xref: /linux/net/sunrpc/xprtrdma/verbs.c (revision e0a37f85fc95e3f2550446316bc4a27d00d75993)
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * verbs.c
42  *
43  * Encapsulates the major functions managing:
44  *  o adapters
45  *  o endpoints
46  *  o connections
47  *  o buffer memory
48  */
49 
50 #include <linux/interrupt.h>
51 #include <linux/slab.h>
52 #include <linux/prefetch.h>
53 #include <linux/sunrpc/addr.h>
54 #include <asm/bitops.h>
55 #include <linux/module.h> /* try_module_get()/module_put() */
56 
57 #include "xprt_rdma.h"
58 
59 /*
60  * Globals/Macros
61  */
62 
63 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
64 # define RPCDBG_FACILITY	RPCDBG_TRANS
65 #endif
66 
67 /*
68  * internal functions
69  */
70 
71 /*
72  * handle replies in tasklet context, using a single, global list
73  * rdma tasklet function -- just turn around and call the func
74  * for all replies on the list
75  */
76 
77 static DEFINE_SPINLOCK(rpcrdma_tk_lock_g);
78 static LIST_HEAD(rpcrdma_tasklets_g);
79 
80 static void
81 rpcrdma_run_tasklet(unsigned long data)
82 {
83 	struct rpcrdma_rep *rep;
84 	unsigned long flags;
85 
86 	data = data;
87 	spin_lock_irqsave(&rpcrdma_tk_lock_g, flags);
88 	while (!list_empty(&rpcrdma_tasklets_g)) {
89 		rep = list_entry(rpcrdma_tasklets_g.next,
90 				 struct rpcrdma_rep, rr_list);
91 		list_del(&rep->rr_list);
92 		spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags);
93 
94 		rpcrdma_reply_handler(rep);
95 
96 		spin_lock_irqsave(&rpcrdma_tk_lock_g, flags);
97 	}
98 	spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags);
99 }
100 
101 static DECLARE_TASKLET(rpcrdma_tasklet_g, rpcrdma_run_tasklet, 0UL);
102 
103 static void
104 rpcrdma_schedule_tasklet(struct list_head *sched_list)
105 {
106 	unsigned long flags;
107 
108 	spin_lock_irqsave(&rpcrdma_tk_lock_g, flags);
109 	list_splice_tail(sched_list, &rpcrdma_tasklets_g);
110 	spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags);
111 	tasklet_schedule(&rpcrdma_tasklet_g);
112 }
113 
114 static void
115 rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context)
116 {
117 	struct rpcrdma_ep *ep = context;
118 
119 	pr_err("RPC:       %s: %s on device %s ep %p\n",
120 	       __func__, ib_event_msg(event->event),
121 		event->device->name, context);
122 	if (ep->rep_connected == 1) {
123 		ep->rep_connected = -EIO;
124 		rpcrdma_conn_func(ep);
125 		wake_up_all(&ep->rep_connect_wait);
126 	}
127 }
128 
129 static void
130 rpcrdma_cq_async_error_upcall(struct ib_event *event, void *context)
131 {
132 	struct rpcrdma_ep *ep = context;
133 
134 	pr_err("RPC:       %s: %s on device %s ep %p\n",
135 	       __func__, ib_event_msg(event->event),
136 		event->device->name, context);
137 	if (ep->rep_connected == 1) {
138 		ep->rep_connected = -EIO;
139 		rpcrdma_conn_func(ep);
140 		wake_up_all(&ep->rep_connect_wait);
141 	}
142 }
143 
144 static void
145 rpcrdma_sendcq_process_wc(struct ib_wc *wc)
146 {
147 	/* WARNING: Only wr_id and status are reliable at this point */
148 	if (wc->wr_id == RPCRDMA_IGNORE_COMPLETION) {
149 		if (wc->status != IB_WC_SUCCESS &&
150 		    wc->status != IB_WC_WR_FLUSH_ERR)
151 			pr_err("RPC:       %s: SEND: %s\n",
152 			       __func__, ib_wc_status_msg(wc->status));
153 	} else {
154 		struct rpcrdma_mw *r;
155 
156 		r = (struct rpcrdma_mw *)(unsigned long)wc->wr_id;
157 		r->mw_sendcompletion(wc);
158 	}
159 }
160 
161 static int
162 rpcrdma_sendcq_poll(struct ib_cq *cq, struct rpcrdma_ep *ep)
163 {
164 	struct ib_wc *wcs;
165 	int budget, count, rc;
166 
167 	budget = RPCRDMA_WC_BUDGET / RPCRDMA_POLLSIZE;
168 	do {
169 		wcs = ep->rep_send_wcs;
170 
171 		rc = ib_poll_cq(cq, RPCRDMA_POLLSIZE, wcs);
172 		if (rc <= 0)
173 			return rc;
174 
175 		count = rc;
176 		while (count-- > 0)
177 			rpcrdma_sendcq_process_wc(wcs++);
178 	} while (rc == RPCRDMA_POLLSIZE && --budget);
179 	return 0;
180 }
181 
182 /*
183  * Handle send, fast_reg_mr, and local_inv completions.
184  *
185  * Send events are typically suppressed and thus do not result
186  * in an upcall. Occasionally one is signaled, however. This
187  * prevents the provider's completion queue from wrapping and
188  * losing a completion.
189  */
190 static void
191 rpcrdma_sendcq_upcall(struct ib_cq *cq, void *cq_context)
192 {
193 	struct rpcrdma_ep *ep = (struct rpcrdma_ep *)cq_context;
194 	int rc;
195 
196 	rc = rpcrdma_sendcq_poll(cq, ep);
197 	if (rc) {
198 		dprintk("RPC:       %s: ib_poll_cq failed: %i\n",
199 			__func__, rc);
200 		return;
201 	}
202 
203 	rc = ib_req_notify_cq(cq,
204 			IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS);
205 	if (rc == 0)
206 		return;
207 	if (rc < 0) {
208 		dprintk("RPC:       %s: ib_req_notify_cq failed: %i\n",
209 			__func__, rc);
210 		return;
211 	}
212 
213 	rpcrdma_sendcq_poll(cq, ep);
214 }
215 
216 static void
217 rpcrdma_recvcq_process_wc(struct ib_wc *wc, struct list_head *sched_list)
218 {
219 	struct rpcrdma_rep *rep =
220 			(struct rpcrdma_rep *)(unsigned long)wc->wr_id;
221 
222 	/* WARNING: Only wr_id and status are reliable at this point */
223 	if (wc->status != IB_WC_SUCCESS)
224 		goto out_fail;
225 
226 	/* status == SUCCESS means all fields in wc are trustworthy */
227 	if (wc->opcode != IB_WC_RECV)
228 		return;
229 
230 	dprintk("RPC:       %s: rep %p opcode 'recv', length %u: success\n",
231 		__func__, rep, wc->byte_len);
232 
233 	rep->rr_len = wc->byte_len;
234 	ib_dma_sync_single_for_cpu(rep->rr_device,
235 				   rdmab_addr(rep->rr_rdmabuf),
236 				   rep->rr_len, DMA_FROM_DEVICE);
237 	prefetch(rdmab_to_msg(rep->rr_rdmabuf));
238 
239 out_schedule:
240 	list_add_tail(&rep->rr_list, sched_list);
241 	return;
242 out_fail:
243 	if (wc->status != IB_WC_WR_FLUSH_ERR)
244 		pr_err("RPC:       %s: rep %p: %s\n",
245 		       __func__, rep, ib_wc_status_msg(wc->status));
246 	rep->rr_len = ~0U;
247 	goto out_schedule;
248 }
249 
250 static int
251 rpcrdma_recvcq_poll(struct ib_cq *cq, struct rpcrdma_ep *ep)
252 {
253 	struct list_head sched_list;
254 	struct ib_wc *wcs;
255 	int budget, count, rc;
256 
257 	INIT_LIST_HEAD(&sched_list);
258 	budget = RPCRDMA_WC_BUDGET / RPCRDMA_POLLSIZE;
259 	do {
260 		wcs = ep->rep_recv_wcs;
261 
262 		rc = ib_poll_cq(cq, RPCRDMA_POLLSIZE, wcs);
263 		if (rc <= 0)
264 			goto out_schedule;
265 
266 		count = rc;
267 		while (count-- > 0)
268 			rpcrdma_recvcq_process_wc(wcs++, &sched_list);
269 	} while (rc == RPCRDMA_POLLSIZE && --budget);
270 	rc = 0;
271 
272 out_schedule:
273 	rpcrdma_schedule_tasklet(&sched_list);
274 	return rc;
275 }
276 
277 /*
278  * Handle receive completions.
279  *
280  * It is reentrant but processes single events in order to maintain
281  * ordering of receives to keep server credits.
282  *
283  * It is the responsibility of the scheduled tasklet to return
284  * recv buffers to the pool. NOTE: this affects synchronization of
285  * connection shutdown. That is, the structures required for
286  * the completion of the reply handler must remain intact until
287  * all memory has been reclaimed.
288  */
289 static void
290 rpcrdma_recvcq_upcall(struct ib_cq *cq, void *cq_context)
291 {
292 	struct rpcrdma_ep *ep = (struct rpcrdma_ep *)cq_context;
293 	int rc;
294 
295 	rc = rpcrdma_recvcq_poll(cq, ep);
296 	if (rc) {
297 		dprintk("RPC:       %s: ib_poll_cq failed: %i\n",
298 			__func__, rc);
299 		return;
300 	}
301 
302 	rc = ib_req_notify_cq(cq,
303 			IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS);
304 	if (rc == 0)
305 		return;
306 	if (rc < 0) {
307 		dprintk("RPC:       %s: ib_req_notify_cq failed: %i\n",
308 			__func__, rc);
309 		return;
310 	}
311 
312 	rpcrdma_recvcq_poll(cq, ep);
313 }
314 
315 static void
316 rpcrdma_flush_cqs(struct rpcrdma_ep *ep)
317 {
318 	struct ib_wc wc;
319 	LIST_HEAD(sched_list);
320 
321 	while (ib_poll_cq(ep->rep_attr.recv_cq, 1, &wc) > 0)
322 		rpcrdma_recvcq_process_wc(&wc, &sched_list);
323 	if (!list_empty(&sched_list))
324 		rpcrdma_schedule_tasklet(&sched_list);
325 	while (ib_poll_cq(ep->rep_attr.send_cq, 1, &wc) > 0)
326 		rpcrdma_sendcq_process_wc(&wc);
327 }
328 
329 static int
330 rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event)
331 {
332 	struct rpcrdma_xprt *xprt = id->context;
333 	struct rpcrdma_ia *ia = &xprt->rx_ia;
334 	struct rpcrdma_ep *ep = &xprt->rx_ep;
335 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
336 	struct sockaddr *sap = (struct sockaddr *)&ep->rep_remote_addr;
337 #endif
338 	struct ib_qp_attr *attr = &ia->ri_qp_attr;
339 	struct ib_qp_init_attr *iattr = &ia->ri_qp_init_attr;
340 	int connstate = 0;
341 
342 	switch (event->event) {
343 	case RDMA_CM_EVENT_ADDR_RESOLVED:
344 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
345 		ia->ri_async_rc = 0;
346 		complete(&ia->ri_done);
347 		break;
348 	case RDMA_CM_EVENT_ADDR_ERROR:
349 		ia->ri_async_rc = -EHOSTUNREACH;
350 		dprintk("RPC:       %s: CM address resolution error, ep 0x%p\n",
351 			__func__, ep);
352 		complete(&ia->ri_done);
353 		break;
354 	case RDMA_CM_EVENT_ROUTE_ERROR:
355 		ia->ri_async_rc = -ENETUNREACH;
356 		dprintk("RPC:       %s: CM route resolution error, ep 0x%p\n",
357 			__func__, ep);
358 		complete(&ia->ri_done);
359 		break;
360 	case RDMA_CM_EVENT_ESTABLISHED:
361 		connstate = 1;
362 		ib_query_qp(ia->ri_id->qp, attr,
363 			    IB_QP_MAX_QP_RD_ATOMIC | IB_QP_MAX_DEST_RD_ATOMIC,
364 			    iattr);
365 		dprintk("RPC:       %s: %d responder resources"
366 			" (%d initiator)\n",
367 			__func__, attr->max_dest_rd_atomic,
368 			attr->max_rd_atomic);
369 		goto connected;
370 	case RDMA_CM_EVENT_CONNECT_ERROR:
371 		connstate = -ENOTCONN;
372 		goto connected;
373 	case RDMA_CM_EVENT_UNREACHABLE:
374 		connstate = -ENETDOWN;
375 		goto connected;
376 	case RDMA_CM_EVENT_REJECTED:
377 		connstate = -ECONNREFUSED;
378 		goto connected;
379 	case RDMA_CM_EVENT_DISCONNECTED:
380 		connstate = -ECONNABORTED;
381 		goto connected;
382 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
383 		connstate = -ENODEV;
384 connected:
385 		dprintk("RPC:       %s: %sconnected\n",
386 					__func__, connstate > 0 ? "" : "dis");
387 		ep->rep_connected = connstate;
388 		rpcrdma_conn_func(ep);
389 		wake_up_all(&ep->rep_connect_wait);
390 		/*FALLTHROUGH*/
391 	default:
392 		dprintk("RPC:       %s: %pIS:%u (ep 0x%p): %s\n",
393 			__func__, sap, rpc_get_port(sap), ep,
394 			rdma_event_msg(event->event));
395 		break;
396 	}
397 
398 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
399 	if (connstate == 1) {
400 		int ird = attr->max_dest_rd_atomic;
401 		int tird = ep->rep_remote_cma.responder_resources;
402 
403 		pr_info("rpcrdma: connection to %pIS:%u on %s, memreg '%s', %d credits, %d responders%s\n",
404 			sap, rpc_get_port(sap),
405 			ia->ri_device->name,
406 			ia->ri_ops->ro_displayname,
407 			xprt->rx_buf.rb_max_requests,
408 			ird, ird < 4 && ird < tird / 2 ? " (low!)" : "");
409 	} else if (connstate < 0) {
410 		pr_info("rpcrdma: connection to %pIS:%u closed (%d)\n",
411 			sap, rpc_get_port(sap), connstate);
412 	}
413 #endif
414 
415 	return 0;
416 }
417 
418 static void rpcrdma_destroy_id(struct rdma_cm_id *id)
419 {
420 	if (id) {
421 		module_put(id->device->owner);
422 		rdma_destroy_id(id);
423 	}
424 }
425 
426 static struct rdma_cm_id *
427 rpcrdma_create_id(struct rpcrdma_xprt *xprt,
428 			struct rpcrdma_ia *ia, struct sockaddr *addr)
429 {
430 	struct rdma_cm_id *id;
431 	int rc;
432 
433 	init_completion(&ia->ri_done);
434 
435 	id = rdma_create_id(rpcrdma_conn_upcall, xprt, RDMA_PS_TCP, IB_QPT_RC);
436 	if (IS_ERR(id)) {
437 		rc = PTR_ERR(id);
438 		dprintk("RPC:       %s: rdma_create_id() failed %i\n",
439 			__func__, rc);
440 		return id;
441 	}
442 
443 	ia->ri_async_rc = -ETIMEDOUT;
444 	rc = rdma_resolve_addr(id, NULL, addr, RDMA_RESOLVE_TIMEOUT);
445 	if (rc) {
446 		dprintk("RPC:       %s: rdma_resolve_addr() failed %i\n",
447 			__func__, rc);
448 		goto out;
449 	}
450 	wait_for_completion_interruptible_timeout(&ia->ri_done,
451 				msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1);
452 
453 	/* FIXME:
454 	 * Until xprtrdma supports DEVICE_REMOVAL, the provider must
455 	 * be pinned while there are active NFS/RDMA mounts to prevent
456 	 * hangs and crashes at umount time.
457 	 */
458 	if (!ia->ri_async_rc && !try_module_get(id->device->owner)) {
459 		dprintk("RPC:       %s: Failed to get device module\n",
460 			__func__);
461 		ia->ri_async_rc = -ENODEV;
462 	}
463 	rc = ia->ri_async_rc;
464 	if (rc)
465 		goto out;
466 
467 	ia->ri_async_rc = -ETIMEDOUT;
468 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
469 	if (rc) {
470 		dprintk("RPC:       %s: rdma_resolve_route() failed %i\n",
471 			__func__, rc);
472 		goto put;
473 	}
474 	wait_for_completion_interruptible_timeout(&ia->ri_done,
475 				msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1);
476 	rc = ia->ri_async_rc;
477 	if (rc)
478 		goto put;
479 
480 	return id;
481 put:
482 	module_put(id->device->owner);
483 out:
484 	rdma_destroy_id(id);
485 	return ERR_PTR(rc);
486 }
487 
488 /*
489  * Drain any cq, prior to teardown.
490  */
491 static void
492 rpcrdma_clean_cq(struct ib_cq *cq)
493 {
494 	struct ib_wc wc;
495 	int count = 0;
496 
497 	while (1 == ib_poll_cq(cq, 1, &wc))
498 		++count;
499 
500 	if (count)
501 		dprintk("RPC:       %s: flushed %d events (last 0x%x)\n",
502 			__func__, count, wc.opcode);
503 }
504 
505 /*
506  * Exported functions.
507  */
508 
509 /*
510  * Open and initialize an Interface Adapter.
511  *  o initializes fields of struct rpcrdma_ia, including
512  *    interface and provider attributes and protection zone.
513  */
514 int
515 rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg)
516 {
517 	struct rpcrdma_ia *ia = &xprt->rx_ia;
518 	struct ib_device_attr *devattr = &ia->ri_devattr;
519 	int rc;
520 
521 	ia->ri_dma_mr = NULL;
522 
523 	ia->ri_id = rpcrdma_create_id(xprt, ia, addr);
524 	if (IS_ERR(ia->ri_id)) {
525 		rc = PTR_ERR(ia->ri_id);
526 		goto out1;
527 	}
528 	ia->ri_device = ia->ri_id->device;
529 
530 	ia->ri_pd = ib_alloc_pd(ia->ri_device);
531 	if (IS_ERR(ia->ri_pd)) {
532 		rc = PTR_ERR(ia->ri_pd);
533 		dprintk("RPC:       %s: ib_alloc_pd() failed %i\n",
534 			__func__, rc);
535 		goto out2;
536 	}
537 
538 	rc = ib_query_device(ia->ri_device, devattr);
539 	if (rc) {
540 		dprintk("RPC:       %s: ib_query_device failed %d\n",
541 			__func__, rc);
542 		goto out3;
543 	}
544 
545 	if (memreg == RPCRDMA_FRMR) {
546 		/* Requires both frmr reg and local dma lkey */
547 		if (((devattr->device_cap_flags &
548 		     (IB_DEVICE_MEM_MGT_EXTENSIONS|IB_DEVICE_LOCAL_DMA_LKEY)) !=
549 		    (IB_DEVICE_MEM_MGT_EXTENSIONS|IB_DEVICE_LOCAL_DMA_LKEY)) ||
550 		      (devattr->max_fast_reg_page_list_len == 0)) {
551 			dprintk("RPC:       %s: FRMR registration "
552 				"not supported by HCA\n", __func__);
553 			memreg = RPCRDMA_MTHCAFMR;
554 		}
555 	}
556 	if (memreg == RPCRDMA_MTHCAFMR) {
557 		if (!ia->ri_device->alloc_fmr) {
558 			dprintk("RPC:       %s: MTHCAFMR registration "
559 				"not supported by HCA\n", __func__);
560 			goto out3;
561 		}
562 	}
563 
564 	switch (memreg) {
565 	case RPCRDMA_FRMR:
566 		ia->ri_ops = &rpcrdma_frwr_memreg_ops;
567 		break;
568 	case RPCRDMA_ALLPHYSICAL:
569 		ia->ri_ops = &rpcrdma_physical_memreg_ops;
570 		break;
571 	case RPCRDMA_MTHCAFMR:
572 		ia->ri_ops = &rpcrdma_fmr_memreg_ops;
573 		break;
574 	default:
575 		printk(KERN_ERR "RPC: Unsupported memory "
576 				"registration mode: %d\n", memreg);
577 		rc = -ENOMEM;
578 		goto out3;
579 	}
580 	dprintk("RPC:       %s: memory registration strategy is '%s'\n",
581 		__func__, ia->ri_ops->ro_displayname);
582 
583 	rwlock_init(&ia->ri_qplock);
584 	return 0;
585 
586 out3:
587 	ib_dealloc_pd(ia->ri_pd);
588 	ia->ri_pd = NULL;
589 out2:
590 	rpcrdma_destroy_id(ia->ri_id);
591 	ia->ri_id = NULL;
592 out1:
593 	return rc;
594 }
595 
596 /*
597  * Clean up/close an IA.
598  *   o if event handles and PD have been initialized, free them.
599  *   o close the IA
600  */
601 void
602 rpcrdma_ia_close(struct rpcrdma_ia *ia)
603 {
604 	dprintk("RPC:       %s: entering\n", __func__);
605 	if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) {
606 		if (ia->ri_id->qp)
607 			rdma_destroy_qp(ia->ri_id);
608 		rpcrdma_destroy_id(ia->ri_id);
609 		ia->ri_id = NULL;
610 	}
611 
612 	/* If the pd is still busy, xprtrdma missed freeing a resource */
613 	if (ia->ri_pd && !IS_ERR(ia->ri_pd))
614 		ib_dealloc_pd(ia->ri_pd);
615 }
616 
617 /*
618  * Create unconnected endpoint.
619  */
620 int
621 rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia,
622 				struct rpcrdma_create_data_internal *cdata)
623 {
624 	struct ib_device_attr *devattr = &ia->ri_devattr;
625 	struct ib_cq *sendcq, *recvcq;
626 	struct ib_cq_init_attr cq_attr = {};
627 	int rc, err;
628 
629 	if (devattr->max_sge < RPCRDMA_MAX_IOVS) {
630 		dprintk("RPC:       %s: insufficient sge's available\n",
631 			__func__);
632 		return -ENOMEM;
633 	}
634 
635 	/* check provider's send/recv wr limits */
636 	if (cdata->max_requests > devattr->max_qp_wr)
637 		cdata->max_requests = devattr->max_qp_wr;
638 
639 	ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall;
640 	ep->rep_attr.qp_context = ep;
641 	ep->rep_attr.srq = NULL;
642 	ep->rep_attr.cap.max_send_wr = cdata->max_requests;
643 	rc = ia->ri_ops->ro_open(ia, ep, cdata);
644 	if (rc)
645 		return rc;
646 	ep->rep_attr.cap.max_recv_wr = cdata->max_requests;
647 	ep->rep_attr.cap.max_send_sge = RPCRDMA_MAX_IOVS;
648 	ep->rep_attr.cap.max_recv_sge = 1;
649 	ep->rep_attr.cap.max_inline_data = 0;
650 	ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
651 	ep->rep_attr.qp_type = IB_QPT_RC;
652 	ep->rep_attr.port_num = ~0;
653 
654 	dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
655 		"iovs: send %d recv %d\n",
656 		__func__,
657 		ep->rep_attr.cap.max_send_wr,
658 		ep->rep_attr.cap.max_recv_wr,
659 		ep->rep_attr.cap.max_send_sge,
660 		ep->rep_attr.cap.max_recv_sge);
661 
662 	/* set trigger for requesting send completion */
663 	ep->rep_cqinit = ep->rep_attr.cap.max_send_wr/2 - 1;
664 	if (ep->rep_cqinit > RPCRDMA_MAX_UNSIGNALED_SENDS)
665 		ep->rep_cqinit = RPCRDMA_MAX_UNSIGNALED_SENDS;
666 	else if (ep->rep_cqinit <= 2)
667 		ep->rep_cqinit = 0;
668 	INIT_CQCOUNT(ep);
669 	init_waitqueue_head(&ep->rep_connect_wait);
670 	INIT_DELAYED_WORK(&ep->rep_connect_worker, rpcrdma_connect_worker);
671 
672 	cq_attr.cqe = ep->rep_attr.cap.max_send_wr + 1;
673 	sendcq = ib_create_cq(ia->ri_device, rpcrdma_sendcq_upcall,
674 			      rpcrdma_cq_async_error_upcall, ep, &cq_attr);
675 	if (IS_ERR(sendcq)) {
676 		rc = PTR_ERR(sendcq);
677 		dprintk("RPC:       %s: failed to create send CQ: %i\n",
678 			__func__, rc);
679 		goto out1;
680 	}
681 
682 	rc = ib_req_notify_cq(sendcq, IB_CQ_NEXT_COMP);
683 	if (rc) {
684 		dprintk("RPC:       %s: ib_req_notify_cq failed: %i\n",
685 			__func__, rc);
686 		goto out2;
687 	}
688 
689 	cq_attr.cqe = ep->rep_attr.cap.max_recv_wr + 1;
690 	recvcq = ib_create_cq(ia->ri_device, rpcrdma_recvcq_upcall,
691 			      rpcrdma_cq_async_error_upcall, ep, &cq_attr);
692 	if (IS_ERR(recvcq)) {
693 		rc = PTR_ERR(recvcq);
694 		dprintk("RPC:       %s: failed to create recv CQ: %i\n",
695 			__func__, rc);
696 		goto out2;
697 	}
698 
699 	rc = ib_req_notify_cq(recvcq, IB_CQ_NEXT_COMP);
700 	if (rc) {
701 		dprintk("RPC:       %s: ib_req_notify_cq failed: %i\n",
702 			__func__, rc);
703 		ib_destroy_cq(recvcq);
704 		goto out2;
705 	}
706 
707 	ep->rep_attr.send_cq = sendcq;
708 	ep->rep_attr.recv_cq = recvcq;
709 
710 	/* Initialize cma parameters */
711 
712 	/* RPC/RDMA does not use private data */
713 	ep->rep_remote_cma.private_data = NULL;
714 	ep->rep_remote_cma.private_data_len = 0;
715 
716 	/* Client offers RDMA Read but does not initiate */
717 	ep->rep_remote_cma.initiator_depth = 0;
718 	if (devattr->max_qp_rd_atom > 32)	/* arbitrary but <= 255 */
719 		ep->rep_remote_cma.responder_resources = 32;
720 	else
721 		ep->rep_remote_cma.responder_resources =
722 						devattr->max_qp_rd_atom;
723 
724 	ep->rep_remote_cma.retry_count = 7;
725 	ep->rep_remote_cma.flow_control = 0;
726 	ep->rep_remote_cma.rnr_retry_count = 0;
727 
728 	return 0;
729 
730 out2:
731 	err = ib_destroy_cq(sendcq);
732 	if (err)
733 		dprintk("RPC:       %s: ib_destroy_cq returned %i\n",
734 			__func__, err);
735 out1:
736 	if (ia->ri_dma_mr)
737 		ib_dereg_mr(ia->ri_dma_mr);
738 	return rc;
739 }
740 
741 /*
742  * rpcrdma_ep_destroy
743  *
744  * Disconnect and destroy endpoint. After this, the only
745  * valid operations on the ep are to free it (if dynamically
746  * allocated) or re-create it.
747  */
748 void
749 rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
750 {
751 	int rc;
752 
753 	dprintk("RPC:       %s: entering, connected is %d\n",
754 		__func__, ep->rep_connected);
755 
756 	cancel_delayed_work_sync(&ep->rep_connect_worker);
757 
758 	if (ia->ri_id->qp)
759 		rpcrdma_ep_disconnect(ep, ia);
760 
761 	rpcrdma_clean_cq(ep->rep_attr.recv_cq);
762 	rpcrdma_clean_cq(ep->rep_attr.send_cq);
763 
764 	if (ia->ri_id->qp) {
765 		rdma_destroy_qp(ia->ri_id);
766 		ia->ri_id->qp = NULL;
767 	}
768 
769 	rc = ib_destroy_cq(ep->rep_attr.recv_cq);
770 	if (rc)
771 		dprintk("RPC:       %s: ib_destroy_cq returned %i\n",
772 			__func__, rc);
773 
774 	rc = ib_destroy_cq(ep->rep_attr.send_cq);
775 	if (rc)
776 		dprintk("RPC:       %s: ib_destroy_cq returned %i\n",
777 			__func__, rc);
778 
779 	if (ia->ri_dma_mr) {
780 		rc = ib_dereg_mr(ia->ri_dma_mr);
781 		dprintk("RPC:       %s: ib_dereg_mr returned %i\n",
782 			__func__, rc);
783 	}
784 }
785 
786 /*
787  * Connect unconnected endpoint.
788  */
789 int
790 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
791 {
792 	struct rdma_cm_id *id, *old;
793 	int rc = 0;
794 	int retry_count = 0;
795 
796 	if (ep->rep_connected != 0) {
797 		struct rpcrdma_xprt *xprt;
798 retry:
799 		dprintk("RPC:       %s: reconnecting...\n", __func__);
800 
801 		rpcrdma_ep_disconnect(ep, ia);
802 		rpcrdma_flush_cqs(ep);
803 
804 		xprt = container_of(ia, struct rpcrdma_xprt, rx_ia);
805 		id = rpcrdma_create_id(xprt, ia,
806 				(struct sockaddr *)&xprt->rx_data.addr);
807 		if (IS_ERR(id)) {
808 			rc = -EHOSTUNREACH;
809 			goto out;
810 		}
811 		/* TEMP TEMP TEMP - fail if new device:
812 		 * Deregister/remarshal *all* requests!
813 		 * Close and recreate adapter, pd, etc!
814 		 * Re-determine all attributes still sane!
815 		 * More stuff I haven't thought of!
816 		 * Rrrgh!
817 		 */
818 		if (ia->ri_device != id->device) {
819 			printk("RPC:       %s: can't reconnect on "
820 				"different device!\n", __func__);
821 			rpcrdma_destroy_id(id);
822 			rc = -ENETUNREACH;
823 			goto out;
824 		}
825 		/* END TEMP */
826 		rc = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr);
827 		if (rc) {
828 			dprintk("RPC:       %s: rdma_create_qp failed %i\n",
829 				__func__, rc);
830 			rpcrdma_destroy_id(id);
831 			rc = -ENETUNREACH;
832 			goto out;
833 		}
834 
835 		write_lock(&ia->ri_qplock);
836 		old = ia->ri_id;
837 		ia->ri_id = id;
838 		write_unlock(&ia->ri_qplock);
839 
840 		rdma_destroy_qp(old);
841 		rpcrdma_destroy_id(old);
842 	} else {
843 		dprintk("RPC:       %s: connecting...\n", __func__);
844 		rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
845 		if (rc) {
846 			dprintk("RPC:       %s: rdma_create_qp failed %i\n",
847 				__func__, rc);
848 			/* do not update ep->rep_connected */
849 			return -ENETUNREACH;
850 		}
851 	}
852 
853 	ep->rep_connected = 0;
854 
855 	rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
856 	if (rc) {
857 		dprintk("RPC:       %s: rdma_connect() failed with %i\n",
858 				__func__, rc);
859 		goto out;
860 	}
861 
862 	wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
863 
864 	/*
865 	 * Check state. A non-peer reject indicates no listener
866 	 * (ECONNREFUSED), which may be a transient state. All
867 	 * others indicate a transport condition which has already
868 	 * undergone a best-effort.
869 	 */
870 	if (ep->rep_connected == -ECONNREFUSED &&
871 	    ++retry_count <= RDMA_CONNECT_RETRY_MAX) {
872 		dprintk("RPC:       %s: non-peer_reject, retry\n", __func__);
873 		goto retry;
874 	}
875 	if (ep->rep_connected <= 0) {
876 		/* Sometimes, the only way to reliably connect to remote
877 		 * CMs is to use same nonzero values for ORD and IRD. */
878 		if (retry_count++ <= RDMA_CONNECT_RETRY_MAX + 1 &&
879 		    (ep->rep_remote_cma.responder_resources == 0 ||
880 		     ep->rep_remote_cma.initiator_depth !=
881 				ep->rep_remote_cma.responder_resources)) {
882 			if (ep->rep_remote_cma.responder_resources == 0)
883 				ep->rep_remote_cma.responder_resources = 1;
884 			ep->rep_remote_cma.initiator_depth =
885 				ep->rep_remote_cma.responder_resources;
886 			goto retry;
887 		}
888 		rc = ep->rep_connected;
889 	} else {
890 		dprintk("RPC:       %s: connected\n", __func__);
891 	}
892 
893 out:
894 	if (rc)
895 		ep->rep_connected = rc;
896 	return rc;
897 }
898 
899 /*
900  * rpcrdma_ep_disconnect
901  *
902  * This is separate from destroy to facilitate the ability
903  * to reconnect without recreating the endpoint.
904  *
905  * This call is not reentrant, and must not be made in parallel
906  * on the same endpoint.
907  */
908 void
909 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
910 {
911 	int rc;
912 
913 	rpcrdma_flush_cqs(ep);
914 	rc = rdma_disconnect(ia->ri_id);
915 	if (!rc) {
916 		/* returns without wait if not connected */
917 		wait_event_interruptible(ep->rep_connect_wait,
918 							ep->rep_connected != 1);
919 		dprintk("RPC:       %s: after wait, %sconnected\n", __func__,
920 			(ep->rep_connected == 1) ? "still " : "dis");
921 	} else {
922 		dprintk("RPC:       %s: rdma_disconnect %i\n", __func__, rc);
923 		ep->rep_connected = rc;
924 	}
925 }
926 
927 static struct rpcrdma_req *
928 rpcrdma_create_req(struct rpcrdma_xprt *r_xprt)
929 {
930 	struct rpcrdma_req *req;
931 
932 	req = kzalloc(sizeof(*req), GFP_KERNEL);
933 	if (req == NULL)
934 		return ERR_PTR(-ENOMEM);
935 
936 	req->rl_buffer = &r_xprt->rx_buf;
937 	return req;
938 }
939 
940 static struct rpcrdma_rep *
941 rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt)
942 {
943 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
944 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
945 	struct rpcrdma_rep *rep;
946 	int rc;
947 
948 	rc = -ENOMEM;
949 	rep = kzalloc(sizeof(*rep), GFP_KERNEL);
950 	if (rep == NULL)
951 		goto out;
952 
953 	rep->rr_rdmabuf = rpcrdma_alloc_regbuf(ia, cdata->inline_rsize,
954 					       GFP_KERNEL);
955 	if (IS_ERR(rep->rr_rdmabuf)) {
956 		rc = PTR_ERR(rep->rr_rdmabuf);
957 		goto out_free;
958 	}
959 
960 	rep->rr_device = ia->ri_device;
961 	rep->rr_rxprt = r_xprt;
962 	return rep;
963 
964 out_free:
965 	kfree(rep);
966 out:
967 	return ERR_PTR(rc);
968 }
969 
970 int
971 rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
972 {
973 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
974 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
975 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
976 	char *p;
977 	size_t len;
978 	int i, rc;
979 
980 	buf->rb_max_requests = cdata->max_requests;
981 	spin_lock_init(&buf->rb_lock);
982 
983 	/* Need to allocate:
984 	 *   1.  arrays for send and recv pointers
985 	 *   2.  arrays of struct rpcrdma_req to fill in pointers
986 	 *   3.  array of struct rpcrdma_rep for replies
987 	 * Send/recv buffers in req/rep need to be registered
988 	 */
989 	len = buf->rb_max_requests *
990 		(sizeof(struct rpcrdma_req *) + sizeof(struct rpcrdma_rep *));
991 
992 	p = kzalloc(len, GFP_KERNEL);
993 	if (p == NULL) {
994 		dprintk("RPC:       %s: req_t/rep_t/pad kzalloc(%zd) failed\n",
995 			__func__, len);
996 		rc = -ENOMEM;
997 		goto out;
998 	}
999 	buf->rb_pool = p;	/* for freeing it later */
1000 
1001 	buf->rb_send_bufs = (struct rpcrdma_req **) p;
1002 	p = (char *) &buf->rb_send_bufs[buf->rb_max_requests];
1003 	buf->rb_recv_bufs = (struct rpcrdma_rep **) p;
1004 	p = (char *) &buf->rb_recv_bufs[buf->rb_max_requests];
1005 
1006 	rc = ia->ri_ops->ro_init(r_xprt);
1007 	if (rc)
1008 		goto out;
1009 
1010 	for (i = 0; i < buf->rb_max_requests; i++) {
1011 		struct rpcrdma_req *req;
1012 		struct rpcrdma_rep *rep;
1013 
1014 		req = rpcrdma_create_req(r_xprt);
1015 		if (IS_ERR(req)) {
1016 			dprintk("RPC:       %s: request buffer %d alloc"
1017 				" failed\n", __func__, i);
1018 			rc = PTR_ERR(req);
1019 			goto out;
1020 		}
1021 		buf->rb_send_bufs[i] = req;
1022 
1023 		rep = rpcrdma_create_rep(r_xprt);
1024 		if (IS_ERR(rep)) {
1025 			dprintk("RPC:       %s: reply buffer %d alloc failed\n",
1026 				__func__, i);
1027 			rc = PTR_ERR(rep);
1028 			goto out;
1029 		}
1030 		buf->rb_recv_bufs[i] = rep;
1031 	}
1032 
1033 	return 0;
1034 out:
1035 	rpcrdma_buffer_destroy(buf);
1036 	return rc;
1037 }
1038 
1039 static void
1040 rpcrdma_destroy_rep(struct rpcrdma_ia *ia, struct rpcrdma_rep *rep)
1041 {
1042 	if (!rep)
1043 		return;
1044 
1045 	rpcrdma_free_regbuf(ia, rep->rr_rdmabuf);
1046 	kfree(rep);
1047 }
1048 
1049 static void
1050 rpcrdma_destroy_req(struct rpcrdma_ia *ia, struct rpcrdma_req *req)
1051 {
1052 	if (!req)
1053 		return;
1054 
1055 	rpcrdma_free_regbuf(ia, req->rl_sendbuf);
1056 	rpcrdma_free_regbuf(ia, req->rl_rdmabuf);
1057 	kfree(req);
1058 }
1059 
1060 void
1061 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1062 {
1063 	struct rpcrdma_ia *ia = rdmab_to_ia(buf);
1064 	int i;
1065 
1066 	/* clean up in reverse order from create
1067 	 *   1.  recv mr memory (mr free, then kfree)
1068 	 *   2.  send mr memory (mr free, then kfree)
1069 	 *   3.  MWs
1070 	 */
1071 	dprintk("RPC:       %s: entering\n", __func__);
1072 
1073 	for (i = 0; i < buf->rb_max_requests; i++) {
1074 		if (buf->rb_recv_bufs)
1075 			rpcrdma_destroy_rep(ia, buf->rb_recv_bufs[i]);
1076 		if (buf->rb_send_bufs)
1077 			rpcrdma_destroy_req(ia, buf->rb_send_bufs[i]);
1078 	}
1079 
1080 	ia->ri_ops->ro_destroy(buf);
1081 
1082 	kfree(buf->rb_pool);
1083 }
1084 
1085 struct rpcrdma_mw *
1086 rpcrdma_get_mw(struct rpcrdma_xprt *r_xprt)
1087 {
1088 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1089 	struct rpcrdma_mw *mw = NULL;
1090 
1091 	spin_lock(&buf->rb_mwlock);
1092 	if (!list_empty(&buf->rb_mws)) {
1093 		mw = list_first_entry(&buf->rb_mws,
1094 				      struct rpcrdma_mw, mw_list);
1095 		list_del_init(&mw->mw_list);
1096 	}
1097 	spin_unlock(&buf->rb_mwlock);
1098 
1099 	if (!mw)
1100 		pr_err("RPC:       %s: no MWs available\n", __func__);
1101 	return mw;
1102 }
1103 
1104 void
1105 rpcrdma_put_mw(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mw *mw)
1106 {
1107 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1108 
1109 	spin_lock(&buf->rb_mwlock);
1110 	list_add_tail(&mw->mw_list, &buf->rb_mws);
1111 	spin_unlock(&buf->rb_mwlock);
1112 }
1113 
1114 static void
1115 rpcrdma_buffer_put_sendbuf(struct rpcrdma_req *req, struct rpcrdma_buffer *buf)
1116 {
1117 	buf->rb_send_bufs[--buf->rb_send_index] = req;
1118 	req->rl_niovs = 0;
1119 	if (req->rl_reply) {
1120 		buf->rb_recv_bufs[--buf->rb_recv_index] = req->rl_reply;
1121 		req->rl_reply = NULL;
1122 	}
1123 }
1124 
1125 /*
1126  * Get a set of request/reply buffers.
1127  *
1128  * Reply buffer (if needed) is attached to send buffer upon return.
1129  * Rule:
1130  *    rb_send_index and rb_recv_index MUST always be pointing to the
1131  *    *next* available buffer (non-NULL). They are incremented after
1132  *    removing buffers, and decremented *before* returning them.
1133  */
1134 struct rpcrdma_req *
1135 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1136 {
1137 	struct rpcrdma_req *req;
1138 	unsigned long flags;
1139 
1140 	spin_lock_irqsave(&buffers->rb_lock, flags);
1141 
1142 	if (buffers->rb_send_index == buffers->rb_max_requests) {
1143 		spin_unlock_irqrestore(&buffers->rb_lock, flags);
1144 		dprintk("RPC:       %s: out of request buffers\n", __func__);
1145 		return ((struct rpcrdma_req *)NULL);
1146 	}
1147 
1148 	req = buffers->rb_send_bufs[buffers->rb_send_index];
1149 	if (buffers->rb_send_index < buffers->rb_recv_index) {
1150 		dprintk("RPC:       %s: %d extra receives outstanding (ok)\n",
1151 			__func__,
1152 			buffers->rb_recv_index - buffers->rb_send_index);
1153 		req->rl_reply = NULL;
1154 	} else {
1155 		req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index];
1156 		buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL;
1157 	}
1158 	buffers->rb_send_bufs[buffers->rb_send_index++] = NULL;
1159 
1160 	spin_unlock_irqrestore(&buffers->rb_lock, flags);
1161 	return req;
1162 }
1163 
1164 /*
1165  * Put request/reply buffers back into pool.
1166  * Pre-decrement counter/array index.
1167  */
1168 void
1169 rpcrdma_buffer_put(struct rpcrdma_req *req)
1170 {
1171 	struct rpcrdma_buffer *buffers = req->rl_buffer;
1172 	unsigned long flags;
1173 
1174 	spin_lock_irqsave(&buffers->rb_lock, flags);
1175 	rpcrdma_buffer_put_sendbuf(req, buffers);
1176 	spin_unlock_irqrestore(&buffers->rb_lock, flags);
1177 }
1178 
1179 /*
1180  * Recover reply buffers from pool.
1181  * This happens when recovering from error conditions.
1182  * Post-increment counter/array index.
1183  */
1184 void
1185 rpcrdma_recv_buffer_get(struct rpcrdma_req *req)
1186 {
1187 	struct rpcrdma_buffer *buffers = req->rl_buffer;
1188 	unsigned long flags;
1189 
1190 	spin_lock_irqsave(&buffers->rb_lock, flags);
1191 	if (buffers->rb_recv_index < buffers->rb_max_requests) {
1192 		req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index];
1193 		buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL;
1194 	}
1195 	spin_unlock_irqrestore(&buffers->rb_lock, flags);
1196 }
1197 
1198 /*
1199  * Put reply buffers back into pool when not attached to
1200  * request. This happens in error conditions.
1201  */
1202 void
1203 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1204 {
1205 	struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf;
1206 	unsigned long flags;
1207 
1208 	spin_lock_irqsave(&buffers->rb_lock, flags);
1209 	buffers->rb_recv_bufs[--buffers->rb_recv_index] = rep;
1210 	spin_unlock_irqrestore(&buffers->rb_lock, flags);
1211 }
1212 
1213 /*
1214  * Wrappers for internal-use kmalloc memory registration, used by buffer code.
1215  */
1216 
1217 void
1218 rpcrdma_mapping_error(struct rpcrdma_mr_seg *seg)
1219 {
1220 	dprintk("RPC:       map_one: offset %p iova %llx len %zu\n",
1221 		seg->mr_offset,
1222 		(unsigned long long)seg->mr_dma, seg->mr_dmalen);
1223 }
1224 
1225 /**
1226  * rpcrdma_alloc_regbuf - kmalloc and register memory for SEND/RECV buffers
1227  * @ia: controlling rpcrdma_ia
1228  * @size: size of buffer to be allocated, in bytes
1229  * @flags: GFP flags
1230  *
1231  * Returns pointer to private header of an area of internally
1232  * registered memory, or an ERR_PTR. The registered buffer follows
1233  * the end of the private header.
1234  *
1235  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1236  * receiving the payload of RDMA RECV operations. regbufs are not
1237  * used for RDMA READ/WRITE operations, thus are registered only for
1238  * LOCAL access.
1239  */
1240 struct rpcrdma_regbuf *
1241 rpcrdma_alloc_regbuf(struct rpcrdma_ia *ia, size_t size, gfp_t flags)
1242 {
1243 	struct rpcrdma_regbuf *rb;
1244 	struct ib_sge *iov;
1245 
1246 	rb = kmalloc(sizeof(*rb) + size, flags);
1247 	if (rb == NULL)
1248 		goto out;
1249 
1250 	iov = &rb->rg_iov;
1251 	iov->addr = ib_dma_map_single(ia->ri_device,
1252 				      (void *)rb->rg_base, size,
1253 				      DMA_BIDIRECTIONAL);
1254 	if (ib_dma_mapping_error(ia->ri_device, iov->addr))
1255 		goto out_free;
1256 
1257 	iov->length = size;
1258 	iov->lkey = ia->ri_pd->local_dma_lkey;
1259 	rb->rg_size = size;
1260 	rb->rg_owner = NULL;
1261 	return rb;
1262 
1263 out_free:
1264 	kfree(rb);
1265 out:
1266 	return ERR_PTR(-ENOMEM);
1267 }
1268 
1269 /**
1270  * rpcrdma_free_regbuf - deregister and free registered buffer
1271  * @ia: controlling rpcrdma_ia
1272  * @rb: regbuf to be deregistered and freed
1273  */
1274 void
1275 rpcrdma_free_regbuf(struct rpcrdma_ia *ia, struct rpcrdma_regbuf *rb)
1276 {
1277 	struct ib_sge *iov;
1278 
1279 	if (!rb)
1280 		return;
1281 
1282 	iov = &rb->rg_iov;
1283 	ib_dma_unmap_single(ia->ri_device,
1284 			    iov->addr, iov->length, DMA_BIDIRECTIONAL);
1285 	kfree(rb);
1286 }
1287 
1288 /*
1289  * Prepost any receive buffer, then post send.
1290  *
1291  * Receive buffer is donated to hardware, reclaimed upon recv completion.
1292  */
1293 int
1294 rpcrdma_ep_post(struct rpcrdma_ia *ia,
1295 		struct rpcrdma_ep *ep,
1296 		struct rpcrdma_req *req)
1297 {
1298 	struct ib_device *device = ia->ri_device;
1299 	struct ib_send_wr send_wr, *send_wr_fail;
1300 	struct rpcrdma_rep *rep = req->rl_reply;
1301 	struct ib_sge *iov = req->rl_send_iov;
1302 	int i, rc;
1303 
1304 	if (rep) {
1305 		rc = rpcrdma_ep_post_recv(ia, ep, rep);
1306 		if (rc)
1307 			goto out;
1308 		req->rl_reply = NULL;
1309 	}
1310 
1311 	send_wr.next = NULL;
1312 	send_wr.wr_id = RPCRDMA_IGNORE_COMPLETION;
1313 	send_wr.sg_list = iov;
1314 	send_wr.num_sge = req->rl_niovs;
1315 	send_wr.opcode = IB_WR_SEND;
1316 
1317 	for (i = 0; i < send_wr.num_sge; i++)
1318 		ib_dma_sync_single_for_device(device, iov[i].addr,
1319 					      iov[i].length, DMA_TO_DEVICE);
1320 	dprintk("RPC:       %s: posting %d s/g entries\n",
1321 		__func__, send_wr.num_sge);
1322 
1323 	if (DECR_CQCOUNT(ep) > 0)
1324 		send_wr.send_flags = 0;
1325 	else { /* Provider must take a send completion every now and then */
1326 		INIT_CQCOUNT(ep);
1327 		send_wr.send_flags = IB_SEND_SIGNALED;
1328 	}
1329 
1330 	rc = ib_post_send(ia->ri_id->qp, &send_wr, &send_wr_fail);
1331 	if (rc)
1332 		dprintk("RPC:       %s: ib_post_send returned %i\n", __func__,
1333 			rc);
1334 out:
1335 	return rc;
1336 }
1337 
1338 /*
1339  * (Re)post a receive buffer.
1340  */
1341 int
1342 rpcrdma_ep_post_recv(struct rpcrdma_ia *ia,
1343 		     struct rpcrdma_ep *ep,
1344 		     struct rpcrdma_rep *rep)
1345 {
1346 	struct ib_recv_wr recv_wr, *recv_wr_fail;
1347 	int rc;
1348 
1349 	recv_wr.next = NULL;
1350 	recv_wr.wr_id = (u64) (unsigned long) rep;
1351 	recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
1352 	recv_wr.num_sge = 1;
1353 
1354 	ib_dma_sync_single_for_cpu(ia->ri_device,
1355 				   rdmab_addr(rep->rr_rdmabuf),
1356 				   rdmab_length(rep->rr_rdmabuf),
1357 				   DMA_BIDIRECTIONAL);
1358 
1359 	rc = ib_post_recv(ia->ri_id->qp, &recv_wr, &recv_wr_fail);
1360 
1361 	if (rc)
1362 		dprintk("RPC:       %s: ib_post_recv returned %i\n", __func__,
1363 			rc);
1364 	return rc;
1365 }
1366 
1367 /* How many chunk list items fit within our inline buffers?
1368  */
1369 unsigned int
1370 rpcrdma_max_segments(struct rpcrdma_xprt *r_xprt)
1371 {
1372 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
1373 	int bytes, segments;
1374 
1375 	bytes = min_t(unsigned int, cdata->inline_wsize, cdata->inline_rsize);
1376 	bytes -= RPCRDMA_HDRLEN_MIN;
1377 	if (bytes < sizeof(struct rpcrdma_segment) * 2) {
1378 		pr_warn("RPC:       %s: inline threshold too small\n",
1379 			__func__);
1380 		return 0;
1381 	}
1382 
1383 	segments = 1 << (fls(bytes / sizeof(struct rpcrdma_segment)) - 1);
1384 	dprintk("RPC:       %s: max chunk list size = %d segments\n",
1385 		__func__, segments);
1386 	return segments;
1387 }
1388