xref: /linux/net/switchdev/switchdev.c (revision 8c749ce93ee69e789e46b3be98de9e0cbfcf8ed8)
1 /*
2  * net/switchdev/switchdev.c - Switch device API
3  * Copyright (c) 2014-2015 Jiri Pirko <jiri@resnulli.us>
4  * Copyright (c) 2014-2015 Scott Feldman <sfeldma@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/init.h>
15 #include <linux/mutex.h>
16 #include <linux/notifier.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/list.h>
21 #include <linux/workqueue.h>
22 #include <linux/if_vlan.h>
23 #include <net/ip_fib.h>
24 #include <net/switchdev.h>
25 
26 /**
27  *	switchdev_trans_item_enqueue - Enqueue data item to transaction queue
28  *
29  *	@trans: transaction
30  *	@data: pointer to data being queued
31  *	@destructor: data destructor
32  *	@tritem: transaction item being queued
33  *
34  *	Enqeueue data item to transaction queue. tritem is typically placed in
35  *	cointainter pointed at by data pointer. Destructor is called on
36  *	transaction abort and after successful commit phase in case
37  *	the caller did not dequeue the item before.
38  */
39 void switchdev_trans_item_enqueue(struct switchdev_trans *trans,
40 				  void *data, void (*destructor)(void const *),
41 				  struct switchdev_trans_item *tritem)
42 {
43 	tritem->data = data;
44 	tritem->destructor = destructor;
45 	list_add_tail(&tritem->list, &trans->item_list);
46 }
47 EXPORT_SYMBOL_GPL(switchdev_trans_item_enqueue);
48 
49 static struct switchdev_trans_item *
50 __switchdev_trans_item_dequeue(struct switchdev_trans *trans)
51 {
52 	struct switchdev_trans_item *tritem;
53 
54 	if (list_empty(&trans->item_list))
55 		return NULL;
56 	tritem = list_first_entry(&trans->item_list,
57 				  struct switchdev_trans_item, list);
58 	list_del(&tritem->list);
59 	return tritem;
60 }
61 
62 /**
63  *	switchdev_trans_item_dequeue - Dequeue data item from transaction queue
64  *
65  *	@trans: transaction
66  */
67 void *switchdev_trans_item_dequeue(struct switchdev_trans *trans)
68 {
69 	struct switchdev_trans_item *tritem;
70 
71 	tritem = __switchdev_trans_item_dequeue(trans);
72 	BUG_ON(!tritem);
73 	return tritem->data;
74 }
75 EXPORT_SYMBOL_GPL(switchdev_trans_item_dequeue);
76 
77 static void switchdev_trans_init(struct switchdev_trans *trans)
78 {
79 	INIT_LIST_HEAD(&trans->item_list);
80 }
81 
82 static void switchdev_trans_items_destroy(struct switchdev_trans *trans)
83 {
84 	struct switchdev_trans_item *tritem;
85 
86 	while ((tritem = __switchdev_trans_item_dequeue(trans)))
87 		tritem->destructor(tritem->data);
88 }
89 
90 static void switchdev_trans_items_warn_destroy(struct net_device *dev,
91 					       struct switchdev_trans *trans)
92 {
93 	WARN(!list_empty(&trans->item_list), "%s: transaction item queue is not empty.\n",
94 	     dev->name);
95 	switchdev_trans_items_destroy(trans);
96 }
97 
98 static LIST_HEAD(deferred);
99 static DEFINE_SPINLOCK(deferred_lock);
100 
101 typedef void switchdev_deferred_func_t(struct net_device *dev,
102 				       const void *data);
103 
104 struct switchdev_deferred_item {
105 	struct list_head list;
106 	struct net_device *dev;
107 	switchdev_deferred_func_t *func;
108 	unsigned long data[0];
109 };
110 
111 static struct switchdev_deferred_item *switchdev_deferred_dequeue(void)
112 {
113 	struct switchdev_deferred_item *dfitem;
114 
115 	spin_lock_bh(&deferred_lock);
116 	if (list_empty(&deferred)) {
117 		dfitem = NULL;
118 		goto unlock;
119 	}
120 	dfitem = list_first_entry(&deferred,
121 				  struct switchdev_deferred_item, list);
122 	list_del(&dfitem->list);
123 unlock:
124 	spin_unlock_bh(&deferred_lock);
125 	return dfitem;
126 }
127 
128 /**
129  *	switchdev_deferred_process - Process ops in deferred queue
130  *
131  *	Called to flush the ops currently queued in deferred ops queue.
132  *	rtnl_lock must be held.
133  */
134 void switchdev_deferred_process(void)
135 {
136 	struct switchdev_deferred_item *dfitem;
137 
138 	ASSERT_RTNL();
139 
140 	while ((dfitem = switchdev_deferred_dequeue())) {
141 		dfitem->func(dfitem->dev, dfitem->data);
142 		dev_put(dfitem->dev);
143 		kfree(dfitem);
144 	}
145 }
146 EXPORT_SYMBOL_GPL(switchdev_deferred_process);
147 
148 static void switchdev_deferred_process_work(struct work_struct *work)
149 {
150 	rtnl_lock();
151 	switchdev_deferred_process();
152 	rtnl_unlock();
153 }
154 
155 static DECLARE_WORK(deferred_process_work, switchdev_deferred_process_work);
156 
157 static int switchdev_deferred_enqueue(struct net_device *dev,
158 				      const void *data, size_t data_len,
159 				      switchdev_deferred_func_t *func)
160 {
161 	struct switchdev_deferred_item *dfitem;
162 
163 	dfitem = kmalloc(sizeof(*dfitem) + data_len, GFP_ATOMIC);
164 	if (!dfitem)
165 		return -ENOMEM;
166 	dfitem->dev = dev;
167 	dfitem->func = func;
168 	memcpy(dfitem->data, data, data_len);
169 	dev_hold(dev);
170 	spin_lock_bh(&deferred_lock);
171 	list_add_tail(&dfitem->list, &deferred);
172 	spin_unlock_bh(&deferred_lock);
173 	schedule_work(&deferred_process_work);
174 	return 0;
175 }
176 
177 /**
178  *	switchdev_port_attr_get - Get port attribute
179  *
180  *	@dev: port device
181  *	@attr: attribute to get
182  */
183 int switchdev_port_attr_get(struct net_device *dev, struct switchdev_attr *attr)
184 {
185 	const struct switchdev_ops *ops = dev->switchdev_ops;
186 	struct net_device *lower_dev;
187 	struct list_head *iter;
188 	struct switchdev_attr first = {
189 		.id = SWITCHDEV_ATTR_ID_UNDEFINED
190 	};
191 	int err = -EOPNOTSUPP;
192 
193 	if (ops && ops->switchdev_port_attr_get)
194 		return ops->switchdev_port_attr_get(dev, attr);
195 
196 	if (attr->flags & SWITCHDEV_F_NO_RECURSE)
197 		return err;
198 
199 	/* Switch device port(s) may be stacked under
200 	 * bond/team/vlan dev, so recurse down to get attr on
201 	 * each port.  Return -ENODATA if attr values don't
202 	 * compare across ports.
203 	 */
204 
205 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
206 		err = switchdev_port_attr_get(lower_dev, attr);
207 		if (err)
208 			break;
209 		if (first.id == SWITCHDEV_ATTR_ID_UNDEFINED)
210 			first = *attr;
211 		else if (memcmp(&first, attr, sizeof(*attr)))
212 			return -ENODATA;
213 	}
214 
215 	return err;
216 }
217 EXPORT_SYMBOL_GPL(switchdev_port_attr_get);
218 
219 static int __switchdev_port_attr_set(struct net_device *dev,
220 				     const struct switchdev_attr *attr,
221 				     struct switchdev_trans *trans)
222 {
223 	const struct switchdev_ops *ops = dev->switchdev_ops;
224 	struct net_device *lower_dev;
225 	struct list_head *iter;
226 	int err = -EOPNOTSUPP;
227 
228 	if (ops && ops->switchdev_port_attr_set) {
229 		err = ops->switchdev_port_attr_set(dev, attr, trans);
230 		goto done;
231 	}
232 
233 	if (attr->flags & SWITCHDEV_F_NO_RECURSE)
234 		goto done;
235 
236 	/* Switch device port(s) may be stacked under
237 	 * bond/team/vlan dev, so recurse down to set attr on
238 	 * each port.
239 	 */
240 
241 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
242 		err = __switchdev_port_attr_set(lower_dev, attr, trans);
243 		if (err)
244 			break;
245 	}
246 
247 done:
248 	if (err == -EOPNOTSUPP && attr->flags & SWITCHDEV_F_SKIP_EOPNOTSUPP)
249 		err = 0;
250 
251 	return err;
252 }
253 
254 static int switchdev_port_attr_set_now(struct net_device *dev,
255 				       const struct switchdev_attr *attr)
256 {
257 	struct switchdev_trans trans;
258 	int err;
259 
260 	switchdev_trans_init(&trans);
261 
262 	/* Phase I: prepare for attr set. Driver/device should fail
263 	 * here if there are going to be issues in the commit phase,
264 	 * such as lack of resources or support.  The driver/device
265 	 * should reserve resources needed for the commit phase here,
266 	 * but should not commit the attr.
267 	 */
268 
269 	trans.ph_prepare = true;
270 	err = __switchdev_port_attr_set(dev, attr, &trans);
271 	if (err) {
272 		/* Prepare phase failed: abort the transaction.  Any
273 		 * resources reserved in the prepare phase are
274 		 * released.
275 		 */
276 
277 		if (err != -EOPNOTSUPP)
278 			switchdev_trans_items_destroy(&trans);
279 
280 		return err;
281 	}
282 
283 	/* Phase II: commit attr set.  This cannot fail as a fault
284 	 * of driver/device.  If it does, it's a bug in the driver/device
285 	 * because the driver said everythings was OK in phase I.
286 	 */
287 
288 	trans.ph_prepare = false;
289 	err = __switchdev_port_attr_set(dev, attr, &trans);
290 	WARN(err, "%s: Commit of attribute (id=%d) failed.\n",
291 	     dev->name, attr->id);
292 	switchdev_trans_items_warn_destroy(dev, &trans);
293 
294 	return err;
295 }
296 
297 static void switchdev_port_attr_set_deferred(struct net_device *dev,
298 					     const void *data)
299 {
300 	const struct switchdev_attr *attr = data;
301 	int err;
302 
303 	err = switchdev_port_attr_set_now(dev, attr);
304 	if (err && err != -EOPNOTSUPP)
305 		netdev_err(dev, "failed (err=%d) to set attribute (id=%d)\n",
306 			   err, attr->id);
307 }
308 
309 static int switchdev_port_attr_set_defer(struct net_device *dev,
310 					 const struct switchdev_attr *attr)
311 {
312 	return switchdev_deferred_enqueue(dev, attr, sizeof(*attr),
313 					  switchdev_port_attr_set_deferred);
314 }
315 
316 /**
317  *	switchdev_port_attr_set - Set port attribute
318  *
319  *	@dev: port device
320  *	@attr: attribute to set
321  *
322  *	Use a 2-phase prepare-commit transaction model to ensure
323  *	system is not left in a partially updated state due to
324  *	failure from driver/device.
325  *
326  *	rtnl_lock must be held and must not be in atomic section,
327  *	in case SWITCHDEV_F_DEFER flag is not set.
328  */
329 int switchdev_port_attr_set(struct net_device *dev,
330 			    const struct switchdev_attr *attr)
331 {
332 	if (attr->flags & SWITCHDEV_F_DEFER)
333 		return switchdev_port_attr_set_defer(dev, attr);
334 	ASSERT_RTNL();
335 	return switchdev_port_attr_set_now(dev, attr);
336 }
337 EXPORT_SYMBOL_GPL(switchdev_port_attr_set);
338 
339 static size_t switchdev_obj_size(const struct switchdev_obj *obj)
340 {
341 	switch (obj->id) {
342 	case SWITCHDEV_OBJ_ID_PORT_VLAN:
343 		return sizeof(struct switchdev_obj_port_vlan);
344 	case SWITCHDEV_OBJ_ID_IPV4_FIB:
345 		return sizeof(struct switchdev_obj_ipv4_fib);
346 	case SWITCHDEV_OBJ_ID_PORT_FDB:
347 		return sizeof(struct switchdev_obj_port_fdb);
348 	case SWITCHDEV_OBJ_ID_PORT_MDB:
349 		return sizeof(struct switchdev_obj_port_mdb);
350 	default:
351 		BUG();
352 	}
353 	return 0;
354 }
355 
356 static int __switchdev_port_obj_add(struct net_device *dev,
357 				    const struct switchdev_obj *obj,
358 				    struct switchdev_trans *trans)
359 {
360 	const struct switchdev_ops *ops = dev->switchdev_ops;
361 	struct net_device *lower_dev;
362 	struct list_head *iter;
363 	int err = -EOPNOTSUPP;
364 
365 	if (ops && ops->switchdev_port_obj_add)
366 		return ops->switchdev_port_obj_add(dev, obj, trans);
367 
368 	/* Switch device port(s) may be stacked under
369 	 * bond/team/vlan dev, so recurse down to add object on
370 	 * each port.
371 	 */
372 
373 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
374 		err = __switchdev_port_obj_add(lower_dev, obj, trans);
375 		if (err)
376 			break;
377 	}
378 
379 	return err;
380 }
381 
382 static int switchdev_port_obj_add_now(struct net_device *dev,
383 				      const struct switchdev_obj *obj)
384 {
385 	struct switchdev_trans trans;
386 	int err;
387 
388 	ASSERT_RTNL();
389 
390 	switchdev_trans_init(&trans);
391 
392 	/* Phase I: prepare for obj add. Driver/device should fail
393 	 * here if there are going to be issues in the commit phase,
394 	 * such as lack of resources or support.  The driver/device
395 	 * should reserve resources needed for the commit phase here,
396 	 * but should not commit the obj.
397 	 */
398 
399 	trans.ph_prepare = true;
400 	err = __switchdev_port_obj_add(dev, obj, &trans);
401 	if (err) {
402 		/* Prepare phase failed: abort the transaction.  Any
403 		 * resources reserved in the prepare phase are
404 		 * released.
405 		 */
406 
407 		if (err != -EOPNOTSUPP)
408 			switchdev_trans_items_destroy(&trans);
409 
410 		return err;
411 	}
412 
413 	/* Phase II: commit obj add.  This cannot fail as a fault
414 	 * of driver/device.  If it does, it's a bug in the driver/device
415 	 * because the driver said everythings was OK in phase I.
416 	 */
417 
418 	trans.ph_prepare = false;
419 	err = __switchdev_port_obj_add(dev, obj, &trans);
420 	WARN(err, "%s: Commit of object (id=%d) failed.\n", dev->name, obj->id);
421 	switchdev_trans_items_warn_destroy(dev, &trans);
422 
423 	return err;
424 }
425 
426 static void switchdev_port_obj_add_deferred(struct net_device *dev,
427 					    const void *data)
428 {
429 	const struct switchdev_obj *obj = data;
430 	int err;
431 
432 	err = switchdev_port_obj_add_now(dev, obj);
433 	if (err && err != -EOPNOTSUPP)
434 		netdev_err(dev, "failed (err=%d) to add object (id=%d)\n",
435 			   err, obj->id);
436 }
437 
438 static int switchdev_port_obj_add_defer(struct net_device *dev,
439 					const struct switchdev_obj *obj)
440 {
441 	return switchdev_deferred_enqueue(dev, obj, switchdev_obj_size(obj),
442 					  switchdev_port_obj_add_deferred);
443 }
444 
445 /**
446  *	switchdev_port_obj_add - Add port object
447  *
448  *	@dev: port device
449  *	@id: object ID
450  *	@obj: object to add
451  *
452  *	Use a 2-phase prepare-commit transaction model to ensure
453  *	system is not left in a partially updated state due to
454  *	failure from driver/device.
455  *
456  *	rtnl_lock must be held and must not be in atomic section,
457  *	in case SWITCHDEV_F_DEFER flag is not set.
458  */
459 int switchdev_port_obj_add(struct net_device *dev,
460 			   const struct switchdev_obj *obj)
461 {
462 	if (obj->flags & SWITCHDEV_F_DEFER)
463 		return switchdev_port_obj_add_defer(dev, obj);
464 	ASSERT_RTNL();
465 	return switchdev_port_obj_add_now(dev, obj);
466 }
467 EXPORT_SYMBOL_GPL(switchdev_port_obj_add);
468 
469 static int switchdev_port_obj_del_now(struct net_device *dev,
470 				      const struct switchdev_obj *obj)
471 {
472 	const struct switchdev_ops *ops = dev->switchdev_ops;
473 	struct net_device *lower_dev;
474 	struct list_head *iter;
475 	int err = -EOPNOTSUPP;
476 
477 	if (ops && ops->switchdev_port_obj_del)
478 		return ops->switchdev_port_obj_del(dev, obj);
479 
480 	/* Switch device port(s) may be stacked under
481 	 * bond/team/vlan dev, so recurse down to delete object on
482 	 * each port.
483 	 */
484 
485 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
486 		err = switchdev_port_obj_del_now(lower_dev, obj);
487 		if (err)
488 			break;
489 	}
490 
491 	return err;
492 }
493 
494 static void switchdev_port_obj_del_deferred(struct net_device *dev,
495 					    const void *data)
496 {
497 	const struct switchdev_obj *obj = data;
498 	int err;
499 
500 	err = switchdev_port_obj_del_now(dev, obj);
501 	if (err && err != -EOPNOTSUPP)
502 		netdev_err(dev, "failed (err=%d) to del object (id=%d)\n",
503 			   err, obj->id);
504 }
505 
506 static int switchdev_port_obj_del_defer(struct net_device *dev,
507 					const struct switchdev_obj *obj)
508 {
509 	return switchdev_deferred_enqueue(dev, obj, switchdev_obj_size(obj),
510 					  switchdev_port_obj_del_deferred);
511 }
512 
513 /**
514  *	switchdev_port_obj_del - Delete port object
515  *
516  *	@dev: port device
517  *	@id: object ID
518  *	@obj: object to delete
519  *
520  *	rtnl_lock must be held and must not be in atomic section,
521  *	in case SWITCHDEV_F_DEFER flag is not set.
522  */
523 int switchdev_port_obj_del(struct net_device *dev,
524 			   const struct switchdev_obj *obj)
525 {
526 	if (obj->flags & SWITCHDEV_F_DEFER)
527 		return switchdev_port_obj_del_defer(dev, obj);
528 	ASSERT_RTNL();
529 	return switchdev_port_obj_del_now(dev, obj);
530 }
531 EXPORT_SYMBOL_GPL(switchdev_port_obj_del);
532 
533 /**
534  *	switchdev_port_obj_dump - Dump port objects
535  *
536  *	@dev: port device
537  *	@id: object ID
538  *	@obj: object to dump
539  *	@cb: function to call with a filled object
540  *
541  *	rtnl_lock must be held.
542  */
543 int switchdev_port_obj_dump(struct net_device *dev, struct switchdev_obj *obj,
544 			    switchdev_obj_dump_cb_t *cb)
545 {
546 	const struct switchdev_ops *ops = dev->switchdev_ops;
547 	struct net_device *lower_dev;
548 	struct list_head *iter;
549 	int err = -EOPNOTSUPP;
550 
551 	ASSERT_RTNL();
552 
553 	if (ops && ops->switchdev_port_obj_dump)
554 		return ops->switchdev_port_obj_dump(dev, obj, cb);
555 
556 	/* Switch device port(s) may be stacked under
557 	 * bond/team/vlan dev, so recurse down to dump objects on
558 	 * first port at bottom of stack.
559 	 */
560 
561 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
562 		err = switchdev_port_obj_dump(lower_dev, obj, cb);
563 		break;
564 	}
565 
566 	return err;
567 }
568 EXPORT_SYMBOL_GPL(switchdev_port_obj_dump);
569 
570 static DEFINE_MUTEX(switchdev_mutex);
571 static RAW_NOTIFIER_HEAD(switchdev_notif_chain);
572 
573 /**
574  *	register_switchdev_notifier - Register notifier
575  *	@nb: notifier_block
576  *
577  *	Register switch device notifier. This should be used by code
578  *	which needs to monitor events happening in particular device.
579  *	Return values are same as for atomic_notifier_chain_register().
580  */
581 int register_switchdev_notifier(struct notifier_block *nb)
582 {
583 	int err;
584 
585 	mutex_lock(&switchdev_mutex);
586 	err = raw_notifier_chain_register(&switchdev_notif_chain, nb);
587 	mutex_unlock(&switchdev_mutex);
588 	return err;
589 }
590 EXPORT_SYMBOL_GPL(register_switchdev_notifier);
591 
592 /**
593  *	unregister_switchdev_notifier - Unregister notifier
594  *	@nb: notifier_block
595  *
596  *	Unregister switch device notifier.
597  *	Return values are same as for atomic_notifier_chain_unregister().
598  */
599 int unregister_switchdev_notifier(struct notifier_block *nb)
600 {
601 	int err;
602 
603 	mutex_lock(&switchdev_mutex);
604 	err = raw_notifier_chain_unregister(&switchdev_notif_chain, nb);
605 	mutex_unlock(&switchdev_mutex);
606 	return err;
607 }
608 EXPORT_SYMBOL_GPL(unregister_switchdev_notifier);
609 
610 /**
611  *	call_switchdev_notifiers - Call notifiers
612  *	@val: value passed unmodified to notifier function
613  *	@dev: port device
614  *	@info: notifier information data
615  *
616  *	Call all network notifier blocks. This should be called by driver
617  *	when it needs to propagate hardware event.
618  *	Return values are same as for atomic_notifier_call_chain().
619  */
620 int call_switchdev_notifiers(unsigned long val, struct net_device *dev,
621 			     struct switchdev_notifier_info *info)
622 {
623 	int err;
624 
625 	info->dev = dev;
626 	mutex_lock(&switchdev_mutex);
627 	err = raw_notifier_call_chain(&switchdev_notif_chain, val, info);
628 	mutex_unlock(&switchdev_mutex);
629 	return err;
630 }
631 EXPORT_SYMBOL_GPL(call_switchdev_notifiers);
632 
633 struct switchdev_vlan_dump {
634 	struct switchdev_obj_port_vlan vlan;
635 	struct sk_buff *skb;
636 	u32 filter_mask;
637 	u16 flags;
638 	u16 begin;
639 	u16 end;
640 };
641 
642 static int switchdev_port_vlan_dump_put(struct switchdev_vlan_dump *dump)
643 {
644 	struct bridge_vlan_info vinfo;
645 
646 	vinfo.flags = dump->flags;
647 
648 	if (dump->begin == 0 && dump->end == 0) {
649 		return 0;
650 	} else if (dump->begin == dump->end) {
651 		vinfo.vid = dump->begin;
652 		if (nla_put(dump->skb, IFLA_BRIDGE_VLAN_INFO,
653 			    sizeof(vinfo), &vinfo))
654 			return -EMSGSIZE;
655 	} else {
656 		vinfo.vid = dump->begin;
657 		vinfo.flags |= BRIDGE_VLAN_INFO_RANGE_BEGIN;
658 		if (nla_put(dump->skb, IFLA_BRIDGE_VLAN_INFO,
659 			    sizeof(vinfo), &vinfo))
660 			return -EMSGSIZE;
661 		vinfo.vid = dump->end;
662 		vinfo.flags &= ~BRIDGE_VLAN_INFO_RANGE_BEGIN;
663 		vinfo.flags |= BRIDGE_VLAN_INFO_RANGE_END;
664 		if (nla_put(dump->skb, IFLA_BRIDGE_VLAN_INFO,
665 			    sizeof(vinfo), &vinfo))
666 			return -EMSGSIZE;
667 	}
668 
669 	return 0;
670 }
671 
672 static int switchdev_port_vlan_dump_cb(struct switchdev_obj *obj)
673 {
674 	struct switchdev_obj_port_vlan *vlan = SWITCHDEV_OBJ_PORT_VLAN(obj);
675 	struct switchdev_vlan_dump *dump =
676 		container_of(vlan, struct switchdev_vlan_dump, vlan);
677 	int err = 0;
678 
679 	if (vlan->vid_begin > vlan->vid_end)
680 		return -EINVAL;
681 
682 	if (dump->filter_mask & RTEXT_FILTER_BRVLAN) {
683 		dump->flags = vlan->flags;
684 		for (dump->begin = dump->end = vlan->vid_begin;
685 		     dump->begin <= vlan->vid_end;
686 		     dump->begin++, dump->end++) {
687 			err = switchdev_port_vlan_dump_put(dump);
688 			if (err)
689 				return err;
690 		}
691 	} else if (dump->filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED) {
692 		if (dump->begin > vlan->vid_begin &&
693 		    dump->begin >= vlan->vid_end) {
694 			if ((dump->begin - 1) == vlan->vid_end &&
695 			    dump->flags == vlan->flags) {
696 				/* prepend */
697 				dump->begin = vlan->vid_begin;
698 			} else {
699 				err = switchdev_port_vlan_dump_put(dump);
700 				dump->flags = vlan->flags;
701 				dump->begin = vlan->vid_begin;
702 				dump->end = vlan->vid_end;
703 			}
704 		} else if (dump->end <= vlan->vid_begin &&
705 		           dump->end < vlan->vid_end) {
706 			if ((dump->end  + 1) == vlan->vid_begin &&
707 			    dump->flags == vlan->flags) {
708 				/* append */
709 				dump->end = vlan->vid_end;
710 			} else {
711 				err = switchdev_port_vlan_dump_put(dump);
712 				dump->flags = vlan->flags;
713 				dump->begin = vlan->vid_begin;
714 				dump->end = vlan->vid_end;
715 			}
716 		} else {
717 			err = -EINVAL;
718 		}
719 	}
720 
721 	return err;
722 }
723 
724 static int switchdev_port_vlan_fill(struct sk_buff *skb, struct net_device *dev,
725 				    u32 filter_mask)
726 {
727 	struct switchdev_vlan_dump dump = {
728 		.vlan.obj.orig_dev = dev,
729 		.vlan.obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN,
730 		.skb = skb,
731 		.filter_mask = filter_mask,
732 	};
733 	int err = 0;
734 
735 	if ((filter_mask & RTEXT_FILTER_BRVLAN) ||
736 	    (filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED)) {
737 		err = switchdev_port_obj_dump(dev, &dump.vlan.obj,
738 					      switchdev_port_vlan_dump_cb);
739 		if (err)
740 			goto err_out;
741 		if (filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED)
742 			/* last one */
743 			err = switchdev_port_vlan_dump_put(&dump);
744 	}
745 
746 err_out:
747 	return err == -EOPNOTSUPP ? 0 : err;
748 }
749 
750 /**
751  *	switchdev_port_bridge_getlink - Get bridge port attributes
752  *
753  *	@dev: port device
754  *
755  *	Called for SELF on rtnl_bridge_getlink to get bridge port
756  *	attributes.
757  */
758 int switchdev_port_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
759 				  struct net_device *dev, u32 filter_mask,
760 				  int nlflags)
761 {
762 	struct switchdev_attr attr = {
763 		.orig_dev = dev,
764 		.id = SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS,
765 	};
766 	u16 mode = BRIDGE_MODE_UNDEF;
767 	u32 mask = BR_LEARNING | BR_LEARNING_SYNC | BR_FLOOD;
768 	int err;
769 
770 	err = switchdev_port_attr_get(dev, &attr);
771 	if (err && err != -EOPNOTSUPP)
772 		return err;
773 
774 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode,
775 				       attr.u.brport_flags, mask, nlflags,
776 				       filter_mask, switchdev_port_vlan_fill);
777 }
778 EXPORT_SYMBOL_GPL(switchdev_port_bridge_getlink);
779 
780 static int switchdev_port_br_setflag(struct net_device *dev,
781 				     struct nlattr *nlattr,
782 				     unsigned long brport_flag)
783 {
784 	struct switchdev_attr attr = {
785 		.orig_dev = dev,
786 		.id = SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS,
787 	};
788 	u8 flag = nla_get_u8(nlattr);
789 	int err;
790 
791 	err = switchdev_port_attr_get(dev, &attr);
792 	if (err)
793 		return err;
794 
795 	if (flag)
796 		attr.u.brport_flags |= brport_flag;
797 	else
798 		attr.u.brport_flags &= ~brport_flag;
799 
800 	return switchdev_port_attr_set(dev, &attr);
801 }
802 
803 static const struct nla_policy
804 switchdev_port_bridge_policy[IFLA_BRPORT_MAX + 1] = {
805 	[IFLA_BRPORT_STATE]		= { .type = NLA_U8 },
806 	[IFLA_BRPORT_COST]		= { .type = NLA_U32 },
807 	[IFLA_BRPORT_PRIORITY]		= { .type = NLA_U16 },
808 	[IFLA_BRPORT_MODE]		= { .type = NLA_U8 },
809 	[IFLA_BRPORT_GUARD]		= { .type = NLA_U8 },
810 	[IFLA_BRPORT_PROTECT]		= { .type = NLA_U8 },
811 	[IFLA_BRPORT_FAST_LEAVE]	= { .type = NLA_U8 },
812 	[IFLA_BRPORT_LEARNING]		= { .type = NLA_U8 },
813 	[IFLA_BRPORT_LEARNING_SYNC]	= { .type = NLA_U8 },
814 	[IFLA_BRPORT_UNICAST_FLOOD]	= { .type = NLA_U8 },
815 };
816 
817 static int switchdev_port_br_setlink_protinfo(struct net_device *dev,
818 					      struct nlattr *protinfo)
819 {
820 	struct nlattr *attr;
821 	int rem;
822 	int err;
823 
824 	err = nla_validate_nested(protinfo, IFLA_BRPORT_MAX,
825 				  switchdev_port_bridge_policy);
826 	if (err)
827 		return err;
828 
829 	nla_for_each_nested(attr, protinfo, rem) {
830 		switch (nla_type(attr)) {
831 		case IFLA_BRPORT_LEARNING:
832 			err = switchdev_port_br_setflag(dev, attr,
833 							BR_LEARNING);
834 			break;
835 		case IFLA_BRPORT_LEARNING_SYNC:
836 			err = switchdev_port_br_setflag(dev, attr,
837 							BR_LEARNING_SYNC);
838 			break;
839 		case IFLA_BRPORT_UNICAST_FLOOD:
840 			err = switchdev_port_br_setflag(dev, attr, BR_FLOOD);
841 			break;
842 		default:
843 			err = -EOPNOTSUPP;
844 			break;
845 		}
846 		if (err)
847 			return err;
848 	}
849 
850 	return 0;
851 }
852 
853 static int switchdev_port_br_afspec(struct net_device *dev,
854 				    struct nlattr *afspec,
855 				    int (*f)(struct net_device *dev,
856 					     const struct switchdev_obj *obj))
857 {
858 	struct nlattr *attr;
859 	struct bridge_vlan_info *vinfo;
860 	struct switchdev_obj_port_vlan vlan = {
861 		.obj.orig_dev = dev,
862 		.obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN,
863 	};
864 	int rem;
865 	int err;
866 
867 	nla_for_each_nested(attr, afspec, rem) {
868 		if (nla_type(attr) != IFLA_BRIDGE_VLAN_INFO)
869 			continue;
870 		if (nla_len(attr) != sizeof(struct bridge_vlan_info))
871 			return -EINVAL;
872 		vinfo = nla_data(attr);
873 		if (!vinfo->vid || vinfo->vid >= VLAN_VID_MASK)
874 			return -EINVAL;
875 		vlan.flags = vinfo->flags;
876 		if (vinfo->flags & BRIDGE_VLAN_INFO_RANGE_BEGIN) {
877 			if (vlan.vid_begin)
878 				return -EINVAL;
879 			vlan.vid_begin = vinfo->vid;
880 			/* don't allow range of pvids */
881 			if (vlan.flags & BRIDGE_VLAN_INFO_PVID)
882 				return -EINVAL;
883 		} else if (vinfo->flags & BRIDGE_VLAN_INFO_RANGE_END) {
884 			if (!vlan.vid_begin)
885 				return -EINVAL;
886 			vlan.vid_end = vinfo->vid;
887 			if (vlan.vid_end <= vlan.vid_begin)
888 				return -EINVAL;
889 			err = f(dev, &vlan.obj);
890 			if (err)
891 				return err;
892 			vlan.vid_begin = 0;
893 		} else {
894 			if (vlan.vid_begin)
895 				return -EINVAL;
896 			vlan.vid_begin = vinfo->vid;
897 			vlan.vid_end = vinfo->vid;
898 			err = f(dev, &vlan.obj);
899 			if (err)
900 				return err;
901 			vlan.vid_begin = 0;
902 		}
903 	}
904 
905 	return 0;
906 }
907 
908 /**
909  *	switchdev_port_bridge_setlink - Set bridge port attributes
910  *
911  *	@dev: port device
912  *	@nlh: netlink header
913  *	@flags: netlink flags
914  *
915  *	Called for SELF on rtnl_bridge_setlink to set bridge port
916  *	attributes.
917  */
918 int switchdev_port_bridge_setlink(struct net_device *dev,
919 				  struct nlmsghdr *nlh, u16 flags)
920 {
921 	struct nlattr *protinfo;
922 	struct nlattr *afspec;
923 	int err = 0;
924 
925 	protinfo = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg),
926 				   IFLA_PROTINFO);
927 	if (protinfo) {
928 		err = switchdev_port_br_setlink_protinfo(dev, protinfo);
929 		if (err)
930 			return err;
931 	}
932 
933 	afspec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg),
934 				 IFLA_AF_SPEC);
935 	if (afspec)
936 		err = switchdev_port_br_afspec(dev, afspec,
937 					       switchdev_port_obj_add);
938 
939 	return err;
940 }
941 EXPORT_SYMBOL_GPL(switchdev_port_bridge_setlink);
942 
943 /**
944  *	switchdev_port_bridge_dellink - Set bridge port attributes
945  *
946  *	@dev: port device
947  *	@nlh: netlink header
948  *	@flags: netlink flags
949  *
950  *	Called for SELF on rtnl_bridge_dellink to set bridge port
951  *	attributes.
952  */
953 int switchdev_port_bridge_dellink(struct net_device *dev,
954 				  struct nlmsghdr *nlh, u16 flags)
955 {
956 	struct nlattr *afspec;
957 
958 	afspec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg),
959 				 IFLA_AF_SPEC);
960 	if (afspec)
961 		return switchdev_port_br_afspec(dev, afspec,
962 						switchdev_port_obj_del);
963 
964 	return 0;
965 }
966 EXPORT_SYMBOL_GPL(switchdev_port_bridge_dellink);
967 
968 /**
969  *	switchdev_port_fdb_add - Add FDB (MAC/VLAN) entry to port
970  *
971  *	@ndmsg: netlink hdr
972  *	@nlattr: netlink attributes
973  *	@dev: port device
974  *	@addr: MAC address to add
975  *	@vid: VLAN to add
976  *
977  *	Add FDB entry to switch device.
978  */
979 int switchdev_port_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
980 			   struct net_device *dev, const unsigned char *addr,
981 			   u16 vid, u16 nlm_flags)
982 {
983 	struct switchdev_obj_port_fdb fdb = {
984 		.obj.orig_dev = dev,
985 		.obj.id = SWITCHDEV_OBJ_ID_PORT_FDB,
986 		.vid = vid,
987 	};
988 
989 	ether_addr_copy(fdb.addr, addr);
990 	return switchdev_port_obj_add(dev, &fdb.obj);
991 }
992 EXPORT_SYMBOL_GPL(switchdev_port_fdb_add);
993 
994 /**
995  *	switchdev_port_fdb_del - Delete FDB (MAC/VLAN) entry from port
996  *
997  *	@ndmsg: netlink hdr
998  *	@nlattr: netlink attributes
999  *	@dev: port device
1000  *	@addr: MAC address to delete
1001  *	@vid: VLAN to delete
1002  *
1003  *	Delete FDB entry from switch device.
1004  */
1005 int switchdev_port_fdb_del(struct ndmsg *ndm, struct nlattr *tb[],
1006 			   struct net_device *dev, const unsigned char *addr,
1007 			   u16 vid)
1008 {
1009 	struct switchdev_obj_port_fdb fdb = {
1010 		.obj.orig_dev = dev,
1011 		.obj.id = SWITCHDEV_OBJ_ID_PORT_FDB,
1012 		.vid = vid,
1013 	};
1014 
1015 	ether_addr_copy(fdb.addr, addr);
1016 	return switchdev_port_obj_del(dev, &fdb.obj);
1017 }
1018 EXPORT_SYMBOL_GPL(switchdev_port_fdb_del);
1019 
1020 struct switchdev_fdb_dump {
1021 	struct switchdev_obj_port_fdb fdb;
1022 	struct net_device *dev;
1023 	struct sk_buff *skb;
1024 	struct netlink_callback *cb;
1025 	int idx;
1026 };
1027 
1028 static int switchdev_port_fdb_dump_cb(struct switchdev_obj *obj)
1029 {
1030 	struct switchdev_obj_port_fdb *fdb = SWITCHDEV_OBJ_PORT_FDB(obj);
1031 	struct switchdev_fdb_dump *dump =
1032 		container_of(fdb, struct switchdev_fdb_dump, fdb);
1033 	u32 portid = NETLINK_CB(dump->cb->skb).portid;
1034 	u32 seq = dump->cb->nlh->nlmsg_seq;
1035 	struct nlmsghdr *nlh;
1036 	struct ndmsg *ndm;
1037 
1038 	if (dump->idx < dump->cb->args[0])
1039 		goto skip;
1040 
1041 	nlh = nlmsg_put(dump->skb, portid, seq, RTM_NEWNEIGH,
1042 			sizeof(*ndm), NLM_F_MULTI);
1043 	if (!nlh)
1044 		return -EMSGSIZE;
1045 
1046 	ndm = nlmsg_data(nlh);
1047 	ndm->ndm_family  = AF_BRIDGE;
1048 	ndm->ndm_pad1    = 0;
1049 	ndm->ndm_pad2    = 0;
1050 	ndm->ndm_flags   = NTF_SELF;
1051 	ndm->ndm_type    = 0;
1052 	ndm->ndm_ifindex = dump->dev->ifindex;
1053 	ndm->ndm_state   = fdb->ndm_state;
1054 
1055 	if (nla_put(dump->skb, NDA_LLADDR, ETH_ALEN, fdb->addr))
1056 		goto nla_put_failure;
1057 
1058 	if (fdb->vid && nla_put_u16(dump->skb, NDA_VLAN, fdb->vid))
1059 		goto nla_put_failure;
1060 
1061 	nlmsg_end(dump->skb, nlh);
1062 
1063 skip:
1064 	dump->idx++;
1065 	return 0;
1066 
1067 nla_put_failure:
1068 	nlmsg_cancel(dump->skb, nlh);
1069 	return -EMSGSIZE;
1070 }
1071 
1072 /**
1073  *	switchdev_port_fdb_dump - Dump port FDB (MAC/VLAN) entries
1074  *
1075  *	@skb: netlink skb
1076  *	@cb: netlink callback
1077  *	@dev: port device
1078  *	@filter_dev: filter device
1079  *	@idx:
1080  *
1081  *	Delete FDB entry from switch device.
1082  */
1083 int switchdev_port_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb,
1084 			    struct net_device *dev,
1085 			    struct net_device *filter_dev, int idx)
1086 {
1087 	struct switchdev_fdb_dump dump = {
1088 		.fdb.obj.orig_dev = dev,
1089 		.fdb.obj.id = SWITCHDEV_OBJ_ID_PORT_FDB,
1090 		.dev = dev,
1091 		.skb = skb,
1092 		.cb = cb,
1093 		.idx = idx,
1094 	};
1095 
1096 	switchdev_port_obj_dump(dev, &dump.fdb.obj, switchdev_port_fdb_dump_cb);
1097 	return dump.idx;
1098 }
1099 EXPORT_SYMBOL_GPL(switchdev_port_fdb_dump);
1100 
1101 static struct net_device *switchdev_get_lowest_dev(struct net_device *dev)
1102 {
1103 	const struct switchdev_ops *ops = dev->switchdev_ops;
1104 	struct net_device *lower_dev;
1105 	struct net_device *port_dev;
1106 	struct list_head *iter;
1107 
1108 	/* Recusively search down until we find a sw port dev.
1109 	 * (A sw port dev supports switchdev_port_attr_get).
1110 	 */
1111 
1112 	if (ops && ops->switchdev_port_attr_get)
1113 		return dev;
1114 
1115 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1116 		port_dev = switchdev_get_lowest_dev(lower_dev);
1117 		if (port_dev)
1118 			return port_dev;
1119 	}
1120 
1121 	return NULL;
1122 }
1123 
1124 static struct net_device *switchdev_get_dev_by_nhs(struct fib_info *fi)
1125 {
1126 	struct switchdev_attr attr = {
1127 		.id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
1128 	};
1129 	struct switchdev_attr prev_attr;
1130 	struct net_device *dev = NULL;
1131 	int nhsel;
1132 
1133 	ASSERT_RTNL();
1134 
1135 	/* For this route, all nexthop devs must be on the same switch. */
1136 
1137 	for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1138 		const struct fib_nh *nh = &fi->fib_nh[nhsel];
1139 
1140 		if (!nh->nh_dev)
1141 			return NULL;
1142 
1143 		dev = switchdev_get_lowest_dev(nh->nh_dev);
1144 		if (!dev)
1145 			return NULL;
1146 
1147 		attr.orig_dev = dev;
1148 		if (switchdev_port_attr_get(dev, &attr))
1149 			return NULL;
1150 
1151 		if (nhsel > 0 &&
1152 		    !netdev_phys_item_id_same(&prev_attr.u.ppid, &attr.u.ppid))
1153 				return NULL;
1154 
1155 		prev_attr = attr;
1156 	}
1157 
1158 	return dev;
1159 }
1160 
1161 /**
1162  *	switchdev_fib_ipv4_add - Add/modify switch IPv4 route entry
1163  *
1164  *	@dst: route's IPv4 destination address
1165  *	@dst_len: destination address length (prefix length)
1166  *	@fi: route FIB info structure
1167  *	@tos: route TOS
1168  *	@type: route type
1169  *	@nlflags: netlink flags passed in (NLM_F_*)
1170  *	@tb_id: route table ID
1171  *
1172  *	Add/modify switch IPv4 route entry.
1173  */
1174 int switchdev_fib_ipv4_add(u32 dst, int dst_len, struct fib_info *fi,
1175 			   u8 tos, u8 type, u32 nlflags, u32 tb_id)
1176 {
1177 	struct switchdev_obj_ipv4_fib ipv4_fib = {
1178 		.obj.id = SWITCHDEV_OBJ_ID_IPV4_FIB,
1179 		.dst = dst,
1180 		.dst_len = dst_len,
1181 		.tos = tos,
1182 		.type = type,
1183 		.nlflags = nlflags,
1184 		.tb_id = tb_id,
1185 	};
1186 	struct net_device *dev;
1187 	int err = 0;
1188 
1189 	memcpy(&ipv4_fib.fi, fi, sizeof(ipv4_fib.fi));
1190 
1191 	/* Don't offload route if using custom ip rules or if
1192 	 * IPv4 FIB offloading has been disabled completely.
1193 	 */
1194 
1195 #ifdef CONFIG_IP_MULTIPLE_TABLES
1196 	if (fi->fib_net->ipv4.fib_has_custom_rules)
1197 		return 0;
1198 #endif
1199 
1200 	if (fi->fib_net->ipv4.fib_offload_disabled)
1201 		return 0;
1202 
1203 	dev = switchdev_get_dev_by_nhs(fi);
1204 	if (!dev)
1205 		return 0;
1206 
1207 	ipv4_fib.obj.orig_dev = dev;
1208 	err = switchdev_port_obj_add(dev, &ipv4_fib.obj);
1209 	if (!err)
1210 		fi->fib_flags |= RTNH_F_OFFLOAD;
1211 
1212 	return err == -EOPNOTSUPP ? 0 : err;
1213 }
1214 EXPORT_SYMBOL_GPL(switchdev_fib_ipv4_add);
1215 
1216 /**
1217  *	switchdev_fib_ipv4_del - Delete IPv4 route entry from switch
1218  *
1219  *	@dst: route's IPv4 destination address
1220  *	@dst_len: destination address length (prefix length)
1221  *	@fi: route FIB info structure
1222  *	@tos: route TOS
1223  *	@type: route type
1224  *	@tb_id: route table ID
1225  *
1226  *	Delete IPv4 route entry from switch device.
1227  */
1228 int switchdev_fib_ipv4_del(u32 dst, int dst_len, struct fib_info *fi,
1229 			   u8 tos, u8 type, u32 tb_id)
1230 {
1231 	struct switchdev_obj_ipv4_fib ipv4_fib = {
1232 		.obj.id = SWITCHDEV_OBJ_ID_IPV4_FIB,
1233 		.dst = dst,
1234 		.dst_len = dst_len,
1235 		.tos = tos,
1236 		.type = type,
1237 		.nlflags = 0,
1238 		.tb_id = tb_id,
1239 	};
1240 	struct net_device *dev;
1241 	int err = 0;
1242 
1243 	memcpy(&ipv4_fib.fi, fi, sizeof(ipv4_fib.fi));
1244 
1245 	if (!(fi->fib_flags & RTNH_F_OFFLOAD))
1246 		return 0;
1247 
1248 	dev = switchdev_get_dev_by_nhs(fi);
1249 	if (!dev)
1250 		return 0;
1251 
1252 	ipv4_fib.obj.orig_dev = dev;
1253 	err = switchdev_port_obj_del(dev, &ipv4_fib.obj);
1254 	if (!err)
1255 		fi->fib_flags &= ~RTNH_F_OFFLOAD;
1256 
1257 	return err == -EOPNOTSUPP ? 0 : err;
1258 }
1259 EXPORT_SYMBOL_GPL(switchdev_fib_ipv4_del);
1260 
1261 /**
1262  *	switchdev_fib_ipv4_abort - Abort an IPv4 FIB operation
1263  *
1264  *	@fi: route FIB info structure
1265  */
1266 void switchdev_fib_ipv4_abort(struct fib_info *fi)
1267 {
1268 	/* There was a problem installing this route to the offload
1269 	 * device.  For now, until we come up with more refined
1270 	 * policy handling, abruptly end IPv4 fib offloading for
1271 	 * for entire net by flushing offload device(s) of all
1272 	 * IPv4 routes, and mark IPv4 fib offloading broken from
1273 	 * this point forward.
1274 	 */
1275 
1276 	fib_flush_external(fi->fib_net);
1277 	fi->fib_net->ipv4.fib_offload_disabled = true;
1278 }
1279 EXPORT_SYMBOL_GPL(switchdev_fib_ipv4_abort);
1280 
1281 static bool switchdev_port_same_parent_id(struct net_device *a,
1282 					  struct net_device *b)
1283 {
1284 	struct switchdev_attr a_attr = {
1285 		.orig_dev = a,
1286 		.id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
1287 		.flags = SWITCHDEV_F_NO_RECURSE,
1288 	};
1289 	struct switchdev_attr b_attr = {
1290 		.orig_dev = b,
1291 		.id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
1292 		.flags = SWITCHDEV_F_NO_RECURSE,
1293 	};
1294 
1295 	if (switchdev_port_attr_get(a, &a_attr) ||
1296 	    switchdev_port_attr_get(b, &b_attr))
1297 		return false;
1298 
1299 	return netdev_phys_item_id_same(&a_attr.u.ppid, &b_attr.u.ppid);
1300 }
1301 
1302 static u32 switchdev_port_fwd_mark_get(struct net_device *dev,
1303 				       struct net_device *group_dev)
1304 {
1305 	struct net_device *lower_dev;
1306 	struct list_head *iter;
1307 
1308 	netdev_for_each_lower_dev(group_dev, lower_dev, iter) {
1309 		if (lower_dev == dev)
1310 			continue;
1311 		if (switchdev_port_same_parent_id(dev, lower_dev))
1312 			return lower_dev->offload_fwd_mark;
1313 		return switchdev_port_fwd_mark_get(dev, lower_dev);
1314 	}
1315 
1316 	return dev->ifindex;
1317 }
1318 
1319 static void switchdev_port_fwd_mark_reset(struct net_device *group_dev,
1320 					  u32 old_mark, u32 *reset_mark)
1321 {
1322 	struct net_device *lower_dev;
1323 	struct list_head *iter;
1324 
1325 	netdev_for_each_lower_dev(group_dev, lower_dev, iter) {
1326 		if (lower_dev->offload_fwd_mark == old_mark) {
1327 			if (!*reset_mark)
1328 				*reset_mark = lower_dev->ifindex;
1329 			lower_dev->offload_fwd_mark = *reset_mark;
1330 		}
1331 		switchdev_port_fwd_mark_reset(lower_dev, old_mark, reset_mark);
1332 	}
1333 }
1334 
1335 /**
1336  *	switchdev_port_fwd_mark_set - Set port offload forwarding mark
1337  *
1338  *	@dev: port device
1339  *	@group_dev: containing device
1340  *	@joining: true if dev is joining group; false if leaving group
1341  *
1342  *	An ungrouped port's offload mark is just its ifindex.  A grouped
1343  *	port's (member of a bridge, for example) offload mark is the ifindex
1344  *	of one of the ports in the group with the same parent (switch) ID.
1345  *	Ports on the same device in the same group will have the same mark.
1346  *
1347  *	Example:
1348  *
1349  *		br0		ifindex=9
1350  *		  sw1p1		ifindex=2	mark=2
1351  *		  sw1p2		ifindex=3	mark=2
1352  *		  sw2p1		ifindex=4	mark=5
1353  *		  sw2p2		ifindex=5	mark=5
1354  *
1355  *	If sw2p2 leaves the bridge, we'll have:
1356  *
1357  *		br0		ifindex=9
1358  *		  sw1p1		ifindex=2	mark=2
1359  *		  sw1p2		ifindex=3	mark=2
1360  *		  sw2p1		ifindex=4	mark=4
1361  *		sw2p2		ifindex=5	mark=5
1362  */
1363 void switchdev_port_fwd_mark_set(struct net_device *dev,
1364 				 struct net_device *group_dev,
1365 				 bool joining)
1366 {
1367 	u32 mark = dev->ifindex;
1368 	u32 reset_mark = 0;
1369 
1370 	if (group_dev) {
1371 		ASSERT_RTNL();
1372 		if (joining)
1373 			mark = switchdev_port_fwd_mark_get(dev, group_dev);
1374 		else if (dev->offload_fwd_mark == mark)
1375 			/* Ohoh, this port was the mark reference port,
1376 			 * but it's leaving the group, so reset the
1377 			 * mark for the remaining ports in the group.
1378 			 */
1379 			switchdev_port_fwd_mark_reset(group_dev, mark,
1380 						      &reset_mark);
1381 	}
1382 
1383 	dev->offload_fwd_mark = mark;
1384 }
1385 EXPORT_SYMBOL_GPL(switchdev_port_fwd_mark_set);
1386