1 /* 2 * linux/net/sunrpc/xprtsock.c 3 * 4 * Client-side transport implementation for sockets. 5 * 6 * TCP callback races fixes (C) 1998 Red Hat 7 * TCP send fixes (C) 1998 Red Hat 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 * 11 * Rewrite of larges part of the code in order to stabilize TCP stuff. 12 * Fix behaviour when socket buffer is full. 13 * (C) 1999 Trond Myklebust <trond.myklebust@fys.uio.no> 14 * 15 * IP socket transport implementation, (C) 2005 Chuck Lever <cel@netapp.com> 16 * 17 * IPv6 support contributed by Gilles Quillard, Bull Open Source, 2005. 18 * <gilles.quillard@bull.net> 19 */ 20 21 #include <linux/types.h> 22 #include <linux/string.h> 23 #include <linux/slab.h> 24 #include <linux/module.h> 25 #include <linux/capability.h> 26 #include <linux/pagemap.h> 27 #include <linux/errno.h> 28 #include <linux/socket.h> 29 #include <linux/in.h> 30 #include <linux/net.h> 31 #include <linux/mm.h> 32 #include <linux/un.h> 33 #include <linux/udp.h> 34 #include <linux/tcp.h> 35 #include <linux/sunrpc/clnt.h> 36 #include <linux/sunrpc/addr.h> 37 #include <linux/sunrpc/sched.h> 38 #include <linux/sunrpc/svcsock.h> 39 #include <linux/sunrpc/xprtsock.h> 40 #include <linux/file.h> 41 #ifdef CONFIG_SUNRPC_BACKCHANNEL 42 #include <linux/sunrpc/bc_xprt.h> 43 #endif 44 45 #include <net/sock.h> 46 #include <net/checksum.h> 47 #include <net/udp.h> 48 #include <net/tcp.h> 49 50 #include <trace/events/sunrpc.h> 51 52 #include "sunrpc.h" 53 54 static void xs_close(struct rpc_xprt *xprt); 55 static void xs_tcp_set_socket_timeouts(struct rpc_xprt *xprt, 56 struct socket *sock); 57 58 /* 59 * xprtsock tunables 60 */ 61 static unsigned int xprt_udp_slot_table_entries = RPC_DEF_SLOT_TABLE; 62 static unsigned int xprt_tcp_slot_table_entries = RPC_MIN_SLOT_TABLE; 63 static unsigned int xprt_max_tcp_slot_table_entries = RPC_MAX_SLOT_TABLE; 64 65 static unsigned int xprt_min_resvport = RPC_DEF_MIN_RESVPORT; 66 static unsigned int xprt_max_resvport = RPC_DEF_MAX_RESVPORT; 67 68 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 69 70 #define XS_TCP_LINGER_TO (15U * HZ) 71 static unsigned int xs_tcp_fin_timeout __read_mostly = XS_TCP_LINGER_TO; 72 73 /* 74 * We can register our own files under /proc/sys/sunrpc by 75 * calling register_sysctl_table() again. The files in that 76 * directory become the union of all files registered there. 77 * 78 * We simply need to make sure that we don't collide with 79 * someone else's file names! 80 */ 81 82 static unsigned int min_slot_table_size = RPC_MIN_SLOT_TABLE; 83 static unsigned int max_slot_table_size = RPC_MAX_SLOT_TABLE; 84 static unsigned int max_tcp_slot_table_limit = RPC_MAX_SLOT_TABLE_LIMIT; 85 static unsigned int xprt_min_resvport_limit = RPC_MIN_RESVPORT; 86 static unsigned int xprt_max_resvport_limit = RPC_MAX_RESVPORT; 87 88 static struct ctl_table_header *sunrpc_table_header; 89 90 /* 91 * FIXME: changing the UDP slot table size should also resize the UDP 92 * socket buffers for existing UDP transports 93 */ 94 static struct ctl_table xs_tunables_table[] = { 95 { 96 .procname = "udp_slot_table_entries", 97 .data = &xprt_udp_slot_table_entries, 98 .maxlen = sizeof(unsigned int), 99 .mode = 0644, 100 .proc_handler = proc_dointvec_minmax, 101 .extra1 = &min_slot_table_size, 102 .extra2 = &max_slot_table_size 103 }, 104 { 105 .procname = "tcp_slot_table_entries", 106 .data = &xprt_tcp_slot_table_entries, 107 .maxlen = sizeof(unsigned int), 108 .mode = 0644, 109 .proc_handler = proc_dointvec_minmax, 110 .extra1 = &min_slot_table_size, 111 .extra2 = &max_slot_table_size 112 }, 113 { 114 .procname = "tcp_max_slot_table_entries", 115 .data = &xprt_max_tcp_slot_table_entries, 116 .maxlen = sizeof(unsigned int), 117 .mode = 0644, 118 .proc_handler = proc_dointvec_minmax, 119 .extra1 = &min_slot_table_size, 120 .extra2 = &max_tcp_slot_table_limit 121 }, 122 { 123 .procname = "min_resvport", 124 .data = &xprt_min_resvport, 125 .maxlen = sizeof(unsigned int), 126 .mode = 0644, 127 .proc_handler = proc_dointvec_minmax, 128 .extra1 = &xprt_min_resvport_limit, 129 .extra2 = &xprt_max_resvport 130 }, 131 { 132 .procname = "max_resvport", 133 .data = &xprt_max_resvport, 134 .maxlen = sizeof(unsigned int), 135 .mode = 0644, 136 .proc_handler = proc_dointvec_minmax, 137 .extra1 = &xprt_min_resvport, 138 .extra2 = &xprt_max_resvport_limit 139 }, 140 { 141 .procname = "tcp_fin_timeout", 142 .data = &xs_tcp_fin_timeout, 143 .maxlen = sizeof(xs_tcp_fin_timeout), 144 .mode = 0644, 145 .proc_handler = proc_dointvec_jiffies, 146 }, 147 { }, 148 }; 149 150 static struct ctl_table sunrpc_table[] = { 151 { 152 .procname = "sunrpc", 153 .mode = 0555, 154 .child = xs_tunables_table 155 }, 156 { }, 157 }; 158 159 #endif 160 161 /* 162 * Wait duration for a reply from the RPC portmapper. 163 */ 164 #define XS_BIND_TO (60U * HZ) 165 166 /* 167 * Delay if a UDP socket connect error occurs. This is most likely some 168 * kind of resource problem on the local host. 169 */ 170 #define XS_UDP_REEST_TO (2U * HZ) 171 172 /* 173 * The reestablish timeout allows clients to delay for a bit before attempting 174 * to reconnect to a server that just dropped our connection. 175 * 176 * We implement an exponential backoff when trying to reestablish a TCP 177 * transport connection with the server. Some servers like to drop a TCP 178 * connection when they are overworked, so we start with a short timeout and 179 * increase over time if the server is down or not responding. 180 */ 181 #define XS_TCP_INIT_REEST_TO (3U * HZ) 182 183 /* 184 * TCP idle timeout; client drops the transport socket if it is idle 185 * for this long. Note that we also timeout UDP sockets to prevent 186 * holding port numbers when there is no RPC traffic. 187 */ 188 #define XS_IDLE_DISC_TO (5U * 60 * HZ) 189 190 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 191 # undef RPC_DEBUG_DATA 192 # define RPCDBG_FACILITY RPCDBG_TRANS 193 #endif 194 195 #ifdef RPC_DEBUG_DATA 196 static void xs_pktdump(char *msg, u32 *packet, unsigned int count) 197 { 198 u8 *buf = (u8 *) packet; 199 int j; 200 201 dprintk("RPC: %s\n", msg); 202 for (j = 0; j < count && j < 128; j += 4) { 203 if (!(j & 31)) { 204 if (j) 205 dprintk("\n"); 206 dprintk("0x%04x ", j); 207 } 208 dprintk("%02x%02x%02x%02x ", 209 buf[j], buf[j+1], buf[j+2], buf[j+3]); 210 } 211 dprintk("\n"); 212 } 213 #else 214 static inline void xs_pktdump(char *msg, u32 *packet, unsigned int count) 215 { 216 /* NOP */ 217 } 218 #endif 219 220 static inline struct rpc_xprt *xprt_from_sock(struct sock *sk) 221 { 222 return (struct rpc_xprt *) sk->sk_user_data; 223 } 224 225 static inline struct sockaddr *xs_addr(struct rpc_xprt *xprt) 226 { 227 return (struct sockaddr *) &xprt->addr; 228 } 229 230 static inline struct sockaddr_un *xs_addr_un(struct rpc_xprt *xprt) 231 { 232 return (struct sockaddr_un *) &xprt->addr; 233 } 234 235 static inline struct sockaddr_in *xs_addr_in(struct rpc_xprt *xprt) 236 { 237 return (struct sockaddr_in *) &xprt->addr; 238 } 239 240 static inline struct sockaddr_in6 *xs_addr_in6(struct rpc_xprt *xprt) 241 { 242 return (struct sockaddr_in6 *) &xprt->addr; 243 } 244 245 static void xs_format_common_peer_addresses(struct rpc_xprt *xprt) 246 { 247 struct sockaddr *sap = xs_addr(xprt); 248 struct sockaddr_in6 *sin6; 249 struct sockaddr_in *sin; 250 struct sockaddr_un *sun; 251 char buf[128]; 252 253 switch (sap->sa_family) { 254 case AF_LOCAL: 255 sun = xs_addr_un(xprt); 256 strlcpy(buf, sun->sun_path, sizeof(buf)); 257 xprt->address_strings[RPC_DISPLAY_ADDR] = 258 kstrdup(buf, GFP_KERNEL); 259 break; 260 case AF_INET: 261 (void)rpc_ntop(sap, buf, sizeof(buf)); 262 xprt->address_strings[RPC_DISPLAY_ADDR] = 263 kstrdup(buf, GFP_KERNEL); 264 sin = xs_addr_in(xprt); 265 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr)); 266 break; 267 case AF_INET6: 268 (void)rpc_ntop(sap, buf, sizeof(buf)); 269 xprt->address_strings[RPC_DISPLAY_ADDR] = 270 kstrdup(buf, GFP_KERNEL); 271 sin6 = xs_addr_in6(xprt); 272 snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr); 273 break; 274 default: 275 BUG(); 276 } 277 278 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); 279 } 280 281 static void xs_format_common_peer_ports(struct rpc_xprt *xprt) 282 { 283 struct sockaddr *sap = xs_addr(xprt); 284 char buf[128]; 285 286 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); 287 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); 288 289 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); 290 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); 291 } 292 293 static void xs_format_peer_addresses(struct rpc_xprt *xprt, 294 const char *protocol, 295 const char *netid) 296 { 297 xprt->address_strings[RPC_DISPLAY_PROTO] = protocol; 298 xprt->address_strings[RPC_DISPLAY_NETID] = netid; 299 xs_format_common_peer_addresses(xprt); 300 xs_format_common_peer_ports(xprt); 301 } 302 303 static void xs_update_peer_port(struct rpc_xprt *xprt) 304 { 305 kfree(xprt->address_strings[RPC_DISPLAY_HEX_PORT]); 306 kfree(xprt->address_strings[RPC_DISPLAY_PORT]); 307 308 xs_format_common_peer_ports(xprt); 309 } 310 311 static void xs_free_peer_addresses(struct rpc_xprt *xprt) 312 { 313 unsigned int i; 314 315 for (i = 0; i < RPC_DISPLAY_MAX; i++) 316 switch (i) { 317 case RPC_DISPLAY_PROTO: 318 case RPC_DISPLAY_NETID: 319 continue; 320 default: 321 kfree(xprt->address_strings[i]); 322 } 323 } 324 325 #define XS_SENDMSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL) 326 327 static int xs_send_kvec(struct socket *sock, struct sockaddr *addr, int addrlen, struct kvec *vec, unsigned int base, int more) 328 { 329 struct msghdr msg = { 330 .msg_name = addr, 331 .msg_namelen = addrlen, 332 .msg_flags = XS_SENDMSG_FLAGS | (more ? MSG_MORE : 0), 333 }; 334 struct kvec iov = { 335 .iov_base = vec->iov_base + base, 336 .iov_len = vec->iov_len - base, 337 }; 338 339 if (iov.iov_len != 0) 340 return kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len); 341 return kernel_sendmsg(sock, &msg, NULL, 0, 0); 342 } 343 344 static int xs_send_pagedata(struct socket *sock, struct xdr_buf *xdr, unsigned int base, int more, bool zerocopy, int *sent_p) 345 { 346 ssize_t (*do_sendpage)(struct socket *sock, struct page *page, 347 int offset, size_t size, int flags); 348 struct page **ppage; 349 unsigned int remainder; 350 int err; 351 352 remainder = xdr->page_len - base; 353 base += xdr->page_base; 354 ppage = xdr->pages + (base >> PAGE_SHIFT); 355 base &= ~PAGE_MASK; 356 do_sendpage = sock->ops->sendpage; 357 if (!zerocopy) 358 do_sendpage = sock_no_sendpage; 359 for(;;) { 360 unsigned int len = min_t(unsigned int, PAGE_SIZE - base, remainder); 361 int flags = XS_SENDMSG_FLAGS; 362 363 remainder -= len; 364 if (more) 365 flags |= MSG_MORE; 366 if (remainder != 0) 367 flags |= MSG_SENDPAGE_NOTLAST | MSG_MORE; 368 err = do_sendpage(sock, *ppage, base, len, flags); 369 if (remainder == 0 || err != len) 370 break; 371 *sent_p += err; 372 ppage++; 373 base = 0; 374 } 375 if (err > 0) { 376 *sent_p += err; 377 err = 0; 378 } 379 return err; 380 } 381 382 /** 383 * xs_sendpages - write pages directly to a socket 384 * @sock: socket to send on 385 * @addr: UDP only -- address of destination 386 * @addrlen: UDP only -- length of destination address 387 * @xdr: buffer containing this request 388 * @base: starting position in the buffer 389 * @zerocopy: true if it is safe to use sendpage() 390 * @sent_p: return the total number of bytes successfully queued for sending 391 * 392 */ 393 static int xs_sendpages(struct socket *sock, struct sockaddr *addr, int addrlen, struct xdr_buf *xdr, unsigned int base, bool zerocopy, int *sent_p) 394 { 395 unsigned int remainder = xdr->len - base; 396 int err = 0; 397 int sent = 0; 398 399 if (unlikely(!sock)) 400 return -ENOTSOCK; 401 402 if (base != 0) { 403 addr = NULL; 404 addrlen = 0; 405 } 406 407 if (base < xdr->head[0].iov_len || addr != NULL) { 408 unsigned int len = xdr->head[0].iov_len - base; 409 remainder -= len; 410 err = xs_send_kvec(sock, addr, addrlen, &xdr->head[0], base, remainder != 0); 411 if (remainder == 0 || err != len) 412 goto out; 413 *sent_p += err; 414 base = 0; 415 } else 416 base -= xdr->head[0].iov_len; 417 418 if (base < xdr->page_len) { 419 unsigned int len = xdr->page_len - base; 420 remainder -= len; 421 err = xs_send_pagedata(sock, xdr, base, remainder != 0, zerocopy, &sent); 422 *sent_p += sent; 423 if (remainder == 0 || sent != len) 424 goto out; 425 base = 0; 426 } else 427 base -= xdr->page_len; 428 429 if (base >= xdr->tail[0].iov_len) 430 return 0; 431 err = xs_send_kvec(sock, NULL, 0, &xdr->tail[0], base, 0); 432 out: 433 if (err > 0) { 434 *sent_p += err; 435 err = 0; 436 } 437 return err; 438 } 439 440 static void xs_nospace_callback(struct rpc_task *task) 441 { 442 struct sock_xprt *transport = container_of(task->tk_rqstp->rq_xprt, struct sock_xprt, xprt); 443 444 transport->inet->sk_write_pending--; 445 } 446 447 /** 448 * xs_nospace - place task on wait queue if transmit was incomplete 449 * @task: task to put to sleep 450 * 451 */ 452 static int xs_nospace(struct rpc_task *task) 453 { 454 struct rpc_rqst *req = task->tk_rqstp; 455 struct rpc_xprt *xprt = req->rq_xprt; 456 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 457 struct sock *sk = transport->inet; 458 int ret = -EAGAIN; 459 460 dprintk("RPC: %5u xmit incomplete (%u left of %u)\n", 461 task->tk_pid, req->rq_slen - req->rq_bytes_sent, 462 req->rq_slen); 463 464 /* Protect against races with write_space */ 465 spin_lock_bh(&xprt->transport_lock); 466 467 /* Don't race with disconnect */ 468 if (xprt_connected(xprt)) { 469 /* wait for more buffer space */ 470 sk->sk_write_pending++; 471 xprt_wait_for_buffer_space(task, xs_nospace_callback); 472 } else 473 ret = -ENOTCONN; 474 475 spin_unlock_bh(&xprt->transport_lock); 476 477 /* Race breaker in case memory is freed before above code is called */ 478 if (ret == -EAGAIN) { 479 struct socket_wq *wq; 480 481 rcu_read_lock(); 482 wq = rcu_dereference(sk->sk_wq); 483 set_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags); 484 rcu_read_unlock(); 485 486 sk->sk_write_space(sk); 487 } 488 return ret; 489 } 490 491 /* 492 * Construct a stream transport record marker in @buf. 493 */ 494 static inline void xs_encode_stream_record_marker(struct xdr_buf *buf) 495 { 496 u32 reclen = buf->len - sizeof(rpc_fraghdr); 497 rpc_fraghdr *base = buf->head[0].iov_base; 498 *base = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | reclen); 499 } 500 501 /** 502 * xs_local_send_request - write an RPC request to an AF_LOCAL socket 503 * @task: RPC task that manages the state of an RPC request 504 * 505 * Return values: 506 * 0: The request has been sent 507 * EAGAIN: The socket was blocked, please call again later to 508 * complete the request 509 * ENOTCONN: Caller needs to invoke connect logic then call again 510 * other: Some other error occured, the request was not sent 511 */ 512 static int xs_local_send_request(struct rpc_task *task) 513 { 514 struct rpc_rqst *req = task->tk_rqstp; 515 struct rpc_xprt *xprt = req->rq_xprt; 516 struct sock_xprt *transport = 517 container_of(xprt, struct sock_xprt, xprt); 518 struct xdr_buf *xdr = &req->rq_snd_buf; 519 int status; 520 int sent = 0; 521 522 xs_encode_stream_record_marker(&req->rq_snd_buf); 523 524 xs_pktdump("packet data:", 525 req->rq_svec->iov_base, req->rq_svec->iov_len); 526 527 status = xs_sendpages(transport->sock, NULL, 0, xdr, req->rq_bytes_sent, 528 true, &sent); 529 dprintk("RPC: %s(%u) = %d\n", 530 __func__, xdr->len - req->rq_bytes_sent, status); 531 532 if (status == -EAGAIN && sock_writeable(transport->inet)) 533 status = -ENOBUFS; 534 535 if (likely(sent > 0) || status == 0) { 536 req->rq_bytes_sent += sent; 537 req->rq_xmit_bytes_sent += sent; 538 if (likely(req->rq_bytes_sent >= req->rq_slen)) { 539 req->rq_bytes_sent = 0; 540 return 0; 541 } 542 status = -EAGAIN; 543 } 544 545 switch (status) { 546 case -ENOBUFS: 547 break; 548 case -EAGAIN: 549 status = xs_nospace(task); 550 break; 551 default: 552 dprintk("RPC: sendmsg returned unrecognized error %d\n", 553 -status); 554 case -EPIPE: 555 xs_close(xprt); 556 status = -ENOTCONN; 557 } 558 559 return status; 560 } 561 562 /** 563 * xs_udp_send_request - write an RPC request to a UDP socket 564 * @task: address of RPC task that manages the state of an RPC request 565 * 566 * Return values: 567 * 0: The request has been sent 568 * EAGAIN: The socket was blocked, please call again later to 569 * complete the request 570 * ENOTCONN: Caller needs to invoke connect logic then call again 571 * other: Some other error occurred, the request was not sent 572 */ 573 static int xs_udp_send_request(struct rpc_task *task) 574 { 575 struct rpc_rqst *req = task->tk_rqstp; 576 struct rpc_xprt *xprt = req->rq_xprt; 577 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 578 struct xdr_buf *xdr = &req->rq_snd_buf; 579 int sent = 0; 580 int status; 581 582 xs_pktdump("packet data:", 583 req->rq_svec->iov_base, 584 req->rq_svec->iov_len); 585 586 if (!xprt_bound(xprt)) 587 return -ENOTCONN; 588 status = xs_sendpages(transport->sock, xs_addr(xprt), xprt->addrlen, 589 xdr, req->rq_bytes_sent, true, &sent); 590 591 dprintk("RPC: xs_udp_send_request(%u) = %d\n", 592 xdr->len - req->rq_bytes_sent, status); 593 594 /* firewall is blocking us, don't return -EAGAIN or we end up looping */ 595 if (status == -EPERM) 596 goto process_status; 597 598 if (status == -EAGAIN && sock_writeable(transport->inet)) 599 status = -ENOBUFS; 600 601 if (sent > 0 || status == 0) { 602 req->rq_xmit_bytes_sent += sent; 603 if (sent >= req->rq_slen) 604 return 0; 605 /* Still some bytes left; set up for a retry later. */ 606 status = -EAGAIN; 607 } 608 609 process_status: 610 switch (status) { 611 case -ENOTSOCK: 612 status = -ENOTCONN; 613 /* Should we call xs_close() here? */ 614 break; 615 case -EAGAIN: 616 status = xs_nospace(task); 617 break; 618 case -ENETUNREACH: 619 case -ENOBUFS: 620 case -EPIPE: 621 case -ECONNREFUSED: 622 case -EPERM: 623 /* When the server has died, an ICMP port unreachable message 624 * prompts ECONNREFUSED. */ 625 break; 626 default: 627 dprintk("RPC: sendmsg returned unrecognized error %d\n", 628 -status); 629 } 630 631 return status; 632 } 633 634 /** 635 * xs_tcp_send_request - write an RPC request to a TCP socket 636 * @task: address of RPC task that manages the state of an RPC request 637 * 638 * Return values: 639 * 0: The request has been sent 640 * EAGAIN: The socket was blocked, please call again later to 641 * complete the request 642 * ENOTCONN: Caller needs to invoke connect logic then call again 643 * other: Some other error occurred, the request was not sent 644 * 645 * XXX: In the case of soft timeouts, should we eventually give up 646 * if sendmsg is not able to make progress? 647 */ 648 static int xs_tcp_send_request(struct rpc_task *task) 649 { 650 struct rpc_rqst *req = task->tk_rqstp; 651 struct rpc_xprt *xprt = req->rq_xprt; 652 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 653 struct xdr_buf *xdr = &req->rq_snd_buf; 654 bool zerocopy = true; 655 bool vm_wait = false; 656 int status; 657 int sent; 658 659 xs_encode_stream_record_marker(&req->rq_snd_buf); 660 661 xs_pktdump("packet data:", 662 req->rq_svec->iov_base, 663 req->rq_svec->iov_len); 664 /* Don't use zero copy if this is a resend. If the RPC call 665 * completes while the socket holds a reference to the pages, 666 * then we may end up resending corrupted data. 667 */ 668 if (task->tk_flags & RPC_TASK_SENT) 669 zerocopy = false; 670 671 if (test_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state)) 672 xs_tcp_set_socket_timeouts(xprt, transport->sock); 673 674 /* Continue transmitting the packet/record. We must be careful 675 * to cope with writespace callbacks arriving _after_ we have 676 * called sendmsg(). */ 677 while (1) { 678 sent = 0; 679 status = xs_sendpages(transport->sock, NULL, 0, xdr, 680 req->rq_bytes_sent, zerocopy, &sent); 681 682 dprintk("RPC: xs_tcp_send_request(%u) = %d\n", 683 xdr->len - req->rq_bytes_sent, status); 684 685 /* If we've sent the entire packet, immediately 686 * reset the count of bytes sent. */ 687 req->rq_bytes_sent += sent; 688 req->rq_xmit_bytes_sent += sent; 689 if (likely(req->rq_bytes_sent >= req->rq_slen)) { 690 req->rq_bytes_sent = 0; 691 return 0; 692 } 693 694 WARN_ON_ONCE(sent == 0 && status == 0); 695 696 if (status == -EAGAIN ) { 697 /* 698 * Return EAGAIN if we're sure we're hitting the 699 * socket send buffer limits. 700 */ 701 if (test_bit(SOCK_NOSPACE, &transport->sock->flags)) 702 break; 703 /* 704 * Did we hit a memory allocation failure? 705 */ 706 if (sent == 0) { 707 status = -ENOBUFS; 708 if (vm_wait) 709 break; 710 /* Retry, knowing now that we're below the 711 * socket send buffer limit 712 */ 713 vm_wait = true; 714 } 715 continue; 716 } 717 if (status < 0) 718 break; 719 vm_wait = false; 720 } 721 722 switch (status) { 723 case -ENOTSOCK: 724 status = -ENOTCONN; 725 /* Should we call xs_close() here? */ 726 break; 727 case -EAGAIN: 728 status = xs_nospace(task); 729 break; 730 case -ECONNRESET: 731 case -ECONNREFUSED: 732 case -ENOTCONN: 733 case -EADDRINUSE: 734 case -ENOBUFS: 735 case -EPIPE: 736 break; 737 default: 738 dprintk("RPC: sendmsg returned unrecognized error %d\n", 739 -status); 740 } 741 742 return status; 743 } 744 745 /** 746 * xs_tcp_release_xprt - clean up after a tcp transmission 747 * @xprt: transport 748 * @task: rpc task 749 * 750 * This cleans up if an error causes us to abort the transmission of a request. 751 * In this case, the socket may need to be reset in order to avoid confusing 752 * the server. 753 */ 754 static void xs_tcp_release_xprt(struct rpc_xprt *xprt, struct rpc_task *task) 755 { 756 struct rpc_rqst *req; 757 758 if (task != xprt->snd_task) 759 return; 760 if (task == NULL) 761 goto out_release; 762 req = task->tk_rqstp; 763 if (req == NULL) 764 goto out_release; 765 if (req->rq_bytes_sent == 0) 766 goto out_release; 767 if (req->rq_bytes_sent == req->rq_snd_buf.len) 768 goto out_release; 769 set_bit(XPRT_CLOSE_WAIT, &xprt->state); 770 out_release: 771 xprt_release_xprt(xprt, task); 772 } 773 774 static void xs_save_old_callbacks(struct sock_xprt *transport, struct sock *sk) 775 { 776 transport->old_data_ready = sk->sk_data_ready; 777 transport->old_state_change = sk->sk_state_change; 778 transport->old_write_space = sk->sk_write_space; 779 transport->old_error_report = sk->sk_error_report; 780 } 781 782 static void xs_restore_old_callbacks(struct sock_xprt *transport, struct sock *sk) 783 { 784 sk->sk_data_ready = transport->old_data_ready; 785 sk->sk_state_change = transport->old_state_change; 786 sk->sk_write_space = transport->old_write_space; 787 sk->sk_error_report = transport->old_error_report; 788 } 789 790 static void xs_sock_reset_state_flags(struct rpc_xprt *xprt) 791 { 792 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 793 794 clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state); 795 } 796 797 static void xs_sock_reset_connection_flags(struct rpc_xprt *xprt) 798 { 799 smp_mb__before_atomic(); 800 clear_bit(XPRT_CLOSE_WAIT, &xprt->state); 801 clear_bit(XPRT_CLOSING, &xprt->state); 802 xs_sock_reset_state_flags(xprt); 803 smp_mb__after_atomic(); 804 } 805 806 static void xs_sock_mark_closed(struct rpc_xprt *xprt) 807 { 808 xs_sock_reset_connection_flags(xprt); 809 /* Mark transport as closed and wake up all pending tasks */ 810 xprt_disconnect_done(xprt); 811 } 812 813 /** 814 * xs_error_report - callback to handle TCP socket state errors 815 * @sk: socket 816 * 817 * Note: we don't call sock_error() since there may be a rpc_task 818 * using the socket, and so we don't want to clear sk->sk_err. 819 */ 820 static void xs_error_report(struct sock *sk) 821 { 822 struct rpc_xprt *xprt; 823 int err; 824 825 read_lock_bh(&sk->sk_callback_lock); 826 if (!(xprt = xprt_from_sock(sk))) 827 goto out; 828 829 err = -sk->sk_err; 830 if (err == 0) 831 goto out; 832 /* Is this a reset event? */ 833 if (sk->sk_state == TCP_CLOSE) 834 xs_sock_mark_closed(xprt); 835 dprintk("RPC: xs_error_report client %p, error=%d...\n", 836 xprt, -err); 837 trace_rpc_socket_error(xprt, sk->sk_socket, err); 838 xprt_wake_pending_tasks(xprt, err); 839 out: 840 read_unlock_bh(&sk->sk_callback_lock); 841 } 842 843 static void xs_reset_transport(struct sock_xprt *transport) 844 { 845 struct socket *sock = transport->sock; 846 struct sock *sk = transport->inet; 847 struct rpc_xprt *xprt = &transport->xprt; 848 849 if (sk == NULL) 850 return; 851 852 if (atomic_read(&transport->xprt.swapper)) 853 sk_clear_memalloc(sk); 854 855 kernel_sock_shutdown(sock, SHUT_RDWR); 856 857 mutex_lock(&transport->recv_mutex); 858 write_lock_bh(&sk->sk_callback_lock); 859 transport->inet = NULL; 860 transport->sock = NULL; 861 862 sk->sk_user_data = NULL; 863 864 xs_restore_old_callbacks(transport, sk); 865 xprt_clear_connected(xprt); 866 write_unlock_bh(&sk->sk_callback_lock); 867 xs_sock_reset_connection_flags(xprt); 868 mutex_unlock(&transport->recv_mutex); 869 870 trace_rpc_socket_close(xprt, sock); 871 sock_release(sock); 872 } 873 874 /** 875 * xs_close - close a socket 876 * @xprt: transport 877 * 878 * This is used when all requests are complete; ie, no DRC state remains 879 * on the server we want to save. 880 * 881 * The caller _must_ be holding XPRT_LOCKED in order to avoid issues with 882 * xs_reset_transport() zeroing the socket from underneath a writer. 883 */ 884 static void xs_close(struct rpc_xprt *xprt) 885 { 886 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 887 888 dprintk("RPC: xs_close xprt %p\n", xprt); 889 890 xs_reset_transport(transport); 891 xprt->reestablish_timeout = 0; 892 893 xprt_disconnect_done(xprt); 894 } 895 896 static void xs_inject_disconnect(struct rpc_xprt *xprt) 897 { 898 dprintk("RPC: injecting transport disconnect on xprt=%p\n", 899 xprt); 900 xprt_disconnect_done(xprt); 901 } 902 903 static void xs_xprt_free(struct rpc_xprt *xprt) 904 { 905 xs_free_peer_addresses(xprt); 906 xprt_free(xprt); 907 } 908 909 /** 910 * xs_destroy - prepare to shutdown a transport 911 * @xprt: doomed transport 912 * 913 */ 914 static void xs_destroy(struct rpc_xprt *xprt) 915 { 916 struct sock_xprt *transport = container_of(xprt, 917 struct sock_xprt, xprt); 918 dprintk("RPC: xs_destroy xprt %p\n", xprt); 919 920 cancel_delayed_work_sync(&transport->connect_worker); 921 xs_close(xprt); 922 cancel_work_sync(&transport->recv_worker); 923 xs_xprt_free(xprt); 924 module_put(THIS_MODULE); 925 } 926 927 static int xs_local_copy_to_xdr(struct xdr_buf *xdr, struct sk_buff *skb) 928 { 929 struct xdr_skb_reader desc = { 930 .skb = skb, 931 .offset = sizeof(rpc_fraghdr), 932 .count = skb->len - sizeof(rpc_fraghdr), 933 }; 934 935 if (xdr_partial_copy_from_skb(xdr, 0, &desc, xdr_skb_read_bits) < 0) 936 return -1; 937 if (desc.count) 938 return -1; 939 return 0; 940 } 941 942 /** 943 * xs_local_data_read_skb 944 * @xprt: transport 945 * @sk: socket 946 * @skb: skbuff 947 * 948 * Currently this assumes we can read the whole reply in a single gulp. 949 */ 950 static void xs_local_data_read_skb(struct rpc_xprt *xprt, 951 struct sock *sk, 952 struct sk_buff *skb) 953 { 954 struct rpc_task *task; 955 struct rpc_rqst *rovr; 956 int repsize, copied; 957 u32 _xid; 958 __be32 *xp; 959 960 repsize = skb->len - sizeof(rpc_fraghdr); 961 if (repsize < 4) { 962 dprintk("RPC: impossible RPC reply size %d\n", repsize); 963 return; 964 } 965 966 /* Copy the XID from the skb... */ 967 xp = skb_header_pointer(skb, sizeof(rpc_fraghdr), sizeof(_xid), &_xid); 968 if (xp == NULL) 969 return; 970 971 /* Look up and lock the request corresponding to the given XID */ 972 spin_lock_bh(&xprt->transport_lock); 973 rovr = xprt_lookup_rqst(xprt, *xp); 974 if (!rovr) 975 goto out_unlock; 976 task = rovr->rq_task; 977 978 copied = rovr->rq_private_buf.buflen; 979 if (copied > repsize) 980 copied = repsize; 981 982 if (xs_local_copy_to_xdr(&rovr->rq_private_buf, skb)) { 983 dprintk("RPC: sk_buff copy failed\n"); 984 goto out_unlock; 985 } 986 987 xprt_complete_rqst(task, copied); 988 989 out_unlock: 990 spin_unlock_bh(&xprt->transport_lock); 991 } 992 993 static void xs_local_data_receive(struct sock_xprt *transport) 994 { 995 struct sk_buff *skb; 996 struct sock *sk; 997 int err; 998 999 mutex_lock(&transport->recv_mutex); 1000 sk = transport->inet; 1001 if (sk == NULL) 1002 goto out; 1003 for (;;) { 1004 skb = skb_recv_datagram(sk, 0, 1, &err); 1005 if (skb != NULL) { 1006 xs_local_data_read_skb(&transport->xprt, sk, skb); 1007 skb_free_datagram(sk, skb); 1008 continue; 1009 } 1010 if (!test_and_clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1011 break; 1012 } 1013 out: 1014 mutex_unlock(&transport->recv_mutex); 1015 } 1016 1017 static void xs_local_data_receive_workfn(struct work_struct *work) 1018 { 1019 struct sock_xprt *transport = 1020 container_of(work, struct sock_xprt, recv_worker); 1021 xs_local_data_receive(transport); 1022 } 1023 1024 /** 1025 * xs_udp_data_read_skb - receive callback for UDP sockets 1026 * @xprt: transport 1027 * @sk: socket 1028 * @skb: skbuff 1029 * 1030 */ 1031 static void xs_udp_data_read_skb(struct rpc_xprt *xprt, 1032 struct sock *sk, 1033 struct sk_buff *skb) 1034 { 1035 struct rpc_task *task; 1036 struct rpc_rqst *rovr; 1037 int repsize, copied; 1038 u32 _xid; 1039 __be32 *xp; 1040 1041 repsize = skb->len; 1042 if (repsize < 4) { 1043 dprintk("RPC: impossible RPC reply size %d!\n", repsize); 1044 return; 1045 } 1046 1047 /* Copy the XID from the skb... */ 1048 xp = skb_header_pointer(skb, 0, sizeof(_xid), &_xid); 1049 if (xp == NULL) 1050 return; 1051 1052 /* Look up and lock the request corresponding to the given XID */ 1053 spin_lock_bh(&xprt->transport_lock); 1054 rovr = xprt_lookup_rqst(xprt, *xp); 1055 if (!rovr) 1056 goto out_unlock; 1057 task = rovr->rq_task; 1058 1059 if ((copied = rovr->rq_private_buf.buflen) > repsize) 1060 copied = repsize; 1061 1062 /* Suck it into the iovec, verify checksum if not done by hw. */ 1063 if (csum_partial_copy_to_xdr(&rovr->rq_private_buf, skb)) { 1064 __UDPX_INC_STATS(sk, UDP_MIB_INERRORS); 1065 goto out_unlock; 1066 } 1067 1068 __UDPX_INC_STATS(sk, UDP_MIB_INDATAGRAMS); 1069 1070 xprt_adjust_cwnd(xprt, task, copied); 1071 xprt_complete_rqst(task, copied); 1072 1073 out_unlock: 1074 spin_unlock_bh(&xprt->transport_lock); 1075 } 1076 1077 static void xs_udp_data_receive(struct sock_xprt *transport) 1078 { 1079 struct sk_buff *skb; 1080 struct sock *sk; 1081 int err; 1082 1083 mutex_lock(&transport->recv_mutex); 1084 sk = transport->inet; 1085 if (sk == NULL) 1086 goto out; 1087 for (;;) { 1088 skb = skb_recv_udp(sk, 0, 1, &err); 1089 if (skb != NULL) { 1090 xs_udp_data_read_skb(&transport->xprt, sk, skb); 1091 consume_skb(skb); 1092 continue; 1093 } 1094 if (!test_and_clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1095 break; 1096 } 1097 out: 1098 mutex_unlock(&transport->recv_mutex); 1099 } 1100 1101 static void xs_udp_data_receive_workfn(struct work_struct *work) 1102 { 1103 struct sock_xprt *transport = 1104 container_of(work, struct sock_xprt, recv_worker); 1105 xs_udp_data_receive(transport); 1106 } 1107 1108 /** 1109 * xs_data_ready - "data ready" callback for UDP sockets 1110 * @sk: socket with data to read 1111 * 1112 */ 1113 static void xs_data_ready(struct sock *sk) 1114 { 1115 struct rpc_xprt *xprt; 1116 1117 read_lock_bh(&sk->sk_callback_lock); 1118 dprintk("RPC: xs_data_ready...\n"); 1119 xprt = xprt_from_sock(sk); 1120 if (xprt != NULL) { 1121 struct sock_xprt *transport = container_of(xprt, 1122 struct sock_xprt, xprt); 1123 transport->old_data_ready(sk); 1124 /* Any data means we had a useful conversation, so 1125 * then we don't need to delay the next reconnect 1126 */ 1127 if (xprt->reestablish_timeout) 1128 xprt->reestablish_timeout = 0; 1129 if (!test_and_set_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1130 queue_work(xprtiod_workqueue, &transport->recv_worker); 1131 } 1132 read_unlock_bh(&sk->sk_callback_lock); 1133 } 1134 1135 /* 1136 * Helper function to force a TCP close if the server is sending 1137 * junk and/or it has put us in CLOSE_WAIT 1138 */ 1139 static void xs_tcp_force_close(struct rpc_xprt *xprt) 1140 { 1141 xprt_force_disconnect(xprt); 1142 } 1143 1144 static inline void xs_tcp_read_fraghdr(struct rpc_xprt *xprt, struct xdr_skb_reader *desc) 1145 { 1146 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1147 size_t len, used; 1148 char *p; 1149 1150 p = ((char *) &transport->tcp_fraghdr) + transport->tcp_offset; 1151 len = sizeof(transport->tcp_fraghdr) - transport->tcp_offset; 1152 used = xdr_skb_read_bits(desc, p, len); 1153 transport->tcp_offset += used; 1154 if (used != len) 1155 return; 1156 1157 transport->tcp_reclen = ntohl(transport->tcp_fraghdr); 1158 if (transport->tcp_reclen & RPC_LAST_STREAM_FRAGMENT) 1159 transport->tcp_flags |= TCP_RCV_LAST_FRAG; 1160 else 1161 transport->tcp_flags &= ~TCP_RCV_LAST_FRAG; 1162 transport->tcp_reclen &= RPC_FRAGMENT_SIZE_MASK; 1163 1164 transport->tcp_flags &= ~TCP_RCV_COPY_FRAGHDR; 1165 transport->tcp_offset = 0; 1166 1167 /* Sanity check of the record length */ 1168 if (unlikely(transport->tcp_reclen < 8)) { 1169 dprintk("RPC: invalid TCP record fragment length\n"); 1170 xs_tcp_force_close(xprt); 1171 return; 1172 } 1173 dprintk("RPC: reading TCP record fragment of length %d\n", 1174 transport->tcp_reclen); 1175 } 1176 1177 static void xs_tcp_check_fraghdr(struct sock_xprt *transport) 1178 { 1179 if (transport->tcp_offset == transport->tcp_reclen) { 1180 transport->tcp_flags |= TCP_RCV_COPY_FRAGHDR; 1181 transport->tcp_offset = 0; 1182 if (transport->tcp_flags & TCP_RCV_LAST_FRAG) { 1183 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1184 transport->tcp_flags |= TCP_RCV_COPY_XID; 1185 transport->tcp_copied = 0; 1186 } 1187 } 1188 } 1189 1190 static inline void xs_tcp_read_xid(struct sock_xprt *transport, struct xdr_skb_reader *desc) 1191 { 1192 size_t len, used; 1193 char *p; 1194 1195 len = sizeof(transport->tcp_xid) - transport->tcp_offset; 1196 dprintk("RPC: reading XID (%zu bytes)\n", len); 1197 p = ((char *) &transport->tcp_xid) + transport->tcp_offset; 1198 used = xdr_skb_read_bits(desc, p, len); 1199 transport->tcp_offset += used; 1200 if (used != len) 1201 return; 1202 transport->tcp_flags &= ~TCP_RCV_COPY_XID; 1203 transport->tcp_flags |= TCP_RCV_READ_CALLDIR; 1204 transport->tcp_copied = 4; 1205 dprintk("RPC: reading %s XID %08x\n", 1206 (transport->tcp_flags & TCP_RPC_REPLY) ? "reply for" 1207 : "request with", 1208 ntohl(transport->tcp_xid)); 1209 xs_tcp_check_fraghdr(transport); 1210 } 1211 1212 static inline void xs_tcp_read_calldir(struct sock_xprt *transport, 1213 struct xdr_skb_reader *desc) 1214 { 1215 size_t len, used; 1216 u32 offset; 1217 char *p; 1218 1219 /* 1220 * We want transport->tcp_offset to be 8 at the end of this routine 1221 * (4 bytes for the xid and 4 bytes for the call/reply flag). 1222 * When this function is called for the first time, 1223 * transport->tcp_offset is 4 (after having already read the xid). 1224 */ 1225 offset = transport->tcp_offset - sizeof(transport->tcp_xid); 1226 len = sizeof(transport->tcp_calldir) - offset; 1227 dprintk("RPC: reading CALL/REPLY flag (%zu bytes)\n", len); 1228 p = ((char *) &transport->tcp_calldir) + offset; 1229 used = xdr_skb_read_bits(desc, p, len); 1230 transport->tcp_offset += used; 1231 if (used != len) 1232 return; 1233 transport->tcp_flags &= ~TCP_RCV_READ_CALLDIR; 1234 /* 1235 * We don't yet have the XDR buffer, so we will write the calldir 1236 * out after we get the buffer from the 'struct rpc_rqst' 1237 */ 1238 switch (ntohl(transport->tcp_calldir)) { 1239 case RPC_REPLY: 1240 transport->tcp_flags |= TCP_RCV_COPY_CALLDIR; 1241 transport->tcp_flags |= TCP_RCV_COPY_DATA; 1242 transport->tcp_flags |= TCP_RPC_REPLY; 1243 break; 1244 case RPC_CALL: 1245 transport->tcp_flags |= TCP_RCV_COPY_CALLDIR; 1246 transport->tcp_flags |= TCP_RCV_COPY_DATA; 1247 transport->tcp_flags &= ~TCP_RPC_REPLY; 1248 break; 1249 default: 1250 dprintk("RPC: invalid request message type\n"); 1251 xs_tcp_force_close(&transport->xprt); 1252 } 1253 xs_tcp_check_fraghdr(transport); 1254 } 1255 1256 static inline void xs_tcp_read_common(struct rpc_xprt *xprt, 1257 struct xdr_skb_reader *desc, 1258 struct rpc_rqst *req) 1259 { 1260 struct sock_xprt *transport = 1261 container_of(xprt, struct sock_xprt, xprt); 1262 struct xdr_buf *rcvbuf; 1263 size_t len; 1264 ssize_t r; 1265 1266 rcvbuf = &req->rq_private_buf; 1267 1268 if (transport->tcp_flags & TCP_RCV_COPY_CALLDIR) { 1269 /* 1270 * Save the RPC direction in the XDR buffer 1271 */ 1272 memcpy(rcvbuf->head[0].iov_base + transport->tcp_copied, 1273 &transport->tcp_calldir, 1274 sizeof(transport->tcp_calldir)); 1275 transport->tcp_copied += sizeof(transport->tcp_calldir); 1276 transport->tcp_flags &= ~TCP_RCV_COPY_CALLDIR; 1277 } 1278 1279 len = desc->count; 1280 if (len > transport->tcp_reclen - transport->tcp_offset) { 1281 struct xdr_skb_reader my_desc; 1282 1283 len = transport->tcp_reclen - transport->tcp_offset; 1284 memcpy(&my_desc, desc, sizeof(my_desc)); 1285 my_desc.count = len; 1286 r = xdr_partial_copy_from_skb(rcvbuf, transport->tcp_copied, 1287 &my_desc, xdr_skb_read_bits); 1288 desc->count -= r; 1289 desc->offset += r; 1290 } else 1291 r = xdr_partial_copy_from_skb(rcvbuf, transport->tcp_copied, 1292 desc, xdr_skb_read_bits); 1293 1294 if (r > 0) { 1295 transport->tcp_copied += r; 1296 transport->tcp_offset += r; 1297 } 1298 if (r != len) { 1299 /* Error when copying to the receive buffer, 1300 * usually because we weren't able to allocate 1301 * additional buffer pages. All we can do now 1302 * is turn off TCP_RCV_COPY_DATA, so the request 1303 * will not receive any additional updates, 1304 * and time out. 1305 * Any remaining data from this record will 1306 * be discarded. 1307 */ 1308 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1309 dprintk("RPC: XID %08x truncated request\n", 1310 ntohl(transport->tcp_xid)); 1311 dprintk("RPC: xprt = %p, tcp_copied = %lu, " 1312 "tcp_offset = %u, tcp_reclen = %u\n", 1313 xprt, transport->tcp_copied, 1314 transport->tcp_offset, transport->tcp_reclen); 1315 return; 1316 } 1317 1318 dprintk("RPC: XID %08x read %zd bytes\n", 1319 ntohl(transport->tcp_xid), r); 1320 dprintk("RPC: xprt = %p, tcp_copied = %lu, tcp_offset = %u, " 1321 "tcp_reclen = %u\n", xprt, transport->tcp_copied, 1322 transport->tcp_offset, transport->tcp_reclen); 1323 1324 if (transport->tcp_copied == req->rq_private_buf.buflen) 1325 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1326 else if (transport->tcp_offset == transport->tcp_reclen) { 1327 if (transport->tcp_flags & TCP_RCV_LAST_FRAG) 1328 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1329 } 1330 } 1331 1332 /* 1333 * Finds the request corresponding to the RPC xid and invokes the common 1334 * tcp read code to read the data. 1335 */ 1336 static inline int xs_tcp_read_reply(struct rpc_xprt *xprt, 1337 struct xdr_skb_reader *desc) 1338 { 1339 struct sock_xprt *transport = 1340 container_of(xprt, struct sock_xprt, xprt); 1341 struct rpc_rqst *req; 1342 1343 dprintk("RPC: read reply XID %08x\n", ntohl(transport->tcp_xid)); 1344 1345 /* Find and lock the request corresponding to this xid */ 1346 spin_lock_bh(&xprt->transport_lock); 1347 req = xprt_lookup_rqst(xprt, transport->tcp_xid); 1348 if (!req) { 1349 dprintk("RPC: XID %08x request not found!\n", 1350 ntohl(transport->tcp_xid)); 1351 spin_unlock_bh(&xprt->transport_lock); 1352 return -1; 1353 } 1354 1355 xs_tcp_read_common(xprt, desc, req); 1356 1357 if (!(transport->tcp_flags & TCP_RCV_COPY_DATA)) 1358 xprt_complete_rqst(req->rq_task, transport->tcp_copied); 1359 1360 spin_unlock_bh(&xprt->transport_lock); 1361 return 0; 1362 } 1363 1364 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1365 /* 1366 * Obtains an rpc_rqst previously allocated and invokes the common 1367 * tcp read code to read the data. The result is placed in the callback 1368 * queue. 1369 * If we're unable to obtain the rpc_rqst we schedule the closing of the 1370 * connection and return -1. 1371 */ 1372 static int xs_tcp_read_callback(struct rpc_xprt *xprt, 1373 struct xdr_skb_reader *desc) 1374 { 1375 struct sock_xprt *transport = 1376 container_of(xprt, struct sock_xprt, xprt); 1377 struct rpc_rqst *req; 1378 1379 /* Look up and lock the request corresponding to the given XID */ 1380 spin_lock_bh(&xprt->transport_lock); 1381 req = xprt_lookup_bc_request(xprt, transport->tcp_xid); 1382 if (req == NULL) { 1383 spin_unlock_bh(&xprt->transport_lock); 1384 printk(KERN_WARNING "Callback slot table overflowed\n"); 1385 xprt_force_disconnect(xprt); 1386 return -1; 1387 } 1388 1389 dprintk("RPC: read callback XID %08x\n", ntohl(req->rq_xid)); 1390 xs_tcp_read_common(xprt, desc, req); 1391 1392 if (!(transport->tcp_flags & TCP_RCV_COPY_DATA)) 1393 xprt_complete_bc_request(req, transport->tcp_copied); 1394 spin_unlock_bh(&xprt->transport_lock); 1395 1396 return 0; 1397 } 1398 1399 static inline int _xs_tcp_read_data(struct rpc_xprt *xprt, 1400 struct xdr_skb_reader *desc) 1401 { 1402 struct sock_xprt *transport = 1403 container_of(xprt, struct sock_xprt, xprt); 1404 1405 return (transport->tcp_flags & TCP_RPC_REPLY) ? 1406 xs_tcp_read_reply(xprt, desc) : 1407 xs_tcp_read_callback(xprt, desc); 1408 } 1409 1410 static int xs_tcp_bc_up(struct svc_serv *serv, struct net *net) 1411 { 1412 int ret; 1413 1414 ret = svc_create_xprt(serv, "tcp-bc", net, PF_INET, 0, 1415 SVC_SOCK_ANONYMOUS); 1416 if (ret < 0) 1417 return ret; 1418 return 0; 1419 } 1420 1421 static size_t xs_tcp_bc_maxpayload(struct rpc_xprt *xprt) 1422 { 1423 return PAGE_SIZE; 1424 } 1425 #else 1426 static inline int _xs_tcp_read_data(struct rpc_xprt *xprt, 1427 struct xdr_skb_reader *desc) 1428 { 1429 return xs_tcp_read_reply(xprt, desc); 1430 } 1431 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1432 1433 /* 1434 * Read data off the transport. This can be either an RPC_CALL or an 1435 * RPC_REPLY. Relay the processing to helper functions. 1436 */ 1437 static void xs_tcp_read_data(struct rpc_xprt *xprt, 1438 struct xdr_skb_reader *desc) 1439 { 1440 struct sock_xprt *transport = 1441 container_of(xprt, struct sock_xprt, xprt); 1442 1443 if (_xs_tcp_read_data(xprt, desc) == 0) 1444 xs_tcp_check_fraghdr(transport); 1445 else { 1446 /* 1447 * The transport_lock protects the request handling. 1448 * There's no need to hold it to update the tcp_flags. 1449 */ 1450 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1451 } 1452 } 1453 1454 static inline void xs_tcp_read_discard(struct sock_xprt *transport, struct xdr_skb_reader *desc) 1455 { 1456 size_t len; 1457 1458 len = transport->tcp_reclen - transport->tcp_offset; 1459 if (len > desc->count) 1460 len = desc->count; 1461 desc->count -= len; 1462 desc->offset += len; 1463 transport->tcp_offset += len; 1464 dprintk("RPC: discarded %zu bytes\n", len); 1465 xs_tcp_check_fraghdr(transport); 1466 } 1467 1468 static int xs_tcp_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, unsigned int offset, size_t len) 1469 { 1470 struct rpc_xprt *xprt = rd_desc->arg.data; 1471 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1472 struct xdr_skb_reader desc = { 1473 .skb = skb, 1474 .offset = offset, 1475 .count = len, 1476 }; 1477 1478 dprintk("RPC: xs_tcp_data_recv started\n"); 1479 do { 1480 trace_xs_tcp_data_recv(transport); 1481 /* Read in a new fragment marker if necessary */ 1482 /* Can we ever really expect to get completely empty fragments? */ 1483 if (transport->tcp_flags & TCP_RCV_COPY_FRAGHDR) { 1484 xs_tcp_read_fraghdr(xprt, &desc); 1485 continue; 1486 } 1487 /* Read in the xid if necessary */ 1488 if (transport->tcp_flags & TCP_RCV_COPY_XID) { 1489 xs_tcp_read_xid(transport, &desc); 1490 continue; 1491 } 1492 /* Read in the call/reply flag */ 1493 if (transport->tcp_flags & TCP_RCV_READ_CALLDIR) { 1494 xs_tcp_read_calldir(transport, &desc); 1495 continue; 1496 } 1497 /* Read in the request data */ 1498 if (transport->tcp_flags & TCP_RCV_COPY_DATA) { 1499 xs_tcp_read_data(xprt, &desc); 1500 continue; 1501 } 1502 /* Skip over any trailing bytes on short reads */ 1503 xs_tcp_read_discard(transport, &desc); 1504 } while (desc.count); 1505 trace_xs_tcp_data_recv(transport); 1506 dprintk("RPC: xs_tcp_data_recv done\n"); 1507 return len - desc.count; 1508 } 1509 1510 static void xs_tcp_data_receive(struct sock_xprt *transport) 1511 { 1512 struct rpc_xprt *xprt = &transport->xprt; 1513 struct sock *sk; 1514 read_descriptor_t rd_desc = { 1515 .count = 2*1024*1024, 1516 .arg.data = xprt, 1517 }; 1518 unsigned long total = 0; 1519 int read = 0; 1520 1521 mutex_lock(&transport->recv_mutex); 1522 sk = transport->inet; 1523 if (sk == NULL) 1524 goto out; 1525 1526 /* We use rd_desc to pass struct xprt to xs_tcp_data_recv */ 1527 for (;;) { 1528 lock_sock(sk); 1529 read = tcp_read_sock(sk, &rd_desc, xs_tcp_data_recv); 1530 if (read <= 0) { 1531 clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state); 1532 release_sock(sk); 1533 if (!test_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1534 break; 1535 } else { 1536 release_sock(sk); 1537 total += read; 1538 } 1539 rd_desc.count = 65536; 1540 } 1541 out: 1542 mutex_unlock(&transport->recv_mutex); 1543 trace_xs_tcp_data_ready(xprt, read, total); 1544 } 1545 1546 static void xs_tcp_data_receive_workfn(struct work_struct *work) 1547 { 1548 struct sock_xprt *transport = 1549 container_of(work, struct sock_xprt, recv_worker); 1550 xs_tcp_data_receive(transport); 1551 } 1552 1553 /** 1554 * xs_tcp_state_change - callback to handle TCP socket state changes 1555 * @sk: socket whose state has changed 1556 * 1557 */ 1558 static void xs_tcp_state_change(struct sock *sk) 1559 { 1560 struct rpc_xprt *xprt; 1561 struct sock_xprt *transport; 1562 1563 read_lock_bh(&sk->sk_callback_lock); 1564 if (!(xprt = xprt_from_sock(sk))) 1565 goto out; 1566 dprintk("RPC: xs_tcp_state_change client %p...\n", xprt); 1567 dprintk("RPC: state %x conn %d dead %d zapped %d sk_shutdown %d\n", 1568 sk->sk_state, xprt_connected(xprt), 1569 sock_flag(sk, SOCK_DEAD), 1570 sock_flag(sk, SOCK_ZAPPED), 1571 sk->sk_shutdown); 1572 1573 transport = container_of(xprt, struct sock_xprt, xprt); 1574 trace_rpc_socket_state_change(xprt, sk->sk_socket); 1575 switch (sk->sk_state) { 1576 case TCP_ESTABLISHED: 1577 spin_lock(&xprt->transport_lock); 1578 if (!xprt_test_and_set_connected(xprt)) { 1579 1580 /* Reset TCP record info */ 1581 transport->tcp_offset = 0; 1582 transport->tcp_reclen = 0; 1583 transport->tcp_copied = 0; 1584 transport->tcp_flags = 1585 TCP_RCV_COPY_FRAGHDR | TCP_RCV_COPY_XID; 1586 xprt->connect_cookie++; 1587 clear_bit(XPRT_SOCK_CONNECTING, &transport->sock_state); 1588 xprt_clear_connecting(xprt); 1589 1590 xprt_wake_pending_tasks(xprt, -EAGAIN); 1591 } 1592 spin_unlock(&xprt->transport_lock); 1593 break; 1594 case TCP_FIN_WAIT1: 1595 /* The client initiated a shutdown of the socket */ 1596 xprt->connect_cookie++; 1597 xprt->reestablish_timeout = 0; 1598 set_bit(XPRT_CLOSING, &xprt->state); 1599 smp_mb__before_atomic(); 1600 clear_bit(XPRT_CONNECTED, &xprt->state); 1601 clear_bit(XPRT_CLOSE_WAIT, &xprt->state); 1602 smp_mb__after_atomic(); 1603 break; 1604 case TCP_CLOSE_WAIT: 1605 /* The server initiated a shutdown of the socket */ 1606 xprt->connect_cookie++; 1607 clear_bit(XPRT_CONNECTED, &xprt->state); 1608 xs_tcp_force_close(xprt); 1609 case TCP_CLOSING: 1610 /* 1611 * If the server closed down the connection, make sure that 1612 * we back off before reconnecting 1613 */ 1614 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) 1615 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 1616 break; 1617 case TCP_LAST_ACK: 1618 set_bit(XPRT_CLOSING, &xprt->state); 1619 smp_mb__before_atomic(); 1620 clear_bit(XPRT_CONNECTED, &xprt->state); 1621 smp_mb__after_atomic(); 1622 break; 1623 case TCP_CLOSE: 1624 if (test_and_clear_bit(XPRT_SOCK_CONNECTING, 1625 &transport->sock_state)) 1626 xprt_clear_connecting(xprt); 1627 xs_sock_mark_closed(xprt); 1628 } 1629 out: 1630 read_unlock_bh(&sk->sk_callback_lock); 1631 } 1632 1633 static void xs_write_space(struct sock *sk) 1634 { 1635 struct socket_wq *wq; 1636 struct rpc_xprt *xprt; 1637 1638 if (!sk->sk_socket) 1639 return; 1640 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1641 1642 if (unlikely(!(xprt = xprt_from_sock(sk)))) 1643 return; 1644 rcu_read_lock(); 1645 wq = rcu_dereference(sk->sk_wq); 1646 if (!wq || test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags) == 0) 1647 goto out; 1648 1649 xprt_write_space(xprt); 1650 out: 1651 rcu_read_unlock(); 1652 } 1653 1654 /** 1655 * xs_udp_write_space - callback invoked when socket buffer space 1656 * becomes available 1657 * @sk: socket whose state has changed 1658 * 1659 * Called when more output buffer space is available for this socket. 1660 * We try not to wake our writers until they can make "significant" 1661 * progress, otherwise we'll waste resources thrashing kernel_sendmsg 1662 * with a bunch of small requests. 1663 */ 1664 static void xs_udp_write_space(struct sock *sk) 1665 { 1666 read_lock_bh(&sk->sk_callback_lock); 1667 1668 /* from net/core/sock.c:sock_def_write_space */ 1669 if (sock_writeable(sk)) 1670 xs_write_space(sk); 1671 1672 read_unlock_bh(&sk->sk_callback_lock); 1673 } 1674 1675 /** 1676 * xs_tcp_write_space - callback invoked when socket buffer space 1677 * becomes available 1678 * @sk: socket whose state has changed 1679 * 1680 * Called when more output buffer space is available for this socket. 1681 * We try not to wake our writers until they can make "significant" 1682 * progress, otherwise we'll waste resources thrashing kernel_sendmsg 1683 * with a bunch of small requests. 1684 */ 1685 static void xs_tcp_write_space(struct sock *sk) 1686 { 1687 read_lock_bh(&sk->sk_callback_lock); 1688 1689 /* from net/core/stream.c:sk_stream_write_space */ 1690 if (sk_stream_is_writeable(sk)) 1691 xs_write_space(sk); 1692 1693 read_unlock_bh(&sk->sk_callback_lock); 1694 } 1695 1696 static void xs_udp_do_set_buffer_size(struct rpc_xprt *xprt) 1697 { 1698 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1699 struct sock *sk = transport->inet; 1700 1701 if (transport->rcvsize) { 1702 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 1703 sk->sk_rcvbuf = transport->rcvsize * xprt->max_reqs * 2; 1704 } 1705 if (transport->sndsize) { 1706 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1707 sk->sk_sndbuf = transport->sndsize * xprt->max_reqs * 2; 1708 sk->sk_write_space(sk); 1709 } 1710 } 1711 1712 /** 1713 * xs_udp_set_buffer_size - set send and receive limits 1714 * @xprt: generic transport 1715 * @sndsize: requested size of send buffer, in bytes 1716 * @rcvsize: requested size of receive buffer, in bytes 1717 * 1718 * Set socket send and receive buffer size limits. 1719 */ 1720 static void xs_udp_set_buffer_size(struct rpc_xprt *xprt, size_t sndsize, size_t rcvsize) 1721 { 1722 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1723 1724 transport->sndsize = 0; 1725 if (sndsize) 1726 transport->sndsize = sndsize + 1024; 1727 transport->rcvsize = 0; 1728 if (rcvsize) 1729 transport->rcvsize = rcvsize + 1024; 1730 1731 xs_udp_do_set_buffer_size(xprt); 1732 } 1733 1734 /** 1735 * xs_udp_timer - called when a retransmit timeout occurs on a UDP transport 1736 * @task: task that timed out 1737 * 1738 * Adjust the congestion window after a retransmit timeout has occurred. 1739 */ 1740 static void xs_udp_timer(struct rpc_xprt *xprt, struct rpc_task *task) 1741 { 1742 spin_lock_bh(&xprt->transport_lock); 1743 xprt_adjust_cwnd(xprt, task, -ETIMEDOUT); 1744 spin_unlock_bh(&xprt->transport_lock); 1745 } 1746 1747 static unsigned short xs_get_random_port(void) 1748 { 1749 unsigned short range = xprt_max_resvport - xprt_min_resvport + 1; 1750 unsigned short rand = (unsigned short) prandom_u32() % range; 1751 return rand + xprt_min_resvport; 1752 } 1753 1754 /** 1755 * xs_set_reuseaddr_port - set the socket's port and address reuse options 1756 * @sock: socket 1757 * 1758 * Note that this function has to be called on all sockets that share the 1759 * same port, and it must be called before binding. 1760 */ 1761 static void xs_sock_set_reuseport(struct socket *sock) 1762 { 1763 int opt = 1; 1764 1765 kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, 1766 (char *)&opt, sizeof(opt)); 1767 } 1768 1769 static unsigned short xs_sock_getport(struct socket *sock) 1770 { 1771 struct sockaddr_storage buf; 1772 int buflen; 1773 unsigned short port = 0; 1774 1775 if (kernel_getsockname(sock, (struct sockaddr *)&buf, &buflen) < 0) 1776 goto out; 1777 switch (buf.ss_family) { 1778 case AF_INET6: 1779 port = ntohs(((struct sockaddr_in6 *)&buf)->sin6_port); 1780 break; 1781 case AF_INET: 1782 port = ntohs(((struct sockaddr_in *)&buf)->sin_port); 1783 } 1784 out: 1785 return port; 1786 } 1787 1788 /** 1789 * xs_set_port - reset the port number in the remote endpoint address 1790 * @xprt: generic transport 1791 * @port: new port number 1792 * 1793 */ 1794 static void xs_set_port(struct rpc_xprt *xprt, unsigned short port) 1795 { 1796 dprintk("RPC: setting port for xprt %p to %u\n", xprt, port); 1797 1798 rpc_set_port(xs_addr(xprt), port); 1799 xs_update_peer_port(xprt); 1800 } 1801 1802 static void xs_set_srcport(struct sock_xprt *transport, struct socket *sock) 1803 { 1804 if (transport->srcport == 0) 1805 transport->srcport = xs_sock_getport(sock); 1806 } 1807 1808 static unsigned short xs_get_srcport(struct sock_xprt *transport) 1809 { 1810 unsigned short port = transport->srcport; 1811 1812 if (port == 0 && transport->xprt.resvport) 1813 port = xs_get_random_port(); 1814 return port; 1815 } 1816 1817 static unsigned short xs_next_srcport(struct sock_xprt *transport, unsigned short port) 1818 { 1819 if (transport->srcport != 0) 1820 transport->srcport = 0; 1821 if (!transport->xprt.resvport) 1822 return 0; 1823 if (port <= xprt_min_resvport || port > xprt_max_resvport) 1824 return xprt_max_resvport; 1825 return --port; 1826 } 1827 static int xs_bind(struct sock_xprt *transport, struct socket *sock) 1828 { 1829 struct sockaddr_storage myaddr; 1830 int err, nloop = 0; 1831 unsigned short port = xs_get_srcport(transport); 1832 unsigned short last; 1833 1834 /* 1835 * If we are asking for any ephemeral port (i.e. port == 0 && 1836 * transport->xprt.resvport == 0), don't bind. Let the local 1837 * port selection happen implicitly when the socket is used 1838 * (for example at connect time). 1839 * 1840 * This ensures that we can continue to establish TCP 1841 * connections even when all local ephemeral ports are already 1842 * a part of some TCP connection. This makes no difference 1843 * for UDP sockets, but also doens't harm them. 1844 * 1845 * If we're asking for any reserved port (i.e. port == 0 && 1846 * transport->xprt.resvport == 1) xs_get_srcport above will 1847 * ensure that port is non-zero and we will bind as needed. 1848 */ 1849 if (port == 0) 1850 return 0; 1851 1852 memcpy(&myaddr, &transport->srcaddr, transport->xprt.addrlen); 1853 do { 1854 rpc_set_port((struct sockaddr *)&myaddr, port); 1855 err = kernel_bind(sock, (struct sockaddr *)&myaddr, 1856 transport->xprt.addrlen); 1857 if (err == 0) { 1858 transport->srcport = port; 1859 break; 1860 } 1861 last = port; 1862 port = xs_next_srcport(transport, port); 1863 if (port > last) 1864 nloop++; 1865 } while (err == -EADDRINUSE && nloop != 2); 1866 1867 if (myaddr.ss_family == AF_INET) 1868 dprintk("RPC: %s %pI4:%u: %s (%d)\n", __func__, 1869 &((struct sockaddr_in *)&myaddr)->sin_addr, 1870 port, err ? "failed" : "ok", err); 1871 else 1872 dprintk("RPC: %s %pI6:%u: %s (%d)\n", __func__, 1873 &((struct sockaddr_in6 *)&myaddr)->sin6_addr, 1874 port, err ? "failed" : "ok", err); 1875 return err; 1876 } 1877 1878 /* 1879 * We don't support autobind on AF_LOCAL sockets 1880 */ 1881 static void xs_local_rpcbind(struct rpc_task *task) 1882 { 1883 xprt_set_bound(task->tk_xprt); 1884 } 1885 1886 static void xs_local_set_port(struct rpc_xprt *xprt, unsigned short port) 1887 { 1888 } 1889 1890 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1891 static struct lock_class_key xs_key[2]; 1892 static struct lock_class_key xs_slock_key[2]; 1893 1894 static inline void xs_reclassify_socketu(struct socket *sock) 1895 { 1896 struct sock *sk = sock->sk; 1897 1898 sock_lock_init_class_and_name(sk, "slock-AF_LOCAL-RPC", 1899 &xs_slock_key[1], "sk_lock-AF_LOCAL-RPC", &xs_key[1]); 1900 } 1901 1902 static inline void xs_reclassify_socket4(struct socket *sock) 1903 { 1904 struct sock *sk = sock->sk; 1905 1906 sock_lock_init_class_and_name(sk, "slock-AF_INET-RPC", 1907 &xs_slock_key[0], "sk_lock-AF_INET-RPC", &xs_key[0]); 1908 } 1909 1910 static inline void xs_reclassify_socket6(struct socket *sock) 1911 { 1912 struct sock *sk = sock->sk; 1913 1914 sock_lock_init_class_and_name(sk, "slock-AF_INET6-RPC", 1915 &xs_slock_key[1], "sk_lock-AF_INET6-RPC", &xs_key[1]); 1916 } 1917 1918 static inline void xs_reclassify_socket(int family, struct socket *sock) 1919 { 1920 if (WARN_ON_ONCE(!sock_allow_reclassification(sock->sk))) 1921 return; 1922 1923 switch (family) { 1924 case AF_LOCAL: 1925 xs_reclassify_socketu(sock); 1926 break; 1927 case AF_INET: 1928 xs_reclassify_socket4(sock); 1929 break; 1930 case AF_INET6: 1931 xs_reclassify_socket6(sock); 1932 break; 1933 } 1934 } 1935 #else 1936 static inline void xs_reclassify_socket(int family, struct socket *sock) 1937 { 1938 } 1939 #endif 1940 1941 static void xs_dummy_setup_socket(struct work_struct *work) 1942 { 1943 } 1944 1945 static struct socket *xs_create_sock(struct rpc_xprt *xprt, 1946 struct sock_xprt *transport, int family, int type, 1947 int protocol, bool reuseport) 1948 { 1949 struct socket *sock; 1950 int err; 1951 1952 err = __sock_create(xprt->xprt_net, family, type, protocol, &sock, 1); 1953 if (err < 0) { 1954 dprintk("RPC: can't create %d transport socket (%d).\n", 1955 protocol, -err); 1956 goto out; 1957 } 1958 xs_reclassify_socket(family, sock); 1959 1960 if (reuseport) 1961 xs_sock_set_reuseport(sock); 1962 1963 err = xs_bind(transport, sock); 1964 if (err) { 1965 sock_release(sock); 1966 goto out; 1967 } 1968 1969 return sock; 1970 out: 1971 return ERR_PTR(err); 1972 } 1973 1974 static int xs_local_finish_connecting(struct rpc_xprt *xprt, 1975 struct socket *sock) 1976 { 1977 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, 1978 xprt); 1979 1980 if (!transport->inet) { 1981 struct sock *sk = sock->sk; 1982 1983 write_lock_bh(&sk->sk_callback_lock); 1984 1985 xs_save_old_callbacks(transport, sk); 1986 1987 sk->sk_user_data = xprt; 1988 sk->sk_data_ready = xs_data_ready; 1989 sk->sk_write_space = xs_udp_write_space; 1990 sock_set_flag(sk, SOCK_FASYNC); 1991 sk->sk_error_report = xs_error_report; 1992 sk->sk_allocation = GFP_NOIO; 1993 1994 xprt_clear_connected(xprt); 1995 1996 /* Reset to new socket */ 1997 transport->sock = sock; 1998 transport->inet = sk; 1999 2000 write_unlock_bh(&sk->sk_callback_lock); 2001 } 2002 2003 /* Tell the socket layer to start connecting... */ 2004 xprt->stat.connect_count++; 2005 xprt->stat.connect_start = jiffies; 2006 return kernel_connect(sock, xs_addr(xprt), xprt->addrlen, 0); 2007 } 2008 2009 /** 2010 * xs_local_setup_socket - create AF_LOCAL socket, connect to a local endpoint 2011 * @transport: socket transport to connect 2012 */ 2013 static int xs_local_setup_socket(struct sock_xprt *transport) 2014 { 2015 struct rpc_xprt *xprt = &transport->xprt; 2016 struct socket *sock; 2017 int status = -EIO; 2018 2019 status = __sock_create(xprt->xprt_net, AF_LOCAL, 2020 SOCK_STREAM, 0, &sock, 1); 2021 if (status < 0) { 2022 dprintk("RPC: can't create AF_LOCAL " 2023 "transport socket (%d).\n", -status); 2024 goto out; 2025 } 2026 xs_reclassify_socket(AF_LOCAL, sock); 2027 2028 dprintk("RPC: worker connecting xprt %p via AF_LOCAL to %s\n", 2029 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2030 2031 status = xs_local_finish_connecting(xprt, sock); 2032 trace_rpc_socket_connect(xprt, sock, status); 2033 switch (status) { 2034 case 0: 2035 dprintk("RPC: xprt %p connected to %s\n", 2036 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2037 xprt_set_connected(xprt); 2038 case -ENOBUFS: 2039 break; 2040 case -ENOENT: 2041 dprintk("RPC: xprt %p: socket %s does not exist\n", 2042 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2043 break; 2044 case -ECONNREFUSED: 2045 dprintk("RPC: xprt %p: connection refused for %s\n", 2046 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2047 break; 2048 default: 2049 printk(KERN_ERR "%s: unhandled error (%d) connecting to %s\n", 2050 __func__, -status, 2051 xprt->address_strings[RPC_DISPLAY_ADDR]); 2052 } 2053 2054 out: 2055 xprt_clear_connecting(xprt); 2056 xprt_wake_pending_tasks(xprt, status); 2057 return status; 2058 } 2059 2060 static void xs_local_connect(struct rpc_xprt *xprt, struct rpc_task *task) 2061 { 2062 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2063 int ret; 2064 2065 if (RPC_IS_ASYNC(task)) { 2066 /* 2067 * We want the AF_LOCAL connect to be resolved in the 2068 * filesystem namespace of the process making the rpc 2069 * call. Thus we connect synchronously. 2070 * 2071 * If we want to support asynchronous AF_LOCAL calls, 2072 * we'll need to figure out how to pass a namespace to 2073 * connect. 2074 */ 2075 rpc_exit(task, -ENOTCONN); 2076 return; 2077 } 2078 ret = xs_local_setup_socket(transport); 2079 if (ret && !RPC_IS_SOFTCONN(task)) 2080 msleep_interruptible(15000); 2081 } 2082 2083 #if IS_ENABLED(CONFIG_SUNRPC_SWAP) 2084 /* 2085 * Note that this should be called with XPRT_LOCKED held (or when we otherwise 2086 * know that we have exclusive access to the socket), to guard against 2087 * races with xs_reset_transport. 2088 */ 2089 static void xs_set_memalloc(struct rpc_xprt *xprt) 2090 { 2091 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, 2092 xprt); 2093 2094 /* 2095 * If there's no sock, then we have nothing to set. The 2096 * reconnecting process will get it for us. 2097 */ 2098 if (!transport->inet) 2099 return; 2100 if (atomic_read(&xprt->swapper)) 2101 sk_set_memalloc(transport->inet); 2102 } 2103 2104 /** 2105 * xs_enable_swap - Tag this transport as being used for swap. 2106 * @xprt: transport to tag 2107 * 2108 * Take a reference to this transport on behalf of the rpc_clnt, and 2109 * optionally mark it for swapping if it wasn't already. 2110 */ 2111 static int 2112 xs_enable_swap(struct rpc_xprt *xprt) 2113 { 2114 struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt); 2115 2116 if (atomic_inc_return(&xprt->swapper) != 1) 2117 return 0; 2118 if (wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_KILLABLE)) 2119 return -ERESTARTSYS; 2120 if (xs->inet) 2121 sk_set_memalloc(xs->inet); 2122 xprt_release_xprt(xprt, NULL); 2123 return 0; 2124 } 2125 2126 /** 2127 * xs_disable_swap - Untag this transport as being used for swap. 2128 * @xprt: transport to tag 2129 * 2130 * Drop a "swapper" reference to this xprt on behalf of the rpc_clnt. If the 2131 * swapper refcount goes to 0, untag the socket as a memalloc socket. 2132 */ 2133 static void 2134 xs_disable_swap(struct rpc_xprt *xprt) 2135 { 2136 struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt); 2137 2138 if (!atomic_dec_and_test(&xprt->swapper)) 2139 return; 2140 if (wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_KILLABLE)) 2141 return; 2142 if (xs->inet) 2143 sk_clear_memalloc(xs->inet); 2144 xprt_release_xprt(xprt, NULL); 2145 } 2146 #else 2147 static void xs_set_memalloc(struct rpc_xprt *xprt) 2148 { 2149 } 2150 2151 static int 2152 xs_enable_swap(struct rpc_xprt *xprt) 2153 { 2154 return -EINVAL; 2155 } 2156 2157 static void 2158 xs_disable_swap(struct rpc_xprt *xprt) 2159 { 2160 } 2161 #endif 2162 2163 static void xs_udp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock) 2164 { 2165 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2166 2167 if (!transport->inet) { 2168 struct sock *sk = sock->sk; 2169 2170 write_lock_bh(&sk->sk_callback_lock); 2171 2172 xs_save_old_callbacks(transport, sk); 2173 2174 sk->sk_user_data = xprt; 2175 sk->sk_data_ready = xs_data_ready; 2176 sk->sk_write_space = xs_udp_write_space; 2177 sock_set_flag(sk, SOCK_FASYNC); 2178 sk->sk_allocation = GFP_NOIO; 2179 2180 xprt_set_connected(xprt); 2181 2182 /* Reset to new socket */ 2183 transport->sock = sock; 2184 transport->inet = sk; 2185 2186 xs_set_memalloc(xprt); 2187 2188 write_unlock_bh(&sk->sk_callback_lock); 2189 } 2190 xs_udp_do_set_buffer_size(xprt); 2191 2192 xprt->stat.connect_start = jiffies; 2193 } 2194 2195 static void xs_udp_setup_socket(struct work_struct *work) 2196 { 2197 struct sock_xprt *transport = 2198 container_of(work, struct sock_xprt, connect_worker.work); 2199 struct rpc_xprt *xprt = &transport->xprt; 2200 struct socket *sock = transport->sock; 2201 int status = -EIO; 2202 2203 sock = xs_create_sock(xprt, transport, 2204 xs_addr(xprt)->sa_family, SOCK_DGRAM, 2205 IPPROTO_UDP, false); 2206 if (IS_ERR(sock)) 2207 goto out; 2208 2209 dprintk("RPC: worker connecting xprt %p via %s to " 2210 "%s (port %s)\n", xprt, 2211 xprt->address_strings[RPC_DISPLAY_PROTO], 2212 xprt->address_strings[RPC_DISPLAY_ADDR], 2213 xprt->address_strings[RPC_DISPLAY_PORT]); 2214 2215 xs_udp_finish_connecting(xprt, sock); 2216 trace_rpc_socket_connect(xprt, sock, 0); 2217 status = 0; 2218 out: 2219 xprt_unlock_connect(xprt, transport); 2220 xprt_clear_connecting(xprt); 2221 xprt_wake_pending_tasks(xprt, status); 2222 } 2223 2224 /** 2225 * xs_tcp_shutdown - gracefully shut down a TCP socket 2226 * @xprt: transport 2227 * 2228 * Initiates a graceful shutdown of the TCP socket by calling the 2229 * equivalent of shutdown(SHUT_RDWR); 2230 */ 2231 static void xs_tcp_shutdown(struct rpc_xprt *xprt) 2232 { 2233 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2234 struct socket *sock = transport->sock; 2235 2236 if (sock == NULL) 2237 return; 2238 if (xprt_connected(xprt)) { 2239 kernel_sock_shutdown(sock, SHUT_RDWR); 2240 trace_rpc_socket_shutdown(xprt, sock); 2241 } else 2242 xs_reset_transport(transport); 2243 } 2244 2245 static void xs_tcp_set_socket_timeouts(struct rpc_xprt *xprt, 2246 struct socket *sock) 2247 { 2248 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2249 unsigned int keepidle; 2250 unsigned int keepcnt; 2251 unsigned int opt_on = 1; 2252 unsigned int timeo; 2253 2254 spin_lock_bh(&xprt->transport_lock); 2255 keepidle = DIV_ROUND_UP(xprt->timeout->to_initval, HZ); 2256 keepcnt = xprt->timeout->to_retries + 1; 2257 timeo = jiffies_to_msecs(xprt->timeout->to_initval) * 2258 (xprt->timeout->to_retries + 1); 2259 clear_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state); 2260 spin_unlock_bh(&xprt->transport_lock); 2261 2262 /* TCP Keepalive options */ 2263 kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, 2264 (char *)&opt_on, sizeof(opt_on)); 2265 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPIDLE, 2266 (char *)&keepidle, sizeof(keepidle)); 2267 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPINTVL, 2268 (char *)&keepidle, sizeof(keepidle)); 2269 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPCNT, 2270 (char *)&keepcnt, sizeof(keepcnt)); 2271 2272 /* TCP user timeout (see RFC5482) */ 2273 kernel_setsockopt(sock, SOL_TCP, TCP_USER_TIMEOUT, 2274 (char *)&timeo, sizeof(timeo)); 2275 } 2276 2277 static void xs_tcp_set_connect_timeout(struct rpc_xprt *xprt, 2278 unsigned long connect_timeout, 2279 unsigned long reconnect_timeout) 2280 { 2281 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2282 struct rpc_timeout to; 2283 unsigned long initval; 2284 2285 spin_lock_bh(&xprt->transport_lock); 2286 if (reconnect_timeout < xprt->max_reconnect_timeout) 2287 xprt->max_reconnect_timeout = reconnect_timeout; 2288 if (connect_timeout < xprt->connect_timeout) { 2289 memcpy(&to, xprt->timeout, sizeof(to)); 2290 initval = DIV_ROUND_UP(connect_timeout, to.to_retries + 1); 2291 /* Arbitrary lower limit */ 2292 if (initval < XS_TCP_INIT_REEST_TO << 1) 2293 initval = XS_TCP_INIT_REEST_TO << 1; 2294 to.to_initval = initval; 2295 to.to_maxval = initval; 2296 memcpy(&transport->tcp_timeout, &to, 2297 sizeof(transport->tcp_timeout)); 2298 xprt->timeout = &transport->tcp_timeout; 2299 xprt->connect_timeout = connect_timeout; 2300 } 2301 set_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state); 2302 spin_unlock_bh(&xprt->transport_lock); 2303 } 2304 2305 static int xs_tcp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock) 2306 { 2307 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2308 int ret = -ENOTCONN; 2309 2310 if (!transport->inet) { 2311 struct sock *sk = sock->sk; 2312 unsigned int addr_pref = IPV6_PREFER_SRC_PUBLIC; 2313 2314 /* Avoid temporary address, they are bad for long-lived 2315 * connections such as NFS mounts. 2316 * RFC4941, section 3.6 suggests that: 2317 * Individual applications, which have specific 2318 * knowledge about the normal duration of connections, 2319 * MAY override this as appropriate. 2320 */ 2321 kernel_setsockopt(sock, SOL_IPV6, IPV6_ADDR_PREFERENCES, 2322 (char *)&addr_pref, sizeof(addr_pref)); 2323 2324 xs_tcp_set_socket_timeouts(xprt, sock); 2325 2326 write_lock_bh(&sk->sk_callback_lock); 2327 2328 xs_save_old_callbacks(transport, sk); 2329 2330 sk->sk_user_data = xprt; 2331 sk->sk_data_ready = xs_data_ready; 2332 sk->sk_state_change = xs_tcp_state_change; 2333 sk->sk_write_space = xs_tcp_write_space; 2334 sock_set_flag(sk, SOCK_FASYNC); 2335 sk->sk_error_report = xs_error_report; 2336 sk->sk_allocation = GFP_NOIO; 2337 2338 /* socket options */ 2339 sock_reset_flag(sk, SOCK_LINGER); 2340 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF; 2341 2342 xprt_clear_connected(xprt); 2343 2344 /* Reset to new socket */ 2345 transport->sock = sock; 2346 transport->inet = sk; 2347 2348 write_unlock_bh(&sk->sk_callback_lock); 2349 } 2350 2351 if (!xprt_bound(xprt)) 2352 goto out; 2353 2354 xs_set_memalloc(xprt); 2355 2356 /* Tell the socket layer to start connecting... */ 2357 xprt->stat.connect_count++; 2358 xprt->stat.connect_start = jiffies; 2359 set_bit(XPRT_SOCK_CONNECTING, &transport->sock_state); 2360 ret = kernel_connect(sock, xs_addr(xprt), xprt->addrlen, O_NONBLOCK); 2361 switch (ret) { 2362 case 0: 2363 xs_set_srcport(transport, sock); 2364 case -EINPROGRESS: 2365 /* SYN_SENT! */ 2366 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) 2367 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 2368 break; 2369 case -EADDRNOTAVAIL: 2370 /* Source port number is unavailable. Try a new one! */ 2371 transport->srcport = 0; 2372 } 2373 out: 2374 return ret; 2375 } 2376 2377 /** 2378 * xs_tcp_setup_socket - create a TCP socket and connect to a remote endpoint 2379 * 2380 * Invoked by a work queue tasklet. 2381 */ 2382 static void xs_tcp_setup_socket(struct work_struct *work) 2383 { 2384 struct sock_xprt *transport = 2385 container_of(work, struct sock_xprt, connect_worker.work); 2386 struct socket *sock = transport->sock; 2387 struct rpc_xprt *xprt = &transport->xprt; 2388 int status = -EIO; 2389 2390 if (!sock) { 2391 sock = xs_create_sock(xprt, transport, 2392 xs_addr(xprt)->sa_family, SOCK_STREAM, 2393 IPPROTO_TCP, true); 2394 if (IS_ERR(sock)) { 2395 status = PTR_ERR(sock); 2396 goto out; 2397 } 2398 } 2399 2400 dprintk("RPC: worker connecting xprt %p via %s to " 2401 "%s (port %s)\n", xprt, 2402 xprt->address_strings[RPC_DISPLAY_PROTO], 2403 xprt->address_strings[RPC_DISPLAY_ADDR], 2404 xprt->address_strings[RPC_DISPLAY_PORT]); 2405 2406 status = xs_tcp_finish_connecting(xprt, sock); 2407 trace_rpc_socket_connect(xprt, sock, status); 2408 dprintk("RPC: %p connect status %d connected %d sock state %d\n", 2409 xprt, -status, xprt_connected(xprt), 2410 sock->sk->sk_state); 2411 switch (status) { 2412 default: 2413 printk("%s: connect returned unhandled error %d\n", 2414 __func__, status); 2415 case -EADDRNOTAVAIL: 2416 /* We're probably in TIME_WAIT. Get rid of existing socket, 2417 * and retry 2418 */ 2419 xs_tcp_force_close(xprt); 2420 break; 2421 case 0: 2422 case -EINPROGRESS: 2423 case -EALREADY: 2424 xprt_unlock_connect(xprt, transport); 2425 return; 2426 case -EINVAL: 2427 /* Happens, for instance, if the user specified a link 2428 * local IPv6 address without a scope-id. 2429 */ 2430 case -ECONNREFUSED: 2431 case -ECONNRESET: 2432 case -ENETUNREACH: 2433 case -EADDRINUSE: 2434 case -ENOBUFS: 2435 /* 2436 * xs_tcp_force_close() wakes tasks with -EIO. 2437 * We need to wake them first to ensure the 2438 * correct error code. 2439 */ 2440 xprt_wake_pending_tasks(xprt, status); 2441 xs_tcp_force_close(xprt); 2442 goto out; 2443 } 2444 status = -EAGAIN; 2445 out: 2446 xprt_unlock_connect(xprt, transport); 2447 xprt_clear_connecting(xprt); 2448 xprt_wake_pending_tasks(xprt, status); 2449 } 2450 2451 static unsigned long xs_reconnect_delay(const struct rpc_xprt *xprt) 2452 { 2453 unsigned long start, now = jiffies; 2454 2455 start = xprt->stat.connect_start + xprt->reestablish_timeout; 2456 if (time_after(start, now)) 2457 return start - now; 2458 return 0; 2459 } 2460 2461 static void xs_reconnect_backoff(struct rpc_xprt *xprt) 2462 { 2463 xprt->reestablish_timeout <<= 1; 2464 if (xprt->reestablish_timeout > xprt->max_reconnect_timeout) 2465 xprt->reestablish_timeout = xprt->max_reconnect_timeout; 2466 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) 2467 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 2468 } 2469 2470 /** 2471 * xs_connect - connect a socket to a remote endpoint 2472 * @xprt: pointer to transport structure 2473 * @task: address of RPC task that manages state of connect request 2474 * 2475 * TCP: If the remote end dropped the connection, delay reconnecting. 2476 * 2477 * UDP socket connects are synchronous, but we use a work queue anyway 2478 * to guarantee that even unprivileged user processes can set up a 2479 * socket on a privileged port. 2480 * 2481 * If a UDP socket connect fails, the delay behavior here prevents 2482 * retry floods (hard mounts). 2483 */ 2484 static void xs_connect(struct rpc_xprt *xprt, struct rpc_task *task) 2485 { 2486 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2487 unsigned long delay = 0; 2488 2489 WARN_ON_ONCE(!xprt_lock_connect(xprt, task, transport)); 2490 2491 if (transport->sock != NULL) { 2492 dprintk("RPC: xs_connect delayed xprt %p for %lu " 2493 "seconds\n", 2494 xprt, xprt->reestablish_timeout / HZ); 2495 2496 /* Start by resetting any existing state */ 2497 xs_reset_transport(transport); 2498 2499 delay = xs_reconnect_delay(xprt); 2500 xs_reconnect_backoff(xprt); 2501 2502 } else 2503 dprintk("RPC: xs_connect scheduled xprt %p\n", xprt); 2504 2505 queue_delayed_work(xprtiod_workqueue, 2506 &transport->connect_worker, 2507 delay); 2508 } 2509 2510 /** 2511 * xs_local_print_stats - display AF_LOCAL socket-specifc stats 2512 * @xprt: rpc_xprt struct containing statistics 2513 * @seq: output file 2514 * 2515 */ 2516 static void xs_local_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 2517 { 2518 long idle_time = 0; 2519 2520 if (xprt_connected(xprt)) 2521 idle_time = (long)(jiffies - xprt->last_used) / HZ; 2522 2523 seq_printf(seq, "\txprt:\tlocal %lu %lu %lu %ld %lu %lu %lu " 2524 "%llu %llu %lu %llu %llu\n", 2525 xprt->stat.bind_count, 2526 xprt->stat.connect_count, 2527 xprt->stat.connect_time, 2528 idle_time, 2529 xprt->stat.sends, 2530 xprt->stat.recvs, 2531 xprt->stat.bad_xids, 2532 xprt->stat.req_u, 2533 xprt->stat.bklog_u, 2534 xprt->stat.max_slots, 2535 xprt->stat.sending_u, 2536 xprt->stat.pending_u); 2537 } 2538 2539 /** 2540 * xs_udp_print_stats - display UDP socket-specifc stats 2541 * @xprt: rpc_xprt struct containing statistics 2542 * @seq: output file 2543 * 2544 */ 2545 static void xs_udp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 2546 { 2547 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2548 2549 seq_printf(seq, "\txprt:\tudp %u %lu %lu %lu %lu %llu %llu " 2550 "%lu %llu %llu\n", 2551 transport->srcport, 2552 xprt->stat.bind_count, 2553 xprt->stat.sends, 2554 xprt->stat.recvs, 2555 xprt->stat.bad_xids, 2556 xprt->stat.req_u, 2557 xprt->stat.bklog_u, 2558 xprt->stat.max_slots, 2559 xprt->stat.sending_u, 2560 xprt->stat.pending_u); 2561 } 2562 2563 /** 2564 * xs_tcp_print_stats - display TCP socket-specifc stats 2565 * @xprt: rpc_xprt struct containing statistics 2566 * @seq: output file 2567 * 2568 */ 2569 static void xs_tcp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 2570 { 2571 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2572 long idle_time = 0; 2573 2574 if (xprt_connected(xprt)) 2575 idle_time = (long)(jiffies - xprt->last_used) / HZ; 2576 2577 seq_printf(seq, "\txprt:\ttcp %u %lu %lu %lu %ld %lu %lu %lu " 2578 "%llu %llu %lu %llu %llu\n", 2579 transport->srcport, 2580 xprt->stat.bind_count, 2581 xprt->stat.connect_count, 2582 xprt->stat.connect_time, 2583 idle_time, 2584 xprt->stat.sends, 2585 xprt->stat.recvs, 2586 xprt->stat.bad_xids, 2587 xprt->stat.req_u, 2588 xprt->stat.bklog_u, 2589 xprt->stat.max_slots, 2590 xprt->stat.sending_u, 2591 xprt->stat.pending_u); 2592 } 2593 2594 /* 2595 * Allocate a bunch of pages for a scratch buffer for the rpc code. The reason 2596 * we allocate pages instead doing a kmalloc like rpc_malloc is because we want 2597 * to use the server side send routines. 2598 */ 2599 static int bc_malloc(struct rpc_task *task) 2600 { 2601 struct rpc_rqst *rqst = task->tk_rqstp; 2602 size_t size = rqst->rq_callsize; 2603 struct page *page; 2604 struct rpc_buffer *buf; 2605 2606 if (size > PAGE_SIZE - sizeof(struct rpc_buffer)) { 2607 WARN_ONCE(1, "xprtsock: large bc buffer request (size %zu)\n", 2608 size); 2609 return -EINVAL; 2610 } 2611 2612 page = alloc_page(GFP_KERNEL); 2613 if (!page) 2614 return -ENOMEM; 2615 2616 buf = page_address(page); 2617 buf->len = PAGE_SIZE; 2618 2619 rqst->rq_buffer = buf->data; 2620 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize; 2621 return 0; 2622 } 2623 2624 /* 2625 * Free the space allocated in the bc_alloc routine 2626 */ 2627 static void bc_free(struct rpc_task *task) 2628 { 2629 void *buffer = task->tk_rqstp->rq_buffer; 2630 struct rpc_buffer *buf; 2631 2632 buf = container_of(buffer, struct rpc_buffer, data); 2633 free_page((unsigned long)buf); 2634 } 2635 2636 /* 2637 * Use the svc_sock to send the callback. Must be called with svsk->sk_mutex 2638 * held. Borrows heavily from svc_tcp_sendto and xs_tcp_send_request. 2639 */ 2640 static int bc_sendto(struct rpc_rqst *req) 2641 { 2642 int len; 2643 struct xdr_buf *xbufp = &req->rq_snd_buf; 2644 struct rpc_xprt *xprt = req->rq_xprt; 2645 struct sock_xprt *transport = 2646 container_of(xprt, struct sock_xprt, xprt); 2647 struct socket *sock = transport->sock; 2648 unsigned long headoff; 2649 unsigned long tailoff; 2650 2651 xs_encode_stream_record_marker(xbufp); 2652 2653 tailoff = (unsigned long)xbufp->tail[0].iov_base & ~PAGE_MASK; 2654 headoff = (unsigned long)xbufp->head[0].iov_base & ~PAGE_MASK; 2655 len = svc_send_common(sock, xbufp, 2656 virt_to_page(xbufp->head[0].iov_base), headoff, 2657 xbufp->tail[0].iov_base, tailoff); 2658 2659 if (len != xbufp->len) { 2660 printk(KERN_NOTICE "Error sending entire callback!\n"); 2661 len = -EAGAIN; 2662 } 2663 2664 return len; 2665 } 2666 2667 /* 2668 * The send routine. Borrows from svc_send 2669 */ 2670 static int bc_send_request(struct rpc_task *task) 2671 { 2672 struct rpc_rqst *req = task->tk_rqstp; 2673 struct svc_xprt *xprt; 2674 int len; 2675 2676 dprintk("sending request with xid: %08x\n", ntohl(req->rq_xid)); 2677 /* 2678 * Get the server socket associated with this callback xprt 2679 */ 2680 xprt = req->rq_xprt->bc_xprt; 2681 2682 /* 2683 * Grab the mutex to serialize data as the connection is shared 2684 * with the fore channel 2685 */ 2686 if (!mutex_trylock(&xprt->xpt_mutex)) { 2687 rpc_sleep_on(&xprt->xpt_bc_pending, task, NULL); 2688 if (!mutex_trylock(&xprt->xpt_mutex)) 2689 return -EAGAIN; 2690 rpc_wake_up_queued_task(&xprt->xpt_bc_pending, task); 2691 } 2692 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) 2693 len = -ENOTCONN; 2694 else 2695 len = bc_sendto(req); 2696 mutex_unlock(&xprt->xpt_mutex); 2697 2698 if (len > 0) 2699 len = 0; 2700 2701 return len; 2702 } 2703 2704 /* 2705 * The close routine. Since this is client initiated, we do nothing 2706 */ 2707 2708 static void bc_close(struct rpc_xprt *xprt) 2709 { 2710 } 2711 2712 /* 2713 * The xprt destroy routine. Again, because this connection is client 2714 * initiated, we do nothing 2715 */ 2716 2717 static void bc_destroy(struct rpc_xprt *xprt) 2718 { 2719 dprintk("RPC: bc_destroy xprt %p\n", xprt); 2720 2721 xs_xprt_free(xprt); 2722 module_put(THIS_MODULE); 2723 } 2724 2725 static struct rpc_xprt_ops xs_local_ops = { 2726 .reserve_xprt = xprt_reserve_xprt, 2727 .release_xprt = xs_tcp_release_xprt, 2728 .alloc_slot = xprt_alloc_slot, 2729 .rpcbind = xs_local_rpcbind, 2730 .set_port = xs_local_set_port, 2731 .connect = xs_local_connect, 2732 .buf_alloc = rpc_malloc, 2733 .buf_free = rpc_free, 2734 .send_request = xs_local_send_request, 2735 .set_retrans_timeout = xprt_set_retrans_timeout_def, 2736 .close = xs_close, 2737 .destroy = xs_destroy, 2738 .print_stats = xs_local_print_stats, 2739 .enable_swap = xs_enable_swap, 2740 .disable_swap = xs_disable_swap, 2741 }; 2742 2743 static struct rpc_xprt_ops xs_udp_ops = { 2744 .set_buffer_size = xs_udp_set_buffer_size, 2745 .reserve_xprt = xprt_reserve_xprt_cong, 2746 .release_xprt = xprt_release_xprt_cong, 2747 .alloc_slot = xprt_alloc_slot, 2748 .rpcbind = rpcb_getport_async, 2749 .set_port = xs_set_port, 2750 .connect = xs_connect, 2751 .buf_alloc = rpc_malloc, 2752 .buf_free = rpc_free, 2753 .send_request = xs_udp_send_request, 2754 .set_retrans_timeout = xprt_set_retrans_timeout_rtt, 2755 .timer = xs_udp_timer, 2756 .release_request = xprt_release_rqst_cong, 2757 .close = xs_close, 2758 .destroy = xs_destroy, 2759 .print_stats = xs_udp_print_stats, 2760 .enable_swap = xs_enable_swap, 2761 .disable_swap = xs_disable_swap, 2762 .inject_disconnect = xs_inject_disconnect, 2763 }; 2764 2765 static struct rpc_xprt_ops xs_tcp_ops = { 2766 .reserve_xprt = xprt_reserve_xprt, 2767 .release_xprt = xs_tcp_release_xprt, 2768 .alloc_slot = xprt_lock_and_alloc_slot, 2769 .rpcbind = rpcb_getport_async, 2770 .set_port = xs_set_port, 2771 .connect = xs_connect, 2772 .buf_alloc = rpc_malloc, 2773 .buf_free = rpc_free, 2774 .send_request = xs_tcp_send_request, 2775 .set_retrans_timeout = xprt_set_retrans_timeout_def, 2776 .close = xs_tcp_shutdown, 2777 .destroy = xs_destroy, 2778 .set_connect_timeout = xs_tcp_set_connect_timeout, 2779 .print_stats = xs_tcp_print_stats, 2780 .enable_swap = xs_enable_swap, 2781 .disable_swap = xs_disable_swap, 2782 .inject_disconnect = xs_inject_disconnect, 2783 #ifdef CONFIG_SUNRPC_BACKCHANNEL 2784 .bc_setup = xprt_setup_bc, 2785 .bc_up = xs_tcp_bc_up, 2786 .bc_maxpayload = xs_tcp_bc_maxpayload, 2787 .bc_free_rqst = xprt_free_bc_rqst, 2788 .bc_destroy = xprt_destroy_bc, 2789 #endif 2790 }; 2791 2792 /* 2793 * The rpc_xprt_ops for the server backchannel 2794 */ 2795 2796 static struct rpc_xprt_ops bc_tcp_ops = { 2797 .reserve_xprt = xprt_reserve_xprt, 2798 .release_xprt = xprt_release_xprt, 2799 .alloc_slot = xprt_alloc_slot, 2800 .buf_alloc = bc_malloc, 2801 .buf_free = bc_free, 2802 .send_request = bc_send_request, 2803 .set_retrans_timeout = xprt_set_retrans_timeout_def, 2804 .close = bc_close, 2805 .destroy = bc_destroy, 2806 .print_stats = xs_tcp_print_stats, 2807 .enable_swap = xs_enable_swap, 2808 .disable_swap = xs_disable_swap, 2809 .inject_disconnect = xs_inject_disconnect, 2810 }; 2811 2812 static int xs_init_anyaddr(const int family, struct sockaddr *sap) 2813 { 2814 static const struct sockaddr_in sin = { 2815 .sin_family = AF_INET, 2816 .sin_addr.s_addr = htonl(INADDR_ANY), 2817 }; 2818 static const struct sockaddr_in6 sin6 = { 2819 .sin6_family = AF_INET6, 2820 .sin6_addr = IN6ADDR_ANY_INIT, 2821 }; 2822 2823 switch (family) { 2824 case AF_LOCAL: 2825 break; 2826 case AF_INET: 2827 memcpy(sap, &sin, sizeof(sin)); 2828 break; 2829 case AF_INET6: 2830 memcpy(sap, &sin6, sizeof(sin6)); 2831 break; 2832 default: 2833 dprintk("RPC: %s: Bad address family\n", __func__); 2834 return -EAFNOSUPPORT; 2835 } 2836 return 0; 2837 } 2838 2839 static struct rpc_xprt *xs_setup_xprt(struct xprt_create *args, 2840 unsigned int slot_table_size, 2841 unsigned int max_slot_table_size) 2842 { 2843 struct rpc_xprt *xprt; 2844 struct sock_xprt *new; 2845 2846 if (args->addrlen > sizeof(xprt->addr)) { 2847 dprintk("RPC: xs_setup_xprt: address too large\n"); 2848 return ERR_PTR(-EBADF); 2849 } 2850 2851 xprt = xprt_alloc(args->net, sizeof(*new), slot_table_size, 2852 max_slot_table_size); 2853 if (xprt == NULL) { 2854 dprintk("RPC: xs_setup_xprt: couldn't allocate " 2855 "rpc_xprt\n"); 2856 return ERR_PTR(-ENOMEM); 2857 } 2858 2859 new = container_of(xprt, struct sock_xprt, xprt); 2860 mutex_init(&new->recv_mutex); 2861 memcpy(&xprt->addr, args->dstaddr, args->addrlen); 2862 xprt->addrlen = args->addrlen; 2863 if (args->srcaddr) 2864 memcpy(&new->srcaddr, args->srcaddr, args->addrlen); 2865 else { 2866 int err; 2867 err = xs_init_anyaddr(args->dstaddr->sa_family, 2868 (struct sockaddr *)&new->srcaddr); 2869 if (err != 0) { 2870 xprt_free(xprt); 2871 return ERR_PTR(err); 2872 } 2873 } 2874 2875 return xprt; 2876 } 2877 2878 static const struct rpc_timeout xs_local_default_timeout = { 2879 .to_initval = 10 * HZ, 2880 .to_maxval = 10 * HZ, 2881 .to_retries = 2, 2882 }; 2883 2884 /** 2885 * xs_setup_local - Set up transport to use an AF_LOCAL socket 2886 * @args: rpc transport creation arguments 2887 * 2888 * AF_LOCAL is a "tpi_cots_ord" transport, just like TCP 2889 */ 2890 static struct rpc_xprt *xs_setup_local(struct xprt_create *args) 2891 { 2892 struct sockaddr_un *sun = (struct sockaddr_un *)args->dstaddr; 2893 struct sock_xprt *transport; 2894 struct rpc_xprt *xprt; 2895 struct rpc_xprt *ret; 2896 2897 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 2898 xprt_max_tcp_slot_table_entries); 2899 if (IS_ERR(xprt)) 2900 return xprt; 2901 transport = container_of(xprt, struct sock_xprt, xprt); 2902 2903 xprt->prot = 0; 2904 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32); 2905 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 2906 2907 xprt->bind_timeout = XS_BIND_TO; 2908 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 2909 xprt->idle_timeout = XS_IDLE_DISC_TO; 2910 2911 xprt->ops = &xs_local_ops; 2912 xprt->timeout = &xs_local_default_timeout; 2913 2914 INIT_WORK(&transport->recv_worker, xs_local_data_receive_workfn); 2915 INIT_DELAYED_WORK(&transport->connect_worker, 2916 xs_dummy_setup_socket); 2917 2918 switch (sun->sun_family) { 2919 case AF_LOCAL: 2920 if (sun->sun_path[0] != '/') { 2921 dprintk("RPC: bad AF_LOCAL address: %s\n", 2922 sun->sun_path); 2923 ret = ERR_PTR(-EINVAL); 2924 goto out_err; 2925 } 2926 xprt_set_bound(xprt); 2927 xs_format_peer_addresses(xprt, "local", RPCBIND_NETID_LOCAL); 2928 ret = ERR_PTR(xs_local_setup_socket(transport)); 2929 if (ret) 2930 goto out_err; 2931 break; 2932 default: 2933 ret = ERR_PTR(-EAFNOSUPPORT); 2934 goto out_err; 2935 } 2936 2937 dprintk("RPC: set up xprt to %s via AF_LOCAL\n", 2938 xprt->address_strings[RPC_DISPLAY_ADDR]); 2939 2940 if (try_module_get(THIS_MODULE)) 2941 return xprt; 2942 ret = ERR_PTR(-EINVAL); 2943 out_err: 2944 xs_xprt_free(xprt); 2945 return ret; 2946 } 2947 2948 static const struct rpc_timeout xs_udp_default_timeout = { 2949 .to_initval = 5 * HZ, 2950 .to_maxval = 30 * HZ, 2951 .to_increment = 5 * HZ, 2952 .to_retries = 5, 2953 }; 2954 2955 /** 2956 * xs_setup_udp - Set up transport to use a UDP socket 2957 * @args: rpc transport creation arguments 2958 * 2959 */ 2960 static struct rpc_xprt *xs_setup_udp(struct xprt_create *args) 2961 { 2962 struct sockaddr *addr = args->dstaddr; 2963 struct rpc_xprt *xprt; 2964 struct sock_xprt *transport; 2965 struct rpc_xprt *ret; 2966 2967 xprt = xs_setup_xprt(args, xprt_udp_slot_table_entries, 2968 xprt_udp_slot_table_entries); 2969 if (IS_ERR(xprt)) 2970 return xprt; 2971 transport = container_of(xprt, struct sock_xprt, xprt); 2972 2973 xprt->prot = IPPROTO_UDP; 2974 xprt->tsh_size = 0; 2975 /* XXX: header size can vary due to auth type, IPv6, etc. */ 2976 xprt->max_payload = (1U << 16) - (MAX_HEADER << 3); 2977 2978 xprt->bind_timeout = XS_BIND_TO; 2979 xprt->reestablish_timeout = XS_UDP_REEST_TO; 2980 xprt->idle_timeout = XS_IDLE_DISC_TO; 2981 2982 xprt->ops = &xs_udp_ops; 2983 2984 xprt->timeout = &xs_udp_default_timeout; 2985 2986 INIT_WORK(&transport->recv_worker, xs_udp_data_receive_workfn); 2987 INIT_DELAYED_WORK(&transport->connect_worker, xs_udp_setup_socket); 2988 2989 switch (addr->sa_family) { 2990 case AF_INET: 2991 if (((struct sockaddr_in *)addr)->sin_port != htons(0)) 2992 xprt_set_bound(xprt); 2993 2994 xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP); 2995 break; 2996 case AF_INET6: 2997 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0)) 2998 xprt_set_bound(xprt); 2999 3000 xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP6); 3001 break; 3002 default: 3003 ret = ERR_PTR(-EAFNOSUPPORT); 3004 goto out_err; 3005 } 3006 3007 if (xprt_bound(xprt)) 3008 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 3009 xprt->address_strings[RPC_DISPLAY_ADDR], 3010 xprt->address_strings[RPC_DISPLAY_PORT], 3011 xprt->address_strings[RPC_DISPLAY_PROTO]); 3012 else 3013 dprintk("RPC: set up xprt to %s (autobind) via %s\n", 3014 xprt->address_strings[RPC_DISPLAY_ADDR], 3015 xprt->address_strings[RPC_DISPLAY_PROTO]); 3016 3017 if (try_module_get(THIS_MODULE)) 3018 return xprt; 3019 ret = ERR_PTR(-EINVAL); 3020 out_err: 3021 xs_xprt_free(xprt); 3022 return ret; 3023 } 3024 3025 static const struct rpc_timeout xs_tcp_default_timeout = { 3026 .to_initval = 60 * HZ, 3027 .to_maxval = 60 * HZ, 3028 .to_retries = 2, 3029 }; 3030 3031 /** 3032 * xs_setup_tcp - Set up transport to use a TCP socket 3033 * @args: rpc transport creation arguments 3034 * 3035 */ 3036 static struct rpc_xprt *xs_setup_tcp(struct xprt_create *args) 3037 { 3038 struct sockaddr *addr = args->dstaddr; 3039 struct rpc_xprt *xprt; 3040 struct sock_xprt *transport; 3041 struct rpc_xprt *ret; 3042 unsigned int max_slot_table_size = xprt_max_tcp_slot_table_entries; 3043 3044 if (args->flags & XPRT_CREATE_INFINITE_SLOTS) 3045 max_slot_table_size = RPC_MAX_SLOT_TABLE_LIMIT; 3046 3047 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 3048 max_slot_table_size); 3049 if (IS_ERR(xprt)) 3050 return xprt; 3051 transport = container_of(xprt, struct sock_xprt, xprt); 3052 3053 xprt->prot = IPPROTO_TCP; 3054 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32); 3055 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 3056 3057 xprt->bind_timeout = XS_BIND_TO; 3058 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 3059 xprt->idle_timeout = XS_IDLE_DISC_TO; 3060 3061 xprt->ops = &xs_tcp_ops; 3062 xprt->timeout = &xs_tcp_default_timeout; 3063 3064 xprt->max_reconnect_timeout = xprt->timeout->to_maxval; 3065 xprt->connect_timeout = xprt->timeout->to_initval * 3066 (xprt->timeout->to_retries + 1); 3067 3068 INIT_WORK(&transport->recv_worker, xs_tcp_data_receive_workfn); 3069 INIT_DELAYED_WORK(&transport->connect_worker, xs_tcp_setup_socket); 3070 3071 switch (addr->sa_family) { 3072 case AF_INET: 3073 if (((struct sockaddr_in *)addr)->sin_port != htons(0)) 3074 xprt_set_bound(xprt); 3075 3076 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP); 3077 break; 3078 case AF_INET6: 3079 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0)) 3080 xprt_set_bound(xprt); 3081 3082 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP6); 3083 break; 3084 default: 3085 ret = ERR_PTR(-EAFNOSUPPORT); 3086 goto out_err; 3087 } 3088 3089 if (xprt_bound(xprt)) 3090 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 3091 xprt->address_strings[RPC_DISPLAY_ADDR], 3092 xprt->address_strings[RPC_DISPLAY_PORT], 3093 xprt->address_strings[RPC_DISPLAY_PROTO]); 3094 else 3095 dprintk("RPC: set up xprt to %s (autobind) via %s\n", 3096 xprt->address_strings[RPC_DISPLAY_ADDR], 3097 xprt->address_strings[RPC_DISPLAY_PROTO]); 3098 3099 if (try_module_get(THIS_MODULE)) 3100 return xprt; 3101 ret = ERR_PTR(-EINVAL); 3102 out_err: 3103 xs_xprt_free(xprt); 3104 return ret; 3105 } 3106 3107 /** 3108 * xs_setup_bc_tcp - Set up transport to use a TCP backchannel socket 3109 * @args: rpc transport creation arguments 3110 * 3111 */ 3112 static struct rpc_xprt *xs_setup_bc_tcp(struct xprt_create *args) 3113 { 3114 struct sockaddr *addr = args->dstaddr; 3115 struct rpc_xprt *xprt; 3116 struct sock_xprt *transport; 3117 struct svc_sock *bc_sock; 3118 struct rpc_xprt *ret; 3119 3120 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 3121 xprt_tcp_slot_table_entries); 3122 if (IS_ERR(xprt)) 3123 return xprt; 3124 transport = container_of(xprt, struct sock_xprt, xprt); 3125 3126 xprt->prot = IPPROTO_TCP; 3127 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32); 3128 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 3129 xprt->timeout = &xs_tcp_default_timeout; 3130 3131 /* backchannel */ 3132 xprt_set_bound(xprt); 3133 xprt->bind_timeout = 0; 3134 xprt->reestablish_timeout = 0; 3135 xprt->idle_timeout = 0; 3136 3137 xprt->ops = &bc_tcp_ops; 3138 3139 switch (addr->sa_family) { 3140 case AF_INET: 3141 xs_format_peer_addresses(xprt, "tcp", 3142 RPCBIND_NETID_TCP); 3143 break; 3144 case AF_INET6: 3145 xs_format_peer_addresses(xprt, "tcp", 3146 RPCBIND_NETID_TCP6); 3147 break; 3148 default: 3149 ret = ERR_PTR(-EAFNOSUPPORT); 3150 goto out_err; 3151 } 3152 3153 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 3154 xprt->address_strings[RPC_DISPLAY_ADDR], 3155 xprt->address_strings[RPC_DISPLAY_PORT], 3156 xprt->address_strings[RPC_DISPLAY_PROTO]); 3157 3158 /* 3159 * Once we've associated a backchannel xprt with a connection, 3160 * we want to keep it around as long as the connection lasts, 3161 * in case we need to start using it for a backchannel again; 3162 * this reference won't be dropped until bc_xprt is destroyed. 3163 */ 3164 xprt_get(xprt); 3165 args->bc_xprt->xpt_bc_xprt = xprt; 3166 xprt->bc_xprt = args->bc_xprt; 3167 bc_sock = container_of(args->bc_xprt, struct svc_sock, sk_xprt); 3168 transport->sock = bc_sock->sk_sock; 3169 transport->inet = bc_sock->sk_sk; 3170 3171 /* 3172 * Since we don't want connections for the backchannel, we set 3173 * the xprt status to connected 3174 */ 3175 xprt_set_connected(xprt); 3176 3177 if (try_module_get(THIS_MODULE)) 3178 return xprt; 3179 3180 args->bc_xprt->xpt_bc_xprt = NULL; 3181 args->bc_xprt->xpt_bc_xps = NULL; 3182 xprt_put(xprt); 3183 ret = ERR_PTR(-EINVAL); 3184 out_err: 3185 xs_xprt_free(xprt); 3186 return ret; 3187 } 3188 3189 static struct xprt_class xs_local_transport = { 3190 .list = LIST_HEAD_INIT(xs_local_transport.list), 3191 .name = "named UNIX socket", 3192 .owner = THIS_MODULE, 3193 .ident = XPRT_TRANSPORT_LOCAL, 3194 .setup = xs_setup_local, 3195 }; 3196 3197 static struct xprt_class xs_udp_transport = { 3198 .list = LIST_HEAD_INIT(xs_udp_transport.list), 3199 .name = "udp", 3200 .owner = THIS_MODULE, 3201 .ident = XPRT_TRANSPORT_UDP, 3202 .setup = xs_setup_udp, 3203 }; 3204 3205 static struct xprt_class xs_tcp_transport = { 3206 .list = LIST_HEAD_INIT(xs_tcp_transport.list), 3207 .name = "tcp", 3208 .owner = THIS_MODULE, 3209 .ident = XPRT_TRANSPORT_TCP, 3210 .setup = xs_setup_tcp, 3211 }; 3212 3213 static struct xprt_class xs_bc_tcp_transport = { 3214 .list = LIST_HEAD_INIT(xs_bc_tcp_transport.list), 3215 .name = "tcp NFSv4.1 backchannel", 3216 .owner = THIS_MODULE, 3217 .ident = XPRT_TRANSPORT_BC_TCP, 3218 .setup = xs_setup_bc_tcp, 3219 }; 3220 3221 /** 3222 * init_socket_xprt - set up xprtsock's sysctls, register with RPC client 3223 * 3224 */ 3225 int init_socket_xprt(void) 3226 { 3227 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 3228 if (!sunrpc_table_header) 3229 sunrpc_table_header = register_sysctl_table(sunrpc_table); 3230 #endif 3231 3232 xprt_register_transport(&xs_local_transport); 3233 xprt_register_transport(&xs_udp_transport); 3234 xprt_register_transport(&xs_tcp_transport); 3235 xprt_register_transport(&xs_bc_tcp_transport); 3236 3237 return 0; 3238 } 3239 3240 /** 3241 * cleanup_socket_xprt - remove xprtsock's sysctls, unregister 3242 * 3243 */ 3244 void cleanup_socket_xprt(void) 3245 { 3246 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 3247 if (sunrpc_table_header) { 3248 unregister_sysctl_table(sunrpc_table_header); 3249 sunrpc_table_header = NULL; 3250 } 3251 #endif 3252 3253 xprt_unregister_transport(&xs_local_transport); 3254 xprt_unregister_transport(&xs_udp_transport); 3255 xprt_unregister_transport(&xs_tcp_transport); 3256 xprt_unregister_transport(&xs_bc_tcp_transport); 3257 } 3258 3259 static int param_set_uint_minmax(const char *val, 3260 const struct kernel_param *kp, 3261 unsigned int min, unsigned int max) 3262 { 3263 unsigned int num; 3264 int ret; 3265 3266 if (!val) 3267 return -EINVAL; 3268 ret = kstrtouint(val, 0, &num); 3269 if (ret) 3270 return ret; 3271 if (num < min || num > max) 3272 return -EINVAL; 3273 *((unsigned int *)kp->arg) = num; 3274 return 0; 3275 } 3276 3277 static int param_set_portnr(const char *val, const struct kernel_param *kp) 3278 { 3279 if (kp->arg == &xprt_min_resvport) 3280 return param_set_uint_minmax(val, kp, 3281 RPC_MIN_RESVPORT, 3282 xprt_max_resvport); 3283 return param_set_uint_minmax(val, kp, 3284 xprt_min_resvport, 3285 RPC_MAX_RESVPORT); 3286 } 3287 3288 static const struct kernel_param_ops param_ops_portnr = { 3289 .set = param_set_portnr, 3290 .get = param_get_uint, 3291 }; 3292 3293 #define param_check_portnr(name, p) \ 3294 __param_check(name, p, unsigned int); 3295 3296 module_param_named(min_resvport, xprt_min_resvport, portnr, 0644); 3297 module_param_named(max_resvport, xprt_max_resvport, portnr, 0644); 3298 3299 static int param_set_slot_table_size(const char *val, 3300 const struct kernel_param *kp) 3301 { 3302 return param_set_uint_minmax(val, kp, 3303 RPC_MIN_SLOT_TABLE, 3304 RPC_MAX_SLOT_TABLE); 3305 } 3306 3307 static const struct kernel_param_ops param_ops_slot_table_size = { 3308 .set = param_set_slot_table_size, 3309 .get = param_get_uint, 3310 }; 3311 3312 #define param_check_slot_table_size(name, p) \ 3313 __param_check(name, p, unsigned int); 3314 3315 static int param_set_max_slot_table_size(const char *val, 3316 const struct kernel_param *kp) 3317 { 3318 return param_set_uint_minmax(val, kp, 3319 RPC_MIN_SLOT_TABLE, 3320 RPC_MAX_SLOT_TABLE_LIMIT); 3321 } 3322 3323 static const struct kernel_param_ops param_ops_max_slot_table_size = { 3324 .set = param_set_max_slot_table_size, 3325 .get = param_get_uint, 3326 }; 3327 3328 #define param_check_max_slot_table_size(name, p) \ 3329 __param_check(name, p, unsigned int); 3330 3331 module_param_named(tcp_slot_table_entries, xprt_tcp_slot_table_entries, 3332 slot_table_size, 0644); 3333 module_param_named(tcp_max_slot_table_entries, xprt_max_tcp_slot_table_entries, 3334 max_slot_table_size, 0644); 3335 module_param_named(udp_slot_table_entries, xprt_udp_slot_table_entries, 3336 slot_table_size, 0644); 3337 3338