xref: /linux/net/sunrpc/xprtrdma/verbs.c (revision a126eca844353360ebafa9088d22865cb8e022e3)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 /*
43  * verbs.c
44  *
45  * Encapsulates the major functions managing:
46  *  o adapters
47  *  o endpoints
48  *  o connections
49  *  o buffer memory
50  */
51 
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57 
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60 
61 #include <rdma/ib_cm.h>
62 
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65 
66 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt);
67 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt);
68 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
69 				       struct rpcrdma_sendctx *sc);
70 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt);
71 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
72 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep);
73 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
74 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
75 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
76 static void rpcrdma_ep_get(struct rpcrdma_ep *ep);
77 static int rpcrdma_ep_put(struct rpcrdma_ep *ep);
78 static struct rpcrdma_regbuf *
79 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction);
80 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
81 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
82 
83 /* Wait for outstanding transport work to finish. ib_drain_qp
84  * handles the drains in the wrong order for us, so open code
85  * them here.
86  */
87 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
88 {
89 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
90 	struct rdma_cm_id *id = ep->re_id;
91 
92 	/* Wait for rpcrdma_post_recvs() to leave its critical
93 	 * section.
94 	 */
95 	if (atomic_inc_return(&ep->re_receiving) > 1)
96 		wait_for_completion(&ep->re_done);
97 
98 	/* Flush Receives, then wait for deferred Reply work
99 	 * to complete.
100 	 */
101 	ib_drain_rq(id->qp);
102 
103 	/* Deferred Reply processing might have scheduled
104 	 * local invalidations.
105 	 */
106 	ib_drain_sq(id->qp);
107 
108 	rpcrdma_ep_put(ep);
109 }
110 
111 /* Ensure xprt_force_disconnect() is invoked exactly once when a
112  * connection is closed or lost. (The important thing is it needs
113  * to be invoked "at least" once).
114  */
115 void rpcrdma_force_disconnect(struct rpcrdma_ep *ep)
116 {
117 	if (atomic_add_unless(&ep->re_force_disconnect, 1, 1))
118 		xprt_force_disconnect(ep->re_xprt);
119 }
120 
121 /**
122  * rpcrdma_flush_disconnect - Disconnect on flushed completion
123  * @r_xprt: transport to disconnect
124  * @wc: work completion entry
125  *
126  * Must be called in process context.
127  */
128 void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc)
129 {
130 	if (wc->status != IB_WC_SUCCESS)
131 		rpcrdma_force_disconnect(r_xprt->rx_ep);
132 }
133 
134 /**
135  * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
136  * @cq:	completion queue
137  * @wc:	WCE for a completed Send WR
138  *
139  */
140 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
141 {
142 	struct ib_cqe *cqe = wc->wr_cqe;
143 	struct rpcrdma_sendctx *sc =
144 		container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
145 	struct rpcrdma_xprt *r_xprt = cq->cq_context;
146 
147 	/* WARNING: Only wr_cqe and status are reliable at this point */
148 	trace_xprtrdma_wc_send(wc, &sc->sc_cid);
149 	rpcrdma_sendctx_put_locked(r_xprt, sc);
150 	rpcrdma_flush_disconnect(r_xprt, wc);
151 }
152 
153 /**
154  * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
155  * @cq:	completion queue
156  * @wc:	WCE for a completed Receive WR
157  *
158  */
159 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
160 {
161 	struct ib_cqe *cqe = wc->wr_cqe;
162 	struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
163 					       rr_cqe);
164 	struct rpcrdma_xprt *r_xprt = cq->cq_context;
165 
166 	/* WARNING: Only wr_cqe and status are reliable at this point */
167 	trace_xprtrdma_wc_receive(wc, &rep->rr_cid);
168 	--r_xprt->rx_ep->re_receive_count;
169 	if (wc->status != IB_WC_SUCCESS)
170 		goto out_flushed;
171 
172 	/* status == SUCCESS means all fields in wc are trustworthy */
173 	rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
174 	rep->rr_wc_flags = wc->wc_flags;
175 	rep->rr_inv_rkey = wc->ex.invalidate_rkey;
176 
177 	ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
178 				   rdmab_addr(rep->rr_rdmabuf),
179 				   wc->byte_len, DMA_FROM_DEVICE);
180 
181 	rpcrdma_reply_handler(rep);
182 	return;
183 
184 out_flushed:
185 	rpcrdma_flush_disconnect(r_xprt, wc);
186 	rpcrdma_rep_put(&r_xprt->rx_buf, rep);
187 }
188 
189 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep,
190 				      struct rdma_conn_param *param)
191 {
192 	const struct rpcrdma_connect_private *pmsg = param->private_data;
193 	unsigned int rsize, wsize;
194 
195 	/* Default settings for RPC-over-RDMA Version One */
196 	rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
197 	wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
198 
199 	if (pmsg &&
200 	    pmsg->cp_magic == rpcrdma_cmp_magic &&
201 	    pmsg->cp_version == RPCRDMA_CMP_VERSION) {
202 		rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
203 		wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
204 	}
205 
206 	if (rsize < ep->re_inline_recv)
207 		ep->re_inline_recv = rsize;
208 	if (wsize < ep->re_inline_send)
209 		ep->re_inline_send = wsize;
210 
211 	rpcrdma_set_max_header_sizes(ep);
212 }
213 
214 /**
215  * rpcrdma_cm_event_handler - Handle RDMA CM events
216  * @id: rdma_cm_id on which an event has occurred
217  * @event: details of the event
218  *
219  * Called with @id's mutex held. Returns 1 if caller should
220  * destroy @id, otherwise 0.
221  */
222 static int
223 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
224 {
225 	struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr;
226 	struct rpcrdma_ep *ep = id->context;
227 
228 	might_sleep();
229 
230 	switch (event->event) {
231 	case RDMA_CM_EVENT_ADDR_RESOLVED:
232 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
233 		ep->re_async_rc = 0;
234 		complete(&ep->re_done);
235 		return 0;
236 	case RDMA_CM_EVENT_ADDR_ERROR:
237 		ep->re_async_rc = -EPROTO;
238 		complete(&ep->re_done);
239 		return 0;
240 	case RDMA_CM_EVENT_ROUTE_ERROR:
241 		ep->re_async_rc = -ENETUNREACH;
242 		complete(&ep->re_done);
243 		return 0;
244 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
245 		pr_info("rpcrdma: removing device %s for %pISpc\n",
246 			ep->re_id->device->name, sap);
247 		switch (xchg(&ep->re_connect_status, -ENODEV)) {
248 		case 0: goto wake_connect_worker;
249 		case 1: goto disconnected;
250 		}
251 		return 0;
252 	case RDMA_CM_EVENT_ADDR_CHANGE:
253 		ep->re_connect_status = -ENODEV;
254 		goto disconnected;
255 	case RDMA_CM_EVENT_ESTABLISHED:
256 		rpcrdma_ep_get(ep);
257 		ep->re_connect_status = 1;
258 		rpcrdma_update_cm_private(ep, &event->param.conn);
259 		trace_xprtrdma_inline_thresh(ep);
260 		wake_up_all(&ep->re_connect_wait);
261 		break;
262 	case RDMA_CM_EVENT_CONNECT_ERROR:
263 		ep->re_connect_status = -ENOTCONN;
264 		goto wake_connect_worker;
265 	case RDMA_CM_EVENT_UNREACHABLE:
266 		ep->re_connect_status = -ENETUNREACH;
267 		goto wake_connect_worker;
268 	case RDMA_CM_EVENT_REJECTED:
269 		ep->re_connect_status = -ECONNREFUSED;
270 		if (event->status == IB_CM_REJ_STALE_CONN)
271 			ep->re_connect_status = -ENOTCONN;
272 wake_connect_worker:
273 		wake_up_all(&ep->re_connect_wait);
274 		return 0;
275 	case RDMA_CM_EVENT_DISCONNECTED:
276 		ep->re_connect_status = -ECONNABORTED;
277 disconnected:
278 		rpcrdma_force_disconnect(ep);
279 		return rpcrdma_ep_put(ep);
280 	default:
281 		break;
282 	}
283 
284 	return 0;
285 }
286 
287 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt,
288 					    struct rpcrdma_ep *ep)
289 {
290 	unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
291 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
292 	struct rdma_cm_id *id;
293 	int rc;
294 
295 	init_completion(&ep->re_done);
296 
297 	id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep,
298 			    RDMA_PS_TCP, IB_QPT_RC);
299 	if (IS_ERR(id))
300 		return id;
301 
302 	ep->re_async_rc = -ETIMEDOUT;
303 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr,
304 			       RDMA_RESOLVE_TIMEOUT);
305 	if (rc)
306 		goto out;
307 	rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
308 	if (rc < 0)
309 		goto out;
310 
311 	rc = ep->re_async_rc;
312 	if (rc)
313 		goto out;
314 
315 	ep->re_async_rc = -ETIMEDOUT;
316 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
317 	if (rc)
318 		goto out;
319 	rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
320 	if (rc < 0)
321 		goto out;
322 	rc = ep->re_async_rc;
323 	if (rc)
324 		goto out;
325 
326 	return id;
327 
328 out:
329 	rdma_destroy_id(id);
330 	return ERR_PTR(rc);
331 }
332 
333 static void rpcrdma_ep_destroy(struct kref *kref)
334 {
335 	struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref);
336 
337 	if (ep->re_id->qp) {
338 		rdma_destroy_qp(ep->re_id);
339 		ep->re_id->qp = NULL;
340 	}
341 
342 	if (ep->re_attr.recv_cq)
343 		ib_free_cq(ep->re_attr.recv_cq);
344 	ep->re_attr.recv_cq = NULL;
345 	if (ep->re_attr.send_cq)
346 		ib_free_cq(ep->re_attr.send_cq);
347 	ep->re_attr.send_cq = NULL;
348 
349 	if (ep->re_pd)
350 		ib_dealloc_pd(ep->re_pd);
351 	ep->re_pd = NULL;
352 
353 	kfree(ep);
354 	module_put(THIS_MODULE);
355 }
356 
357 static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep)
358 {
359 	kref_get(&ep->re_kref);
360 }
361 
362 /* Returns:
363  *     %0 if @ep still has a positive kref count, or
364  *     %1 if @ep was destroyed successfully.
365  */
366 static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep)
367 {
368 	return kref_put(&ep->re_kref, rpcrdma_ep_destroy);
369 }
370 
371 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
372 {
373 	struct rpcrdma_connect_private *pmsg;
374 	struct ib_device *device;
375 	struct rdma_cm_id *id;
376 	struct rpcrdma_ep *ep;
377 	int rc;
378 
379 	ep = kzalloc(sizeof(*ep), XPRTRDMA_GFP_FLAGS);
380 	if (!ep)
381 		return -ENOTCONN;
382 	ep->re_xprt = &r_xprt->rx_xprt;
383 	kref_init(&ep->re_kref);
384 
385 	id = rpcrdma_create_id(r_xprt, ep);
386 	if (IS_ERR(id)) {
387 		kfree(ep);
388 		return PTR_ERR(id);
389 	}
390 	__module_get(THIS_MODULE);
391 	device = id->device;
392 	ep->re_id = id;
393 	reinit_completion(&ep->re_done);
394 
395 	ep->re_max_requests = r_xprt->rx_xprt.max_reqs;
396 	ep->re_inline_send = xprt_rdma_max_inline_write;
397 	ep->re_inline_recv = xprt_rdma_max_inline_read;
398 	rc = frwr_query_device(ep, device);
399 	if (rc)
400 		goto out_destroy;
401 
402 	r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests);
403 
404 	ep->re_attr.srq = NULL;
405 	ep->re_attr.cap.max_inline_data = 0;
406 	ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
407 	ep->re_attr.qp_type = IB_QPT_RC;
408 	ep->re_attr.port_num = ~0;
409 
410 	ep->re_send_batch = ep->re_max_requests >> 3;
411 	ep->re_send_count = ep->re_send_batch;
412 	init_waitqueue_head(&ep->re_connect_wait);
413 
414 	ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt,
415 					      ep->re_attr.cap.max_send_wr,
416 					      IB_POLL_WORKQUEUE);
417 	if (IS_ERR(ep->re_attr.send_cq)) {
418 		rc = PTR_ERR(ep->re_attr.send_cq);
419 		ep->re_attr.send_cq = NULL;
420 		goto out_destroy;
421 	}
422 
423 	ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt,
424 					      ep->re_attr.cap.max_recv_wr,
425 					      IB_POLL_WORKQUEUE);
426 	if (IS_ERR(ep->re_attr.recv_cq)) {
427 		rc = PTR_ERR(ep->re_attr.recv_cq);
428 		ep->re_attr.recv_cq = NULL;
429 		goto out_destroy;
430 	}
431 	ep->re_receive_count = 0;
432 
433 	/* Initialize cma parameters */
434 	memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma));
435 
436 	/* Prepare RDMA-CM private message */
437 	pmsg = &ep->re_cm_private;
438 	pmsg->cp_magic = rpcrdma_cmp_magic;
439 	pmsg->cp_version = RPCRDMA_CMP_VERSION;
440 	pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
441 	pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send);
442 	pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv);
443 	ep->re_remote_cma.private_data = pmsg;
444 	ep->re_remote_cma.private_data_len = sizeof(*pmsg);
445 
446 	/* Client offers RDMA Read but does not initiate */
447 	ep->re_remote_cma.initiator_depth = 0;
448 	ep->re_remote_cma.responder_resources =
449 		min_t(int, U8_MAX, device->attrs.max_qp_rd_atom);
450 
451 	/* Limit transport retries so client can detect server
452 	 * GID changes quickly. RPC layer handles re-establishing
453 	 * transport connection and retransmission.
454 	 */
455 	ep->re_remote_cma.retry_count = 6;
456 
457 	/* RPC-over-RDMA handles its own flow control. In addition,
458 	 * make all RNR NAKs visible so we know that RPC-over-RDMA
459 	 * flow control is working correctly (no NAKs should be seen).
460 	 */
461 	ep->re_remote_cma.flow_control = 0;
462 	ep->re_remote_cma.rnr_retry_count = 0;
463 
464 	ep->re_pd = ib_alloc_pd(device, 0);
465 	if (IS_ERR(ep->re_pd)) {
466 		rc = PTR_ERR(ep->re_pd);
467 		ep->re_pd = NULL;
468 		goto out_destroy;
469 	}
470 
471 	rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr);
472 	if (rc)
473 		goto out_destroy;
474 
475 	r_xprt->rx_ep = ep;
476 	return 0;
477 
478 out_destroy:
479 	rpcrdma_ep_put(ep);
480 	rdma_destroy_id(id);
481 	return rc;
482 }
483 
484 /**
485  * rpcrdma_xprt_connect - Connect an unconnected transport
486  * @r_xprt: controlling transport instance
487  *
488  * Returns 0 on success or a negative errno.
489  */
490 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt)
491 {
492 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
493 	struct rpcrdma_ep *ep;
494 	int rc;
495 
496 	rc = rpcrdma_ep_create(r_xprt);
497 	if (rc)
498 		return rc;
499 	ep = r_xprt->rx_ep;
500 
501 	xprt_clear_connected(xprt);
502 	rpcrdma_reset_cwnd(r_xprt);
503 
504 	/* Bump the ep's reference count while there are
505 	 * outstanding Receives.
506 	 */
507 	rpcrdma_ep_get(ep);
508 	rpcrdma_post_recvs(r_xprt, 1, true);
509 
510 	rc = rdma_connect(ep->re_id, &ep->re_remote_cma);
511 	if (rc)
512 		goto out;
513 
514 	if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
515 		xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
516 	wait_event_interruptible(ep->re_connect_wait,
517 				 ep->re_connect_status != 0);
518 	if (ep->re_connect_status <= 0) {
519 		rc = ep->re_connect_status;
520 		goto out;
521 	}
522 
523 	rc = rpcrdma_sendctxs_create(r_xprt);
524 	if (rc) {
525 		rc = -ENOTCONN;
526 		goto out;
527 	}
528 
529 	rc = rpcrdma_reqs_setup(r_xprt);
530 	if (rc) {
531 		rc = -ENOTCONN;
532 		goto out;
533 	}
534 	rpcrdma_mrs_create(r_xprt);
535 	frwr_wp_create(r_xprt);
536 
537 out:
538 	trace_xprtrdma_connect(r_xprt, rc);
539 	return rc;
540 }
541 
542 /**
543  * rpcrdma_xprt_disconnect - Disconnect underlying transport
544  * @r_xprt: controlling transport instance
545  *
546  * Caller serializes. Either the transport send lock is held,
547  * or we're being called to destroy the transport.
548  *
549  * On return, @r_xprt is completely divested of all hardware
550  * resources and prepared for the next ->connect operation.
551  */
552 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt)
553 {
554 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
555 	struct rdma_cm_id *id;
556 	int rc;
557 
558 	if (!ep)
559 		return;
560 
561 	id = ep->re_id;
562 	rc = rdma_disconnect(id);
563 	trace_xprtrdma_disconnect(r_xprt, rc);
564 
565 	rpcrdma_xprt_drain(r_xprt);
566 	rpcrdma_reps_unmap(r_xprt);
567 	rpcrdma_reqs_reset(r_xprt);
568 	rpcrdma_mrs_destroy(r_xprt);
569 	rpcrdma_sendctxs_destroy(r_xprt);
570 
571 	if (rpcrdma_ep_put(ep))
572 		rdma_destroy_id(id);
573 
574 	r_xprt->rx_ep = NULL;
575 }
576 
577 /* Fixed-size circular FIFO queue. This implementation is wait-free and
578  * lock-free.
579  *
580  * Consumer is the code path that posts Sends. This path dequeues a
581  * sendctx for use by a Send operation. Multiple consumer threads
582  * are serialized by the RPC transport lock, which allows only one
583  * ->send_request call at a time.
584  *
585  * Producer is the code path that handles Send completions. This path
586  * enqueues a sendctx that has been completed. Multiple producer
587  * threads are serialized by the ib_poll_cq() function.
588  */
589 
590 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
591  * queue activity, and rpcrdma_xprt_drain has flushed all remaining
592  * Send requests.
593  */
594 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt)
595 {
596 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
597 	unsigned long i;
598 
599 	if (!buf->rb_sc_ctxs)
600 		return;
601 	for (i = 0; i <= buf->rb_sc_last; i++)
602 		kfree(buf->rb_sc_ctxs[i]);
603 	kfree(buf->rb_sc_ctxs);
604 	buf->rb_sc_ctxs = NULL;
605 }
606 
607 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep)
608 {
609 	struct rpcrdma_sendctx *sc;
610 
611 	sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge),
612 		     XPRTRDMA_GFP_FLAGS);
613 	if (!sc)
614 		return NULL;
615 
616 	sc->sc_cqe.done = rpcrdma_wc_send;
617 	sc->sc_cid.ci_queue_id = ep->re_attr.send_cq->res.id;
618 	sc->sc_cid.ci_completion_id =
619 		atomic_inc_return(&ep->re_completion_ids);
620 	return sc;
621 }
622 
623 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
624 {
625 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
626 	struct rpcrdma_sendctx *sc;
627 	unsigned long i;
628 
629 	/* Maximum number of concurrent outstanding Send WRs. Capping
630 	 * the circular queue size stops Send Queue overflow by causing
631 	 * the ->send_request call to fail temporarily before too many
632 	 * Sends are posted.
633 	 */
634 	i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS;
635 	buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), XPRTRDMA_GFP_FLAGS);
636 	if (!buf->rb_sc_ctxs)
637 		return -ENOMEM;
638 
639 	buf->rb_sc_last = i - 1;
640 	for (i = 0; i <= buf->rb_sc_last; i++) {
641 		sc = rpcrdma_sendctx_create(r_xprt->rx_ep);
642 		if (!sc)
643 			return -ENOMEM;
644 
645 		buf->rb_sc_ctxs[i] = sc;
646 	}
647 
648 	buf->rb_sc_head = 0;
649 	buf->rb_sc_tail = 0;
650 	return 0;
651 }
652 
653 /* The sendctx queue is not guaranteed to have a size that is a
654  * power of two, thus the helpers in circ_buf.h cannot be used.
655  * The other option is to use modulus (%), which can be expensive.
656  */
657 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
658 					  unsigned long item)
659 {
660 	return likely(item < buf->rb_sc_last) ? item + 1 : 0;
661 }
662 
663 /**
664  * rpcrdma_sendctx_get_locked - Acquire a send context
665  * @r_xprt: controlling transport instance
666  *
667  * Returns pointer to a free send completion context; or NULL if
668  * the queue is empty.
669  *
670  * Usage: Called to acquire an SGE array before preparing a Send WR.
671  *
672  * The caller serializes calls to this function (per transport), and
673  * provides an effective memory barrier that flushes the new value
674  * of rb_sc_head.
675  */
676 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
677 {
678 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
679 	struct rpcrdma_sendctx *sc;
680 	unsigned long next_head;
681 
682 	next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
683 
684 	if (next_head == READ_ONCE(buf->rb_sc_tail))
685 		goto out_emptyq;
686 
687 	/* ORDER: item must be accessed _before_ head is updated */
688 	sc = buf->rb_sc_ctxs[next_head];
689 
690 	/* Releasing the lock in the caller acts as a memory
691 	 * barrier that flushes rb_sc_head.
692 	 */
693 	buf->rb_sc_head = next_head;
694 
695 	return sc;
696 
697 out_emptyq:
698 	/* The queue is "empty" if there have not been enough Send
699 	 * completions recently. This is a sign the Send Queue is
700 	 * backing up. Cause the caller to pause and try again.
701 	 */
702 	xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
703 	r_xprt->rx_stats.empty_sendctx_q++;
704 	return NULL;
705 }
706 
707 /**
708  * rpcrdma_sendctx_put_locked - Release a send context
709  * @r_xprt: controlling transport instance
710  * @sc: send context to release
711  *
712  * Usage: Called from Send completion to return a sendctxt
713  * to the queue.
714  *
715  * The caller serializes calls to this function (per transport).
716  */
717 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
718 				       struct rpcrdma_sendctx *sc)
719 {
720 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
721 	unsigned long next_tail;
722 
723 	/* Unmap SGEs of previously completed but unsignaled
724 	 * Sends by walking up the queue until @sc is found.
725 	 */
726 	next_tail = buf->rb_sc_tail;
727 	do {
728 		next_tail = rpcrdma_sendctx_next(buf, next_tail);
729 
730 		/* ORDER: item must be accessed _before_ tail is updated */
731 		rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
732 
733 	} while (buf->rb_sc_ctxs[next_tail] != sc);
734 
735 	/* Paired with READ_ONCE */
736 	smp_store_release(&buf->rb_sc_tail, next_tail);
737 
738 	xprt_write_space(&r_xprt->rx_xprt);
739 }
740 
741 static void
742 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
743 {
744 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
745 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
746 	struct ib_device *device = ep->re_id->device;
747 	unsigned int count;
748 
749 	/* Try to allocate enough to perform one full-sized I/O */
750 	for (count = 0; count < ep->re_max_rdma_segs; count++) {
751 		struct rpcrdma_mr *mr;
752 		int rc;
753 
754 		mr = kzalloc_node(sizeof(*mr), XPRTRDMA_GFP_FLAGS,
755 				  ibdev_to_node(device));
756 		if (!mr)
757 			break;
758 
759 		rc = frwr_mr_init(r_xprt, mr);
760 		if (rc) {
761 			kfree(mr);
762 			break;
763 		}
764 
765 		spin_lock(&buf->rb_lock);
766 		rpcrdma_mr_push(mr, &buf->rb_mrs);
767 		list_add(&mr->mr_all, &buf->rb_all_mrs);
768 		spin_unlock(&buf->rb_lock);
769 	}
770 
771 	r_xprt->rx_stats.mrs_allocated += count;
772 	trace_xprtrdma_createmrs(r_xprt, count);
773 }
774 
775 static void
776 rpcrdma_mr_refresh_worker(struct work_struct *work)
777 {
778 	struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
779 						  rb_refresh_worker);
780 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
781 						   rx_buf);
782 
783 	rpcrdma_mrs_create(r_xprt);
784 	xprt_write_space(&r_xprt->rx_xprt);
785 }
786 
787 /**
788  * rpcrdma_mrs_refresh - Wake the MR refresh worker
789  * @r_xprt: controlling transport instance
790  *
791  */
792 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
793 {
794 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
795 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
796 
797 	/* If there is no underlying connection, it's no use
798 	 * to wake the refresh worker.
799 	 */
800 	if (ep->re_connect_status != 1)
801 		return;
802 	queue_work(system_highpri_wq, &buf->rb_refresh_worker);
803 }
804 
805 /**
806  * rpcrdma_req_create - Allocate an rpcrdma_req object
807  * @r_xprt: controlling r_xprt
808  * @size: initial size, in bytes, of send and receive buffers
809  *
810  * Returns an allocated and fully initialized rpcrdma_req or NULL.
811  */
812 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt,
813 				       size_t size)
814 {
815 	struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
816 	struct rpcrdma_req *req;
817 
818 	req = kzalloc(sizeof(*req), XPRTRDMA_GFP_FLAGS);
819 	if (req == NULL)
820 		goto out1;
821 
822 	req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE);
823 	if (!req->rl_sendbuf)
824 		goto out2;
825 
826 	req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE);
827 	if (!req->rl_recvbuf)
828 		goto out3;
829 
830 	INIT_LIST_HEAD(&req->rl_free_mrs);
831 	INIT_LIST_HEAD(&req->rl_registered);
832 	spin_lock(&buffer->rb_lock);
833 	list_add(&req->rl_all, &buffer->rb_allreqs);
834 	spin_unlock(&buffer->rb_lock);
835 	return req;
836 
837 out3:
838 	rpcrdma_regbuf_free(req->rl_sendbuf);
839 out2:
840 	kfree(req);
841 out1:
842 	return NULL;
843 }
844 
845 /**
846  * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object
847  * @r_xprt: controlling transport instance
848  * @req: rpcrdma_req object to set up
849  *
850  * Returns zero on success, and a negative errno on failure.
851  */
852 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
853 {
854 	struct rpcrdma_regbuf *rb;
855 	size_t maxhdrsize;
856 
857 	/* Compute maximum header buffer size in bytes */
858 	maxhdrsize = rpcrdma_fixed_maxsz + 3 +
859 		     r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz;
860 	maxhdrsize *= sizeof(__be32);
861 	rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
862 				  DMA_TO_DEVICE);
863 	if (!rb)
864 		goto out;
865 
866 	if (!__rpcrdma_regbuf_dma_map(r_xprt, rb))
867 		goto out_free;
868 
869 	req->rl_rdmabuf = rb;
870 	xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
871 	return 0;
872 
873 out_free:
874 	rpcrdma_regbuf_free(rb);
875 out:
876 	return -ENOMEM;
877 }
878 
879 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
880  * and thus can be walked without holding rb_lock. Eg. the
881  * caller is holding the transport send lock to exclude
882  * device removal or disconnection.
883  */
884 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt)
885 {
886 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
887 	struct rpcrdma_req *req;
888 	int rc;
889 
890 	list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
891 		rc = rpcrdma_req_setup(r_xprt, req);
892 		if (rc)
893 			return rc;
894 	}
895 	return 0;
896 }
897 
898 static void rpcrdma_req_reset(struct rpcrdma_req *req)
899 {
900 	/* Credits are valid for only one connection */
901 	req->rl_slot.rq_cong = 0;
902 
903 	rpcrdma_regbuf_free(req->rl_rdmabuf);
904 	req->rl_rdmabuf = NULL;
905 
906 	rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
907 	rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
908 
909 	frwr_reset(req);
910 }
911 
912 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
913  * and thus can be walked without holding rb_lock. Eg. the
914  * caller is holding the transport send lock to exclude
915  * device removal or disconnection.
916  */
917 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
918 {
919 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
920 	struct rpcrdma_req *req;
921 
922 	list_for_each_entry(req, &buf->rb_allreqs, rl_all)
923 		rpcrdma_req_reset(req);
924 }
925 
926 static noinline
927 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
928 				       bool temp)
929 {
930 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
931 	struct rpcrdma_rep *rep;
932 
933 	rep = kzalloc(sizeof(*rep), XPRTRDMA_GFP_FLAGS);
934 	if (rep == NULL)
935 		goto out;
936 
937 	rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv,
938 					       DMA_FROM_DEVICE);
939 	if (!rep->rr_rdmabuf)
940 		goto out_free;
941 
942 	rep->rr_cid.ci_completion_id =
943 		atomic_inc_return(&r_xprt->rx_ep->re_completion_ids);
944 
945 	xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
946 		     rdmab_length(rep->rr_rdmabuf));
947 	rep->rr_cqe.done = rpcrdma_wc_receive;
948 	rep->rr_rxprt = r_xprt;
949 	rep->rr_recv_wr.next = NULL;
950 	rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
951 	rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
952 	rep->rr_recv_wr.num_sge = 1;
953 	rep->rr_temp = temp;
954 
955 	spin_lock(&buf->rb_lock);
956 	list_add(&rep->rr_all, &buf->rb_all_reps);
957 	spin_unlock(&buf->rb_lock);
958 	return rep;
959 
960 out_free:
961 	kfree(rep);
962 out:
963 	return NULL;
964 }
965 
966 static void rpcrdma_rep_free(struct rpcrdma_rep *rep)
967 {
968 	rpcrdma_regbuf_free(rep->rr_rdmabuf);
969 	kfree(rep);
970 }
971 
972 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
973 {
974 	struct rpcrdma_buffer *buf = &rep->rr_rxprt->rx_buf;
975 
976 	spin_lock(&buf->rb_lock);
977 	list_del(&rep->rr_all);
978 	spin_unlock(&buf->rb_lock);
979 
980 	rpcrdma_rep_free(rep);
981 }
982 
983 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
984 {
985 	struct llist_node *node;
986 
987 	/* Calls to llist_del_first are required to be serialized */
988 	node = llist_del_first(&buf->rb_free_reps);
989 	if (!node)
990 		return NULL;
991 	return llist_entry(node, struct rpcrdma_rep, rr_node);
992 }
993 
994 /**
995  * rpcrdma_rep_put - Release rpcrdma_rep back to free list
996  * @buf: buffer pool
997  * @rep: rep to release
998  *
999  */
1000 void rpcrdma_rep_put(struct rpcrdma_buffer *buf, struct rpcrdma_rep *rep)
1001 {
1002 	llist_add(&rep->rr_node, &buf->rb_free_reps);
1003 }
1004 
1005 /* Caller must ensure the QP is quiescent (RQ is drained) before
1006  * invoking this function, to guarantee rb_all_reps is not
1007  * changing.
1008  */
1009 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1010 {
1011 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1012 	struct rpcrdma_rep *rep;
1013 
1014 	list_for_each_entry(rep, &buf->rb_all_reps, rr_all) {
1015 		rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1016 		rep->rr_temp = true;	/* Mark this rep for destruction */
1017 	}
1018 }
1019 
1020 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1021 {
1022 	struct rpcrdma_rep *rep;
1023 
1024 	spin_lock(&buf->rb_lock);
1025 	while ((rep = list_first_entry_or_null(&buf->rb_all_reps,
1026 					       struct rpcrdma_rep,
1027 					       rr_all)) != NULL) {
1028 		list_del(&rep->rr_all);
1029 		spin_unlock(&buf->rb_lock);
1030 
1031 		rpcrdma_rep_free(rep);
1032 
1033 		spin_lock(&buf->rb_lock);
1034 	}
1035 	spin_unlock(&buf->rb_lock);
1036 }
1037 
1038 /**
1039  * rpcrdma_buffer_create - Create initial set of req/rep objects
1040  * @r_xprt: transport instance to (re)initialize
1041  *
1042  * Returns zero on success, otherwise a negative errno.
1043  */
1044 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1045 {
1046 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1047 	int i, rc;
1048 
1049 	buf->rb_bc_srv_max_requests = 0;
1050 	spin_lock_init(&buf->rb_lock);
1051 	INIT_LIST_HEAD(&buf->rb_mrs);
1052 	INIT_LIST_HEAD(&buf->rb_all_mrs);
1053 	INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1054 
1055 	INIT_LIST_HEAD(&buf->rb_send_bufs);
1056 	INIT_LIST_HEAD(&buf->rb_allreqs);
1057 	INIT_LIST_HEAD(&buf->rb_all_reps);
1058 
1059 	rc = -ENOMEM;
1060 	for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) {
1061 		struct rpcrdma_req *req;
1062 
1063 		req = rpcrdma_req_create(r_xprt,
1064 					 RPCRDMA_V1_DEF_INLINE_SIZE * 2);
1065 		if (!req)
1066 			goto out;
1067 		list_add(&req->rl_list, &buf->rb_send_bufs);
1068 	}
1069 
1070 	init_llist_head(&buf->rb_free_reps);
1071 
1072 	return 0;
1073 out:
1074 	rpcrdma_buffer_destroy(buf);
1075 	return rc;
1076 }
1077 
1078 /**
1079  * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1080  * @req: unused object to be destroyed
1081  *
1082  * Relies on caller holding the transport send lock to protect
1083  * removing req->rl_all from buf->rb_all_reqs safely.
1084  */
1085 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1086 {
1087 	struct rpcrdma_mr *mr;
1088 
1089 	list_del(&req->rl_all);
1090 
1091 	while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1092 		struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1093 
1094 		spin_lock(&buf->rb_lock);
1095 		list_del(&mr->mr_all);
1096 		spin_unlock(&buf->rb_lock);
1097 
1098 		frwr_mr_release(mr);
1099 	}
1100 
1101 	rpcrdma_regbuf_free(req->rl_recvbuf);
1102 	rpcrdma_regbuf_free(req->rl_sendbuf);
1103 	rpcrdma_regbuf_free(req->rl_rdmabuf);
1104 	kfree(req);
1105 }
1106 
1107 /**
1108  * rpcrdma_mrs_destroy - Release all of a transport's MRs
1109  * @r_xprt: controlling transport instance
1110  *
1111  * Relies on caller holding the transport send lock to protect
1112  * removing mr->mr_list from req->rl_free_mrs safely.
1113  */
1114 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1115 {
1116 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1117 	struct rpcrdma_mr *mr;
1118 
1119 	cancel_work_sync(&buf->rb_refresh_worker);
1120 
1121 	spin_lock(&buf->rb_lock);
1122 	while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1123 					      struct rpcrdma_mr,
1124 					      mr_all)) != NULL) {
1125 		list_del(&mr->mr_list);
1126 		list_del(&mr->mr_all);
1127 		spin_unlock(&buf->rb_lock);
1128 
1129 		frwr_mr_release(mr);
1130 
1131 		spin_lock(&buf->rb_lock);
1132 	}
1133 	spin_unlock(&buf->rb_lock);
1134 }
1135 
1136 /**
1137  * rpcrdma_buffer_destroy - Release all hw resources
1138  * @buf: root control block for resources
1139  *
1140  * ORDERING: relies on a prior rpcrdma_xprt_drain :
1141  * - No more Send or Receive completions can occur
1142  * - All MRs, reps, and reqs are returned to their free lists
1143  */
1144 void
1145 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1146 {
1147 	rpcrdma_reps_destroy(buf);
1148 
1149 	while (!list_empty(&buf->rb_send_bufs)) {
1150 		struct rpcrdma_req *req;
1151 
1152 		req = list_first_entry(&buf->rb_send_bufs,
1153 				       struct rpcrdma_req, rl_list);
1154 		list_del(&req->rl_list);
1155 		rpcrdma_req_destroy(req);
1156 	}
1157 }
1158 
1159 /**
1160  * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1161  * @r_xprt: controlling transport
1162  *
1163  * Returns an initialized rpcrdma_mr or NULL if no free
1164  * rpcrdma_mr objects are available.
1165  */
1166 struct rpcrdma_mr *
1167 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1168 {
1169 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1170 	struct rpcrdma_mr *mr;
1171 
1172 	spin_lock(&buf->rb_lock);
1173 	mr = rpcrdma_mr_pop(&buf->rb_mrs);
1174 	spin_unlock(&buf->rb_lock);
1175 	return mr;
1176 }
1177 
1178 /**
1179  * rpcrdma_reply_put - Put reply buffers back into pool
1180  * @buffers: buffer pool
1181  * @req: object to return
1182  *
1183  */
1184 void rpcrdma_reply_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1185 {
1186 	if (req->rl_reply) {
1187 		rpcrdma_rep_put(buffers, req->rl_reply);
1188 		req->rl_reply = NULL;
1189 	}
1190 }
1191 
1192 /**
1193  * rpcrdma_buffer_get - Get a request buffer
1194  * @buffers: Buffer pool from which to obtain a buffer
1195  *
1196  * Returns a fresh rpcrdma_req, or NULL if none are available.
1197  */
1198 struct rpcrdma_req *
1199 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1200 {
1201 	struct rpcrdma_req *req;
1202 
1203 	spin_lock(&buffers->rb_lock);
1204 	req = list_first_entry_or_null(&buffers->rb_send_bufs,
1205 				       struct rpcrdma_req, rl_list);
1206 	if (req)
1207 		list_del_init(&req->rl_list);
1208 	spin_unlock(&buffers->rb_lock);
1209 	return req;
1210 }
1211 
1212 /**
1213  * rpcrdma_buffer_put - Put request/reply buffers back into pool
1214  * @buffers: buffer pool
1215  * @req: object to return
1216  *
1217  */
1218 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1219 {
1220 	rpcrdma_reply_put(buffers, req);
1221 
1222 	spin_lock(&buffers->rb_lock);
1223 	list_add(&req->rl_list, &buffers->rb_send_bufs);
1224 	spin_unlock(&buffers->rb_lock);
1225 }
1226 
1227 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1228  *
1229  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1230  * receiving the payload of RDMA RECV operations. During Long Calls
1231  * or Replies they may be registered externally via frwr_map.
1232  */
1233 static struct rpcrdma_regbuf *
1234 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction)
1235 {
1236 	struct rpcrdma_regbuf *rb;
1237 
1238 	rb = kmalloc(sizeof(*rb), XPRTRDMA_GFP_FLAGS);
1239 	if (!rb)
1240 		return NULL;
1241 	rb->rg_data = kmalloc(size, XPRTRDMA_GFP_FLAGS);
1242 	if (!rb->rg_data) {
1243 		kfree(rb);
1244 		return NULL;
1245 	}
1246 
1247 	rb->rg_device = NULL;
1248 	rb->rg_direction = direction;
1249 	rb->rg_iov.length = size;
1250 	return rb;
1251 }
1252 
1253 /**
1254  * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1255  * @rb: regbuf to reallocate
1256  * @size: size of buffer to be allocated, in bytes
1257  * @flags: GFP flags
1258  *
1259  * Returns true if reallocation was successful. If false is
1260  * returned, @rb is left untouched.
1261  */
1262 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1263 {
1264 	void *buf;
1265 
1266 	buf = kmalloc(size, flags);
1267 	if (!buf)
1268 		return false;
1269 
1270 	rpcrdma_regbuf_dma_unmap(rb);
1271 	kfree(rb->rg_data);
1272 
1273 	rb->rg_data = buf;
1274 	rb->rg_iov.length = size;
1275 	return true;
1276 }
1277 
1278 /**
1279  * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1280  * @r_xprt: controlling transport instance
1281  * @rb: regbuf to be mapped
1282  *
1283  * Returns true if the buffer is now DMA mapped to @r_xprt's device
1284  */
1285 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1286 			      struct rpcrdma_regbuf *rb)
1287 {
1288 	struct ib_device *device = r_xprt->rx_ep->re_id->device;
1289 
1290 	if (rb->rg_direction == DMA_NONE)
1291 		return false;
1292 
1293 	rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1294 					    rdmab_length(rb), rb->rg_direction);
1295 	if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1296 		trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1297 		return false;
1298 	}
1299 
1300 	rb->rg_device = device;
1301 	rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey;
1302 	return true;
1303 }
1304 
1305 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1306 {
1307 	if (!rb)
1308 		return;
1309 
1310 	if (!rpcrdma_regbuf_is_mapped(rb))
1311 		return;
1312 
1313 	ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1314 			    rb->rg_direction);
1315 	rb->rg_device = NULL;
1316 }
1317 
1318 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1319 {
1320 	rpcrdma_regbuf_dma_unmap(rb);
1321 	if (rb)
1322 		kfree(rb->rg_data);
1323 	kfree(rb);
1324 }
1325 
1326 /**
1327  * rpcrdma_post_recvs - Refill the Receive Queue
1328  * @r_xprt: controlling transport instance
1329  * @needed: current credit grant
1330  * @temp: mark Receive buffers to be deleted after one use
1331  *
1332  */
1333 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, int needed, bool temp)
1334 {
1335 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1336 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
1337 	struct ib_recv_wr *wr, *bad_wr;
1338 	struct rpcrdma_rep *rep;
1339 	int count, rc;
1340 
1341 	rc = 0;
1342 	count = 0;
1343 
1344 	if (likely(ep->re_receive_count > needed))
1345 		goto out;
1346 	needed -= ep->re_receive_count;
1347 	if (!temp)
1348 		needed += RPCRDMA_MAX_RECV_BATCH;
1349 
1350 	if (atomic_inc_return(&ep->re_receiving) > 1)
1351 		goto out;
1352 
1353 	/* fast path: all needed reps can be found on the free list */
1354 	wr = NULL;
1355 	while (needed) {
1356 		rep = rpcrdma_rep_get_locked(buf);
1357 		if (rep && rep->rr_temp) {
1358 			rpcrdma_rep_destroy(rep);
1359 			continue;
1360 		}
1361 		if (!rep)
1362 			rep = rpcrdma_rep_create(r_xprt, temp);
1363 		if (!rep)
1364 			break;
1365 		if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf)) {
1366 			rpcrdma_rep_put(buf, rep);
1367 			break;
1368 		}
1369 
1370 		rep->rr_cid.ci_queue_id = ep->re_attr.recv_cq->res.id;
1371 		trace_xprtrdma_post_recv(&rep->rr_cid);
1372 		rep->rr_recv_wr.next = wr;
1373 		wr = &rep->rr_recv_wr;
1374 		--needed;
1375 		++count;
1376 	}
1377 	if (!wr)
1378 		goto out;
1379 
1380 	rc = ib_post_recv(ep->re_id->qp, wr,
1381 			  (const struct ib_recv_wr **)&bad_wr);
1382 	if (rc) {
1383 		trace_xprtrdma_post_recvs_err(r_xprt, rc);
1384 		for (wr = bad_wr; wr;) {
1385 			struct rpcrdma_rep *rep;
1386 
1387 			rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1388 			wr = wr->next;
1389 			rpcrdma_rep_put(buf, rep);
1390 			--count;
1391 		}
1392 	}
1393 	if (atomic_dec_return(&ep->re_receiving) > 0)
1394 		complete(&ep->re_done);
1395 
1396 out:
1397 	trace_xprtrdma_post_recvs(r_xprt, count);
1398 	ep->re_receive_count += count;
1399 	return;
1400 }
1401