * because the driver said everythings was OK in phase I. 286 */ 287 288 trans.ph_prepare = false; 289 err = __switchdev_port_attr_set(dev, attr, &trans); 290 WARN(err, "%s: Commit of attribute (id=%d) failed.\n", 291 dev->name, attr->id); 292 switchdev_trans_items_warn_destroy(dev, &trans); 293 294 return err; 295 } 296 297 static void switchdev_port_attr_set_deferred(struct net_device *dev, 298 const void *data) 299 { 300 const struct switchdev_attr *attr = data; 301 int err; 302 303 err = switchdev_port_attr_set_now(dev, attr); 304 if (err && err != -EOPNOTSUPP) 305 netdev_err(dev, "failed (err=%d) to set attribute (id=%d)\n", 306 err, attr->id); 307 if (attr->complete) 308 attr->complete(dev, err, attr->complete_priv); 309 } 310 311 static int switchdev_port_attr_set_defer(struct net_device *dev, 312 const struct switchdev_attr *attr) 313 { 314 return switchdev_deferred_enqueue(dev, attr, sizeof(*attr), 315 switchdev_port_attr_set_deferred); 316 } 317 318 /** 319 * switchdev_port_attr_set - Set port attribute 320 * 321 * @dev: port device 322 * @attr: attribute to set 323 * 324 * Use a 2-phase prepare-commit transaction model to ensure 325 * system is not left in a partially updated state due to 326 * failure from driver/device. 327 * 328 * rtnl_lock must be held and must not be in atomic section, 329 * in case SWITCHDEV_F_DEFER flag is not set. 330 */ 331 int switchdev_port_attr_set(struct net_device *dev, 332 const struct switchdev_attr *attr) 333 { 334 if (attr->flags & SWITCHDEV_F_DEFER) 335 return switchdev_port_attr_set_defer(dev, attr); 336 ASSERT_RTNL(); 337 return switchdev_port_attr_set_now(dev, attr); 338 } 339 EXPORT_SYMBOL_GPL(switchdev_port_attr_set); 340 341 static size_t switchdev_obj_size(const struct switchdev_obj *obj) 342 { 343 switch (obj->id) { 344 case SWITCHDEV_OBJ_ID_PORT_VLAN: 345 return sizeof(struct switchdev_obj_port_vlan); 346 case SWITCHDEV_OBJ_ID_PORT_FDB: 347 return sizeof(struct switchdev_obj_port_fdb); 348 case SWITCHDEV_OBJ_ID_PORT_MDB: 349 return sizeof(struct switchdev_obj_port_mdb); 350 default: 351 BUG(); 352 } 353 return 0; 354 } 355 356 static int __switchdev_port_obj_add(struct net_device *dev, 357 const struct switchdev_obj *obj, 358 struct switchdev_trans *trans) 359 { 360 const struct switchdev_ops *ops = dev->switchdev_ops; 361 struct net_device *lower_dev; 362 struct list_head *iter; 363 int err = -EOPNOTSUPP; 364 365 if (ops && ops->switchdev_port_obj_add) 366 return ops->switchdev_port_obj_add(dev, obj, trans); 367 368 /* Switch device port(s) may be stacked under 369 * bond/team/vlan dev, so recurse down to add object on 370 * each port. 371 */ 372 373 netdev_for_each_lower_dev(dev, lower_dev, iter) { 374 err = __switchdev_port_obj_add(lower_dev, obj, trans); 375 if (err) 376 break; 377 } 378 379 return err; 380 } 381 382 static int switchdev_port_obj_add_now(struct net_device *dev, 383 const struct switchdev_obj *obj) 384 { 385 struct switchdev_trans trans; 386 int err; 387 388 ASSERT_RTNL(); 389 390 switchdev_trans_init(&trans); 391 392 /* Phase I: prepare for obj add. Driver/device should fail 393 * here if there are going to be issues in the commit phase, 394 * such as lack of resources or support. The driver/device 395 * should reserve resources needed for the commit phase here, 396 * but should not commit the obj. 397 */ 398 399 trans.ph_prepare = true; 400 err = __switchdev_port_obj_add(dev, obj, &trans); 401 if (err) { 402 /* Prepare phase failed: abort the transaction. Any 403 * resources reserved in the prepare phase are 404 * released. 405 */ 406 407 if (err != -EOPNOTSUPP) 408 switchdev_trans_items_destroy(&trans); 409 410 return err; 411 } 412 413 /* Phase II: commit obj add. This cannot fail as a fault 414 * of driver/device. If it does, it's a bug in the driver/device 415 * because the driver said everythings was OK in phase I. 416 */ 417 418 trans.ph_prepare = false; 419 err = __switchdev_port_obj_add(dev, obj, &trans); 420 WARN(err, "%s: Commit of object (id=%d) failed.\n", dev->name, obj->id); 421 switchdev_trans_items_warn_destroy(dev, &trans); 422 423 return err; 424 } 425 426 static void switchdev_port_obj_add_deferred(struct net_device *dev, 427 const void *data) 428 { 429 const struct switchdev_obj *obj = data; 430 int err; 431 432 err = switchdev_port_obj_add_now(dev, obj); 433 if (err && err != -EOPNOTSUPP) 434 netdev_err(dev, "failed (err=%d) to add object (id=%d)\n", 435 err, obj->id); 436 if (obj->complete) 437 obj->complete(dev, err, obj->complete_priv); 438 } 439 440 static int switchdev_port_obj_add_defer(struct net_device *dev, 441 const struct switchdev_obj *obj) 442 { 443 return switchdev_deferred_enqueue(dev, obj, switchdev_obj_size(obj), 444 switchdev_port_obj_add_deferred); 445 } 446 447 /** 448 * switchdev_port_obj_add - Add port object 449 * 450 * @dev: port device 451 * @id: object ID 452 * @obj: object to add 453 * 454 * Use a 2-phase prepare-commit transaction model to ensure 455 * system is not left in a partially updated state due to 456 * failure from driver/device. 457 * 458 * rtnl_lock must be held and must not be in atomic section, 459 * in case SWITCHDEV_F_DEFER flag is not set. 460 */ 461 int switchdev_port_obj_add(struct net_device *dev, 462 const struct switchdev_obj *obj) 463 { 464 if (obj->flags & SWITCHDEV_F_DEFER) 465 return switchdev_port_obj_add_defer(dev, obj); 466 ASSERT_RTNL(); 467 return switchdev_port_obj_add_now(dev, obj); 468 } 469 EXPORT_SYMBOL_GPL(switchdev_port_obj_add); 470 471 static int switchdev_port_obj_del_now(struct net_device *dev, 472 const struct switchdev_obj *obj) 473 { 474 const struct switchdev_ops *ops = dev->switchdev_ops; 475 struct net_device *lower_dev; 476 struct list_head *iter; 477 int err = -EOPNOTSUPP; 478 479 if (ops && ops->switchdev_port_obj_del) 480 return ops->switchdev_port_obj_del(dev, obj); 481 482 /* Switch device port(s) may be stacked under 483 * bond/team/vlan dev, so recurse down to delete object on 484 * each port. 485 */ 486 487 netdev_for_each_lower_dev(dev, lower_dev, iter) { 488 err = switchdev_port_obj_del_now(lower_dev, obj); 489 if (err) 490 break; 491 } 492 493 return err; 494 } 495 496 static void switchdev_port_obj_del_deferred(struct net_device *dev, 497 const void *data) 498 { 499 const struct switchdev_obj *obj = data; 500 int err; 501 502 err = switchdev_port_obj_del_now(dev, obj); 503 if (err && err != -EOPNOTSUPP) 504 netdev_err(dev, "failed (err=%d) to del object (id=%d)\n", 505 err, obj->id); 506 if (obj->complete) 507 obj->complete(dev, err, obj->complete_priv); 508 } 509 510 static int switchdev_port_obj_del_defer(struct net_device *dev, 511 const struct switchdev_obj *obj) 512 { 513 return switchdev_deferred_enqueue(dev, obj, switchdev_obj_size(obj), 514 switchdev_port_obj_del_deferred); 515 } 516 517 /** 518 * switchdev_port_obj_del - Delete port object 519 * 520 * @dev: port device 521 * @id: object ID 522 * @obj: object to delete 523 * 524 * rtnl_lock must be held and must not be in atomic section, 525 * in case SWITCHDEV_F_DEFER flag is not set. 526 */ 527 int switchdev_port_obj_del(struct net_device *dev, 528 const struct switchdev_obj *obj) 529 { 530 if (obj->flags & SWITCHDEV_F_DEFER) 531 return switchdev_port_obj_del_defer(dev, obj); 532 ASSERT_RTNL(); 533 return switchdev_port_obj_del_now(dev, obj); 534 } 535 EXPORT_SYMBOL_GPL(switchdev_port_obj_del); 536 537 /** 538 * switchdev_port_obj_dump - Dump port objects 539 * 540 * @dev: port device 541 * @id: object ID 542 * @obj: object to dump 543 * @cb: function to call with a filled object 544 * 545 * rtnl_lock must be held. 546 */ 547 int switchdev_port_obj_dump(struct net_device *dev, struct switchdev_obj *obj, 548 switchdev_obj_dump_cb_t *cb) 549 { 550 const struct switchdev_ops *ops = dev->switchdev_ops; 551 struct net_device *lower_dev; 552 struct list_head *iter; 553 int err = -EOPNOTSUPP; 554 555 ASSERT_RTNL(); 556 557 if (ops && ops->switchdev_port_obj_dump) 558 return ops->switchdev_port_obj_dump(dev, obj, cb); 559 560 /* Switch device port(s) may be stacked under 561 * bond/team/vlan dev, so recurse down to dump objects on 562 * first port at bottom of stack. 563 */ 564 565 netdev_for_each_lower_dev(dev, lower_dev, iter) { 566 err = switchdev_port_obj_dump(lower_dev, obj, cb); 567 break; 568 } 569 570 return err; 571 } 572 EXPORT_SYMBOL_GPL(switchdev_port_obj_dump); 573 574 static RAW_NOTIFIER_HEAD(switchdev_notif_chain); 575 576 /** 577 * register_switchdev_notifier - Register notifier 578 * @nb: notifier_block 579 * 580 * Register switch device notifier. This should be used by code 581 * which needs to monitor events happening in particular device. 582 * Return values are same as for atomic_notifier_chain_register(). 583 */ 584 int register_switchdev_notifier(struct notifier_block *nb) 585 { 586 int err; 587 588 rtnl_lock(); 589 err = raw_notifier_chain_register(&switchdev_notif_chain, nb); 590 rtnl_unlock(); 591 return err; 592 } 593 EXPORT_SYMBOL_GPL(register_switchdev_notifier); 594 595 /** 596 * unregister_switchdev_notifier - Unregister notifier 597 * @nb: notifier_block 598 * 599 * Unregister switch device notifier. 600 * Return values are same as for atomic_notifier_chain_unregister(). 601 */ 602 int unregister_switchdev_notifier(struct notifier_block *nb) 603 { 604 int err; 605 606 rtnl_lock(); 607 err = raw_notifier_chain_unregister(&switchdev_notif_chain, nb); 608 rtnl_unlock(); 609 return err; 610 } 611 EXPORT_SYMBOL_GPL(unregister_switchdev_notifier); 612 613 /** 614 * call_switchdev_notifiers - Call notifiers 615 * @val: value passed unmodified to notifier function 616 * @dev: port device 617 * @info: notifier information data 618 * 619 * Call all network notifier blocks. This should be called by driver 620 * when it needs to propagate hardware event. 621 * Return values are same as for atomic_notifier_call_chain(). 622 * rtnl_lock must be held. 623 */ 624 int call_switchdev_notifiers(unsigned long val, struct net_device *dev, 625 struct switchdev_notifier_info *info) 626 { 627 ASSERT_RTNL(); 628 629 info->dev = dev; 630 return raw_notifier_call_chain(&switchdev_notif_chain, val, info); 631 } 632 EXPORT_SYMBOL_GPL(call_switchdev_notifiers); 633 634 struct switchdev_vlan_dump { 635 struct switchdev_obj_port_vlan vlan; 636 struct sk_buff *skb; 637 u32 filter_mask; 638 u16 flags; 639 u16 begin; 640 u16 end; 641 }; 642 643 static int switchdev_port_vlan_dump_put(struct switchdev_vlan_dump *dump) 644 { 645 struct bridge_vlan_info vinfo; 646 647 vinfo.flags = dump->flags; 648 649 if (dump->begin == 0 && dump->end == 0) { 650 return 0; 651 } else if (dump->begin == dump->end) { 652 vinfo.vid = dump->begin; 653 if (nla_put(dump->skb, IFLA_BRIDGE_VLAN_INFO, 654 sizeof(vinfo), &vinfo)) 655 return -EMSGSIZE; 656 } else { 657 vinfo.vid = dump->begin; 658 vinfo.flags |= BRIDGE_VLAN_INFO_RANGE_BEGIN; 659 if (nla_put(dump->skb, IFLA_BRIDGE_VLAN_INFO, 660 sizeof(vinfo), &vinfo)) 661 return -EMSGSIZE; 662 vinfo.vid = dump->end; 663 vinfo.flags &= ~BRIDGE_VLAN_INFO_RANGE_BEGIN; 664 vinfo.flags |= BRIDGE_VLAN_INFO_RANGE_END; 665 if (nla_put(dump->skb, IFLA_BRIDGE_VLAN_INFO, 666 sizeof(vinfo), &vinfo)) 667 return -EMSGSIZE; 668 } 669 670 return 0; 671 } 672 673 static int switchdev_port_vlan_dump_cb(struct switchdev_obj *obj) 674 { 675 struct switchdev_obj_port_vlan *vlan = SWITCHDEV_OBJ_PORT_VLAN(obj); 676 struct switchdev_vlan_dump *dump = 677 container_of(vlan, struct switchdev_vlan_dump, vlan); 678 int err = 0; 679 680 if (vlan->vid_begin > vlan->vid_end) 681 return -EINVAL; 682 683 if (dump->filter_mask & RTEXT_FILTER_BRVLAN) { 684 dump->flags = vlan->flags; 685 for (dump->begin = dump->end = vlan->vid_begin; 686 dump->begin <= vlan->vid_end; 687 dump->begin++, dump->end++) { 688 err = switchdev_port_vlan_dump_put(dump); 689 if (err) 690 return err; 691 } 692 } else if (dump->filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED) { 693 if (dump->begin > vlan->vid_begin && 694 dump->begin >= vlan->vid_end) { 695 if ((dump->begin - 1) == vlan->vid_end && 696 dump->flags == vlan->flags) { 697 /* prepend */ 698 dump->begin = vlan->vid_begin; 699 } else { 700 err = switchdev_port_vlan_dump_put(dump); 701 dump->flags = vlan->flags; 702 dump->begin = vlan->vid_begin; 703 dump->end = vlan->vid_end; 704 } 705 } else if (dump->end <= vlan->vid_begin && 706 dump->end < vlan->vid_end) { 707 if ((dump->end + 1) == vlan->vid_begin && 708 dump->flags == vlan->flags) { 709 /* append */ 710 dump->end = vlan->vid_end; 711 } else { 712 err = switchdev_port_vlan_dump_put(dump); 713 dump->flags = vlan->flags; 714 dump->begin = vlan->vid_begin; 715 dump->end = vlan->vid_end; 716 } 717 } else { 718 err = -EINVAL; 719 } 720 } 721 722 return err; 723 } 724 725 static int switchdev_port_vlan_fill(struct sk_buff *skb, struct net_device *dev, 726 u32 filter_mask) 727 { 728 struct switchdev_vlan_dump dump = { 729 .vlan.obj.orig_dev = dev, 730 .vlan.obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN, 731 .skb = skb, 732 .filter_mask = filter_mask, 733 }; 734 int err = 0; 735 736 if ((filter_mask & RTEXT_FILTER_BRVLAN) || 737 (filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED)) { 738 err = switchdev_port_obj_dump(dev, &dump.vlan.obj, 739 switchdev_port_vlan_dump_cb); 740 if (err) 741 goto err_out; 742 if (filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED) 743 /* last one */ 744 err = switchdev_port_vlan_dump_put(&dump); 745 } 746 747 err_out: 748 return err == -EOPNOTSUPP ? 0 : err; 749 } 750 751 /** 752 * switchdev_port_bridge_getlink - Get bridge port attributes 753 * 754 * @dev: port device 755 * 756 * Called for SELF on rtnl_bridge_getlink to get bridge port 757 * attributes. 758 */ 759 int switchdev_port_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 760 struct net_device *dev, u32 filter_mask, 761 int nlflags) 762 { 763 struct switchdev_attr attr = { 764 .orig_dev = dev, 765 .id = SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS, 766 }; 767 u16 mode = BRIDGE_MODE_UNDEF; 768 u32 mask = BR_LEARNING | BR_LEARNING_SYNC | BR_FLOOD; 769 int err; 770 771 if (!netif_is_bridge_port(dev)) 772 return -EOPNOTSUPP; 773 774 err = switchdev_port_attr_get(dev, &attr); 775 if (err && err != -EOPNOTSUPP) 776 return err; 777 778 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 779 attr.u.brport_flags, mask, nlflags, 780 filter_mask, switchdev_port_vlan_fill); 781 } 782 EXPORT_SYMBOL_GPL(switchdev_port_bridge_getlink); 783 784 static int switchdev_port_br_setflag(struct net_device *dev, 785 struct nlattr *nlattr, 786 unsigned long brport_flag) 787 { 788 struct switchdev_attr attr = { 789 .orig_dev = dev, 790 .id = SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS, 791 }; 792 u8 flag = nla_get_u8(nlattr); 793 int err; 794 795 err = switchdev_port_attr_get(dev, &attr); 796 if (err) 797 return err; 798 799 if (flag) 800 attr.u.brport_flags |= brport_flag; 801 else 802 attr.u.brport_flags &= ~brport_flag; 803 804 return switchdev_port_attr_set(dev, &attr); 805 } 806 807 static const struct nla_policy 808 switchdev_port_bridge_policy[IFLA_BRPORT_MAX + 1] = { 809 [IFLA_BRPORT_STATE] = { .type = NLA_U8 }, 810 [IFLA_BRPORT_COST] = { .type = NLA_U32 }, 811 [IFLA_BRPORT_PRIORITY] = { .type = NLA_U16 }, 812 [IFLA_BRPORT_MODE] = { .type = NLA_U8 }, 813 [IFLA_BRPORT_GUARD] = { .type = NLA_U8 }, 814 [IFLA_BRPORT_PROTECT] = { .type = NLA_U8 }, 815 [IFLA_BRPORT_FAST_LEAVE] = { .type = NLA_U8 }, 816 [IFLA_BRPORT_LEARNING] = { .type = NLA_U8 }, 817 [IFLA_BRPORT_LEARNING_SYNC] = { .type = NLA_U8 }, 818 [IFLA_BRPORT_UNICAST_FLOOD] = { .type = NLA_U8 }, 819 }; 820 821 static int switchdev_port_br_setlink_protinfo(struct net_device *dev, 822 struct nlattr *protinfo) 823 { 824 struct nlattr *attr; 825 int rem; 826 int err; 827 828 err = nla_validate_nested(protinfo, IFLA_BRPORT_MAX, 829 switchdev_port_bridge_policy); 830 if (err) 831 return err; 832 833 nla_for_each_nested(attr, protinfo, rem) { 834 switch (nla_type(attr)) { 835 case IFLA_BRPORT_LEARNING: 836 err = switchdev_port_br_setflag(dev, attr, 837 BR_LEARNING); 838 break; 839 case IFLA_BRPORT_LEARNING_SYNC: 840 err = switchdev_port_br_setflag(dev, attr, 841 BR_LEARNING_SYNC); 842 break; 843 case IFLA_BRPORT_UNICAST_FLOOD: 844 err = switchdev_port_br_setflag(dev, attr, BR_FLOOD); 845 break; 846 default: 847 err = -EOPNOTSUPP; 848 break; 849 } 850 if (err) 851 return err; 852 } 853 854 return 0; 855 } 856 857 static int switchdev_port_br_afspec(struct net_device *dev, 858 struct nlattr *afspec, 859 int (*f)(struct net_device *dev, 860 const struct switchdev_obj *obj)) 861 { 862 struct nlattr *attr; 863 struct bridge_vlan_info *vinfo; 864 struct switchdev_obj_port_vlan vlan = { 865 .obj.orig_dev = dev, 866 .obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN, 867 }; 868 int rem; 869 int err; 870 871 nla_for_each_nested(attr, afspec, rem) { 872 if (nla_type(attr) != IFLA_BRIDGE_VLAN_INFO) 873 continue; 874 if (nla_len(attr) != sizeof(struct bridge_vlan_info)) 875 return -EINVAL; 876 vinfo = nla_data(attr); 877 if (!vinfo->vid || vinfo->vid >= VLAN_VID_MASK) 878 return -EINVAL; 879 vlan.flags = vinfo->flags; 880 if (vinfo->flags & BRIDGE_VLAN_INFO_RANGE_BEGIN) { 881 if (vlan.vid_begin) 882 return -EINVAL; 883 vlan.vid_begin = vinfo->vid; 884 /* don't allow range of pvids */ 885 if (vlan.flags & BRIDGE_VLAN_INFO_PVID) 886 return -EINVAL; 887 } else if (vinfo->flags & BRIDGE_VLAN_INFO_RANGE_END) { 888 if (!vlan.vid_begin) 889 return -EINVAL; 890 vlan.vid_end = vinfo->vid; 891 if (vlan.vid_end <= vlan.vid_begin) 892 return -EINVAL; 893 err = f(dev, &vlan.obj); 894 if (err) 895 return err; 896 vlan.vid_begin = 0; 897 } else { 898 if (vlan.vid_begin) 899 return -EINVAL; 900 vlan.vid_begin = vinfo->vid; 901 vlan.vid_end = vinfo->vid; 902 err = f(dev, &vlan.obj); 903 if (err) 904 return err; 905 vlan.vid_begin = 0; 906 } 907 } 908 909 return 0; 910 } 911 912 /** 913 * switchdev_port_bridge_setlink - Set bridge port attributes 914 * 915 * @dev: port device 916 * @nlh: netlink header 917 * @flags: netlink flags 918 * 919 * Called for SELF on rtnl_bridge_setlink to set bridge port 920 * attributes. 921 */ 922 int switchdev_port_bridge_setlink(struct net_device *dev, 923 struct nlmsghdr *nlh, u16 flags) 924 { 925 struct nlattr *protinfo; 926 struct nlattr *afspec; 927 int err = 0; 928 929 if (!netif_is_bridge_port(dev)) 930 return -EOPNOTSUPP; 931 932 protinfo = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), 933 IFLA_PROTINFO); 934 if (protinfo) { 935 err = switchdev_port_br_setlink_protinfo(dev, protinfo); 936 if (err) 937 return err; 938 } 939 940 afspec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), 941 IFLA_AF_SPEC); 942 if (afspec) 943 err = switchdev_port_br_afspec(dev, afspec, 944 switchdev_port_obj_add); 945 946 return err; 947 } 948 EXPORT_SYMBOL_GPL(switchdev_port_bridge_setlink); 949 950 /** 951 * switchdev_port_bridge_dellink - Set bridge port attributes 952 * 953 * @dev: port device 954 * @nlh: netlink header 955 * @flags: netlink flags 956 * 957 * Called for SELF on rtnl_bridge_dellink to set bridge port 958 * attributes. 959 */ 960 int switchdev_port_bridge_dellink(struct net_device *dev, 961 struct nlmsghdr *nlh, u16 flags) 962 { 963 struct nlattr *afspec; 964 965 if (!netif_is_bridge_port(dev)) 966 return -EOPNOTSUPP; 967 968 afspec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), 969 IFLA_AF_SPEC); 970 if (afspec) 971 return switchdev_port_br_afspec(dev, afspec, 972 switchdev_port_obj_del); 973 974 return 0; 975 } 976 EXPORT_SYMBOL_GPL(switchdev_port_bridge_dellink); 977 978 /** 979 * switchdev_port_fdb_add - Add FDB (MAC/VLAN) entry to port 980 * 981 * @ndmsg: netlink hdr 982 * @nlattr: netlink attributes 983 * @dev: port device 984 * @addr: MAC address to add 985 * @vid: VLAN to add 986 * 987 * Add FDB entry to switch device. 988 */ 989 int switchdev_port_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 990 struct net_device *dev, const unsigned char *addr, 991 u16 vid, u16 nlm_flags) 992 { 993 struct switchdev_obj_port_fdb fdb = { 994 .obj.orig_dev = dev, 995 .obj.id = SWITCHDEV_OBJ_ID_PORT_FDB, 996 .vid = vid, 997 }; 998 999 ether_addr_copy(fdb.addr, addr); 1000 return switchdev_port_obj_add(dev, &fdb.obj); 1001 } 1002 EXPORT_SYMBOL_GPL(switchdev_port_fdb_add); 1003 1004 /** 1005 * switchdev_port_fdb_del - Delete FDB (MAC/VLAN) entry from port 1006 * 1007 * @ndmsg: netlink hdr 1008 * @nlattr: netlink attributes 1009 * @dev: port device 1010 * @addr: MAC address to delete 1011 * @vid: VLAN to delete 1012 * 1013 * Delete FDB entry from switch device. 1014 */ 1015 int switchdev_port_fdb_del(struct ndmsg *ndm, struct nlattr *tb[], 1016 struct net_device *dev, const unsigned char *addr, 1017 u16 vid) 1018 { 1019 struct switchdev_obj_port_fdb fdb = { 1020 .obj.orig_dev = dev, 1021 .obj.id = SWITCHDEV_OBJ_ID_PORT_FDB, 1022 .vid = vid, 1023 }; 1024 1025 ether_addr_copy(fdb.addr, addr); 1026 return switchdev_port_obj_del(dev, &fdb.obj); 1027 } 1028 EXPORT_SYMBOL_GPL(switchdev_port_fdb_del); 1029 1030 struct switchdev_fdb_dump { 1031 struct switchdev_obj_port_fdb fdb; 1032 struct net_device *dev; 1033 struct sk_buff *skb; 1034 struct netlink_callback *cb; 1035 int idx; 1036 }; 1037 1038 static int switchdev_port_fdb_dump_cb(struct switchdev_obj *obj) 1039 { 1040 struct switchdev_obj_port_fdb *fdb = SWITCHDEV_OBJ_PORT_FDB(obj); 1041 struct switchdev_fdb_dump *dump = 1042 container_of(fdb, struct switchdev_fdb_dump, fdb); 1043 u32 portid = NETLINK_CB(dump->cb->skb).portid; 1044 u32 seq = dump->cb->nlh->nlmsg_seq; 1045 struct nlmsghdr *nlh; 1046 struct ndmsg *ndm; 1047 1048 if (dump->idx < dump->cb->args[2]) 1049 goto skip; 1050 1051 nlh = nlmsg_put(dump->skb, portid, seq, RTM_NEWNEIGH, 1052 sizeof(*ndm), NLM_F_MULTI); 1053 if (!nlh) 1054 return -EMSGSIZE; 1055 1056 ndm = nlmsg_data(nlh); 1057 ndm->ndm_family = AF_BRIDGE; 1058 ndm->ndm_pad1 = 0; 1059 ndm->ndm_pad2 = 0; 1060 ndm->ndm_flags = NTF_SELF; 1061 ndm->ndm_type = 0; 1062 ndm->ndm_ifindex = dump->dev->ifindex; 1063 ndm->ndm_state = fdb->ndm_state; 1064 1065 if (nla_put(dump->skb, NDA_LLADDR, ETH_ALEN, fdb->addr)) 1066 goto nla_put_failure; 1067 1068 if (fdb->vid && nla_put_u16(dump->skb, NDA_VLAN, fdb->vid)) 1069 goto nla_put_failure; 1070 1071 nlmsg_end(dump->skb, nlh); 1072 1073 skip: 1074 dump->idx++; 1075 return 0; 1076 1077 nla_put_failure: 1078 nlmsg_cancel(dump->skb, nlh); 1079 return -EMSGSIZE; 1080 } 1081 1082 /** 1083 * switchdev_port_fdb_dump - Dump port FDB (MAC/VLAN) entries 1084 * 1085 * @skb: netlink skb 1086 * @cb: netlink callback 1087 * @dev: port device 1088 * @filter_dev: filter device 1089 * @idx: 1090 * 1091 * Dump FDB entries from switch device. 1092 */ 1093 int switchdev_port_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb, 1094 struct net_device *dev, 1095 struct net_device *filter_dev, int *idx) 1096 { 1097 struct switchdev_fdb_dump dump = { 1098 .fdb.obj.orig_dev = dev, 1099 .fdb.obj.id = SWITCHDEV_OBJ_ID_PORT_FDB, 1100 .dev = dev, 1101 .skb = skb, 1102 .cb = cb, 1103 .idx = *idx, 1104 }; 1105 int err; 1106 1107 err = switchdev_port_obj_dump(dev, &dump.fdb.obj, 1108 switchdev_port_fdb_dump_cb); 1109 *idx = dump.idx; 1110 return err; 1111 } 1112 EXPORT_SYMBOL_GPL(switchdev_port_fdb_dump); 1113 1114 bool switchdev_port_same_parent_id(struct net_device *a, 1115 struct net_device *b) 1116 { 1117 struct switchdev_attr a_attr = { 1118 .orig_dev = a, 1119 .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID, 1120 }; 1121 struct switchdev_attr b_attr = { 1122 .orig_dev = b, 1123 .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID, 1124 }; 1125 1126 if (switchdev_port_attr_get(a, &a_attr) || 1127 switchdev_port_attr_get(b, &b_attr)) 1128 return false; 1129 1130 return netdev_phys_item_id_same(&a_attr.u.ppid, &b_attr.u.ppid); 1131 } 1132 EXPORT_SYMBOL_GPL(switchdev_port_same_parent_id); 1133