xref: /linux/net/sunrpc/xprtrdma/transport.c (revision e8d235d4d8fb8957bae5f6ed4521115203a00d8b)
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * transport.c
42  *
43  * This file contains the top-level implementation of an RPC RDMA
44  * transport.
45  *
46  * Naming convention: functions beginning with xprt_ are part of the
47  * transport switch. All others are RPC RDMA internal.
48  */
49 
50 #include <linux/module.h>
51 #include <linux/init.h>
52 #include <linux/slab.h>
53 #include <linux/seq_file.h>
54 #include <linux/sunrpc/addr.h>
55 
56 #include "xprt_rdma.h"
57 
58 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
59 # define RPCDBG_FACILITY	RPCDBG_TRANS
60 #endif
61 
62 MODULE_LICENSE("Dual BSD/GPL");
63 
64 MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
65 MODULE_AUTHOR("Network Appliance, Inc.");
66 
67 /*
68  * tunables
69  */
70 
71 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
72 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
73 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
74 static unsigned int xprt_rdma_inline_write_padding;
75 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
76 		int xprt_rdma_pad_optimize = 1;
77 
78 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
79 
80 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
81 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
82 static unsigned int zero;
83 static unsigned int max_padding = PAGE_SIZE;
84 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
85 static unsigned int max_memreg = RPCRDMA_LAST - 1;
86 
87 static struct ctl_table_header *sunrpc_table_header;
88 
89 static struct ctl_table xr_tunables_table[] = {
90 	{
91 		.procname	= "rdma_slot_table_entries",
92 		.data		= &xprt_rdma_slot_table_entries,
93 		.maxlen		= sizeof(unsigned int),
94 		.mode		= 0644,
95 		.proc_handler	= proc_dointvec_minmax,
96 		.extra1		= &min_slot_table_size,
97 		.extra2		= &max_slot_table_size
98 	},
99 	{
100 		.procname	= "rdma_max_inline_read",
101 		.data		= &xprt_rdma_max_inline_read,
102 		.maxlen		= sizeof(unsigned int),
103 		.mode		= 0644,
104 		.proc_handler	= proc_dointvec,
105 	},
106 	{
107 		.procname	= "rdma_max_inline_write",
108 		.data		= &xprt_rdma_max_inline_write,
109 		.maxlen		= sizeof(unsigned int),
110 		.mode		= 0644,
111 		.proc_handler	= proc_dointvec,
112 	},
113 	{
114 		.procname	= "rdma_inline_write_padding",
115 		.data		= &xprt_rdma_inline_write_padding,
116 		.maxlen		= sizeof(unsigned int),
117 		.mode		= 0644,
118 		.proc_handler	= proc_dointvec_minmax,
119 		.extra1		= &zero,
120 		.extra2		= &max_padding,
121 	},
122 	{
123 		.procname	= "rdma_memreg_strategy",
124 		.data		= &xprt_rdma_memreg_strategy,
125 		.maxlen		= sizeof(unsigned int),
126 		.mode		= 0644,
127 		.proc_handler	= proc_dointvec_minmax,
128 		.extra1		= &min_memreg,
129 		.extra2		= &max_memreg,
130 	},
131 	{
132 		.procname	= "rdma_pad_optimize",
133 		.data		= &xprt_rdma_pad_optimize,
134 		.maxlen		= sizeof(unsigned int),
135 		.mode		= 0644,
136 		.proc_handler	= proc_dointvec,
137 	},
138 	{ },
139 };
140 
141 static struct ctl_table sunrpc_table[] = {
142 	{
143 		.procname	= "sunrpc",
144 		.mode		= 0555,
145 		.child		= xr_tunables_table
146 	},
147 	{ },
148 };
149 
150 #endif
151 
152 #define RPCRDMA_BIND_TO		(60U * HZ)
153 #define RPCRDMA_INIT_REEST_TO	(5U * HZ)
154 #define RPCRDMA_MAX_REEST_TO	(30U * HZ)
155 #define RPCRDMA_IDLE_DISC_TO	(5U * 60 * HZ)
156 
157 static struct rpc_xprt_ops xprt_rdma_procs;	/* forward reference */
158 
159 static void
160 xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap)
161 {
162 	struct sockaddr_in *sin = (struct sockaddr_in *)sap;
163 	char buf[20];
164 
165 	snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
166 	xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
167 
168 	xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA;
169 }
170 
171 static void
172 xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap)
173 {
174 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap;
175 	char buf[40];
176 
177 	snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr);
178 	xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
179 
180 	xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6;
181 }
182 
183 static void
184 xprt_rdma_format_addresses(struct rpc_xprt *xprt)
185 {
186 	struct sockaddr *sap = (struct sockaddr *)
187 					&rpcx_to_rdmad(xprt).addr;
188 	char buf[128];
189 
190 	switch (sap->sa_family) {
191 	case AF_INET:
192 		xprt_rdma_format_addresses4(xprt, sap);
193 		break;
194 	case AF_INET6:
195 		xprt_rdma_format_addresses6(xprt, sap);
196 		break;
197 	default:
198 		pr_err("rpcrdma: Unrecognized address family\n");
199 		return;
200 	}
201 
202 	(void)rpc_ntop(sap, buf, sizeof(buf));
203 	xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
204 
205 	snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
206 	xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
207 
208 	snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
209 	xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
210 
211 	xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
212 }
213 
214 static void
215 xprt_rdma_free_addresses(struct rpc_xprt *xprt)
216 {
217 	unsigned int i;
218 
219 	for (i = 0; i < RPC_DISPLAY_MAX; i++)
220 		switch (i) {
221 		case RPC_DISPLAY_PROTO:
222 		case RPC_DISPLAY_NETID:
223 			continue;
224 		default:
225 			kfree(xprt->address_strings[i]);
226 		}
227 }
228 
229 static void
230 xprt_rdma_connect_worker(struct work_struct *work)
231 {
232 	struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt,
233 						   rx_connect_worker.work);
234 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
235 	int rc = 0;
236 
237 	xprt_clear_connected(xprt);
238 
239 	dprintk("RPC:       %s: %sconnect\n", __func__,
240 			r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
241 	rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
242 	if (rc)
243 		xprt_wake_pending_tasks(xprt, rc);
244 
245 	dprintk("RPC:       %s: exit\n", __func__);
246 	xprt_clear_connecting(xprt);
247 }
248 
249 /*
250  * xprt_rdma_destroy
251  *
252  * Destroy the xprt.
253  * Free all memory associated with the object, including its own.
254  * NOTE: none of the *destroy methods free memory for their top-level
255  * objects, even though they may have allocated it (they do free
256  * private memory). It's up to the caller to handle it. In this
257  * case (RDMA transport), all structure memory is inlined with the
258  * struct rpcrdma_xprt.
259  */
260 static void
261 xprt_rdma_destroy(struct rpc_xprt *xprt)
262 {
263 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
264 
265 	dprintk("RPC:       %s: called\n", __func__);
266 
267 	cancel_delayed_work_sync(&r_xprt->rx_connect_worker);
268 
269 	xprt_clear_connected(xprt);
270 
271 	rpcrdma_buffer_destroy(&r_xprt->rx_buf);
272 	rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
273 	rpcrdma_ia_close(&r_xprt->rx_ia);
274 
275 	xprt_rdma_free_addresses(xprt);
276 
277 	xprt_free(xprt);
278 
279 	dprintk("RPC:       %s: returning\n", __func__);
280 
281 	module_put(THIS_MODULE);
282 }
283 
284 static const struct rpc_timeout xprt_rdma_default_timeout = {
285 	.to_initval = 60 * HZ,
286 	.to_maxval = 60 * HZ,
287 };
288 
289 /**
290  * xprt_setup_rdma - Set up transport to use RDMA
291  *
292  * @args: rpc transport arguments
293  */
294 static struct rpc_xprt *
295 xprt_setup_rdma(struct xprt_create *args)
296 {
297 	struct rpcrdma_create_data_internal cdata;
298 	struct rpc_xprt *xprt;
299 	struct rpcrdma_xprt *new_xprt;
300 	struct rpcrdma_ep *new_ep;
301 	struct sockaddr_in *sin;
302 	int rc;
303 
304 	if (args->addrlen > sizeof(xprt->addr)) {
305 		dprintk("RPC:       %s: address too large\n", __func__);
306 		return ERR_PTR(-EBADF);
307 	}
308 
309 	xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt),
310 			xprt_rdma_slot_table_entries,
311 			xprt_rdma_slot_table_entries);
312 	if (xprt == NULL) {
313 		dprintk("RPC:       %s: couldn't allocate rpcrdma_xprt\n",
314 			__func__);
315 		return ERR_PTR(-ENOMEM);
316 	}
317 
318 	/* 60 second timeout, no retries */
319 	xprt->timeout = &xprt_rdma_default_timeout;
320 	xprt->bind_timeout = RPCRDMA_BIND_TO;
321 	xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
322 	xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO;
323 
324 	xprt->resvport = 0;		/* privileged port not needed */
325 	xprt->tsh_size = 0;		/* RPC-RDMA handles framing */
326 	xprt->ops = &xprt_rdma_procs;
327 
328 	/*
329 	 * Set up RDMA-specific connect data.
330 	 */
331 
332 	/* Put server RDMA address in local cdata */
333 	memcpy(&cdata.addr, args->dstaddr, args->addrlen);
334 
335 	/* Ensure xprt->addr holds valid server TCP (not RDMA)
336 	 * address, for any side protocols which peek at it */
337 	xprt->prot = IPPROTO_TCP;
338 	xprt->addrlen = args->addrlen;
339 	memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);
340 
341 	sin = (struct sockaddr_in *)&cdata.addr;
342 	if (ntohs(sin->sin_port) != 0)
343 		xprt_set_bound(xprt);
344 
345 	dprintk("RPC:       %s: %pI4:%u\n",
346 		__func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port));
347 
348 	/* Set max requests */
349 	cdata.max_requests = xprt->max_reqs;
350 
351 	/* Set some length limits */
352 	cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
353 	cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
354 
355 	cdata.inline_wsize = xprt_rdma_max_inline_write;
356 	if (cdata.inline_wsize > cdata.wsize)
357 		cdata.inline_wsize = cdata.wsize;
358 
359 	cdata.inline_rsize = xprt_rdma_max_inline_read;
360 	if (cdata.inline_rsize > cdata.rsize)
361 		cdata.inline_rsize = cdata.rsize;
362 
363 	cdata.padding = xprt_rdma_inline_write_padding;
364 
365 	/*
366 	 * Create new transport instance, which includes initialized
367 	 *  o ia
368 	 *  o endpoint
369 	 *  o buffers
370 	 */
371 
372 	new_xprt = rpcx_to_rdmax(xprt);
373 
374 	rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
375 				xprt_rdma_memreg_strategy);
376 	if (rc)
377 		goto out1;
378 
379 	/*
380 	 * initialize and create ep
381 	 */
382 	new_xprt->rx_data = cdata;
383 	new_ep = &new_xprt->rx_ep;
384 	new_ep->rep_remote_addr = cdata.addr;
385 
386 	rc = rpcrdma_ep_create(&new_xprt->rx_ep,
387 				&new_xprt->rx_ia, &new_xprt->rx_data);
388 	if (rc)
389 		goto out2;
390 
391 	/*
392 	 * Allocate pre-registered send and receive buffers for headers and
393 	 * any inline data. Also specify any padding which will be provided
394 	 * from a preregistered zero buffer.
395 	 */
396 	rc = rpcrdma_buffer_create(new_xprt);
397 	if (rc)
398 		goto out3;
399 
400 	/*
401 	 * Register a callback for connection events. This is necessary because
402 	 * connection loss notification is async. We also catch connection loss
403 	 * when reaping receives.
404 	 */
405 	INIT_DELAYED_WORK(&new_xprt->rx_connect_worker,
406 			  xprt_rdma_connect_worker);
407 
408 	xprt_rdma_format_addresses(xprt);
409 	xprt->max_payload = new_xprt->rx_ia.ri_ops->ro_maxpages(new_xprt);
410 	if (xprt->max_payload == 0)
411 		goto out4;
412 	xprt->max_payload <<= PAGE_SHIFT;
413 	dprintk("RPC:       %s: transport data payload maximum: %zu bytes\n",
414 		__func__, xprt->max_payload);
415 
416 	if (!try_module_get(THIS_MODULE))
417 		goto out4;
418 
419 	return xprt;
420 
421 out4:
422 	xprt_rdma_free_addresses(xprt);
423 	rc = -EINVAL;
424 out3:
425 	rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
426 out2:
427 	rpcrdma_ia_close(&new_xprt->rx_ia);
428 out1:
429 	xprt_free(xprt);
430 	return ERR_PTR(rc);
431 }
432 
433 /*
434  * Close a connection, during shutdown or timeout/reconnect
435  */
436 static void
437 xprt_rdma_close(struct rpc_xprt *xprt)
438 {
439 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
440 
441 	dprintk("RPC:       %s: closing\n", __func__);
442 	if (r_xprt->rx_ep.rep_connected > 0)
443 		xprt->reestablish_timeout = 0;
444 	xprt_disconnect_done(xprt);
445 	rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
446 }
447 
448 static void
449 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
450 {
451 	struct sockaddr_in *sap;
452 
453 	sap = (struct sockaddr_in *)&xprt->addr;
454 	sap->sin_port = htons(port);
455 	sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
456 	sap->sin_port = htons(port);
457 	dprintk("RPC:       %s: %u\n", __func__, port);
458 }
459 
460 static void
461 xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task)
462 {
463 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
464 
465 	if (r_xprt->rx_ep.rep_connected != 0) {
466 		/* Reconnect */
467 		schedule_delayed_work(&r_xprt->rx_connect_worker,
468 				      xprt->reestablish_timeout);
469 		xprt->reestablish_timeout <<= 1;
470 		if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO)
471 			xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO;
472 		else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
473 			xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
474 	} else {
475 		schedule_delayed_work(&r_xprt->rx_connect_worker, 0);
476 		if (!RPC_IS_ASYNC(task))
477 			flush_delayed_work(&r_xprt->rx_connect_worker);
478 	}
479 }
480 
481 /*
482  * The RDMA allocate/free functions need the task structure as a place
483  * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
484  * sequence.
485  *
486  * The RPC layer allocates both send and receive buffers in the same call
487  * (rq_send_buf and rq_rcv_buf are both part of a single contiguous buffer).
488  * We may register rq_rcv_buf when using reply chunks.
489  */
490 static void *
491 xprt_rdma_allocate(struct rpc_task *task, size_t size)
492 {
493 	struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
494 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
495 	struct rpcrdma_regbuf *rb;
496 	struct rpcrdma_req *req;
497 	size_t min_size;
498 	gfp_t flags;
499 
500 	req = rpcrdma_buffer_get(&r_xprt->rx_buf);
501 	if (req == NULL)
502 		return NULL;
503 
504 	flags = GFP_NOIO | __GFP_NOWARN;
505 	if (RPC_IS_SWAPPER(task))
506 		flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
507 
508 	if (req->rl_rdmabuf == NULL)
509 		goto out_rdmabuf;
510 	if (req->rl_sendbuf == NULL)
511 		goto out_sendbuf;
512 	if (size > req->rl_sendbuf->rg_size)
513 		goto out_sendbuf;
514 
515 out:
516 	dprintk("RPC:       %s: size %zd, request 0x%p\n", __func__, size, req);
517 	req->rl_connect_cookie = 0;	/* our reserved value */
518 	return req->rl_sendbuf->rg_base;
519 
520 out_rdmabuf:
521 	min_size = RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp);
522 	rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, min_size, flags);
523 	if (IS_ERR(rb))
524 		goto out_fail;
525 	req->rl_rdmabuf = rb;
526 
527 out_sendbuf:
528 	/* XDR encoding and RPC/RDMA marshaling of this request has not
529 	 * yet occurred. Thus a lower bound is needed to prevent buffer
530 	 * overrun during marshaling.
531 	 *
532 	 * RPC/RDMA marshaling may choose to send payload bearing ops
533 	 * inline, if the result is smaller than the inline threshold.
534 	 * The value of the "size" argument accounts for header
535 	 * requirements but not for the payload in these cases.
536 	 *
537 	 * Likewise, allocate enough space to receive a reply up to the
538 	 * size of the inline threshold.
539 	 *
540 	 * It's unlikely that both the send header and the received
541 	 * reply will be large, but slush is provided here to allow
542 	 * flexibility when marshaling.
543 	 */
544 	min_size = RPCRDMA_INLINE_READ_THRESHOLD(task->tk_rqstp);
545 	min_size += RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp);
546 	if (size < min_size)
547 		size = min_size;
548 
549 	rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, size, flags);
550 	if (IS_ERR(rb))
551 		goto out_fail;
552 	rb->rg_owner = req;
553 
554 	r_xprt->rx_stats.hardway_register_count += size;
555 	rpcrdma_free_regbuf(&r_xprt->rx_ia, req->rl_sendbuf);
556 	req->rl_sendbuf = rb;
557 	goto out;
558 
559 out_fail:
560 	rpcrdma_buffer_put(req);
561 	r_xprt->rx_stats.failed_marshal_count++;
562 	return NULL;
563 }
564 
565 /*
566  * This function returns all RDMA resources to the pool.
567  */
568 static void
569 xprt_rdma_free(void *buffer)
570 {
571 	struct rpcrdma_req *req;
572 	struct rpcrdma_xprt *r_xprt;
573 	struct rpcrdma_regbuf *rb;
574 	int i;
575 
576 	if (buffer == NULL)
577 		return;
578 
579 	rb = container_of(buffer, struct rpcrdma_regbuf, rg_base[0]);
580 	req = rb->rg_owner;
581 	r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
582 
583 	dprintk("RPC:       %s: called on 0x%p\n", __func__, req->rl_reply);
584 
585 	for (i = 0; req->rl_nchunks;) {
586 		--req->rl_nchunks;
587 		i += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt,
588 						    &req->rl_segments[i]);
589 	}
590 
591 	rpcrdma_buffer_put(req);
592 }
593 
594 /*
595  * send_request invokes the meat of RPC RDMA. It must do the following:
596  *  1.  Marshal the RPC request into an RPC RDMA request, which means
597  *	putting a header in front of data, and creating IOVs for RDMA
598  *	from those in the request.
599  *  2.  In marshaling, detect opportunities for RDMA, and use them.
600  *  3.  Post a recv message to set up asynch completion, then send
601  *	the request (rpcrdma_ep_post).
602  *  4.  No partial sends are possible in the RPC-RDMA protocol (as in UDP).
603  */
604 
605 static int
606 xprt_rdma_send_request(struct rpc_task *task)
607 {
608 	struct rpc_rqst *rqst = task->tk_rqstp;
609 	struct rpc_xprt *xprt = rqst->rq_xprt;
610 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
611 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
612 	int rc = 0;
613 
614 	rc = rpcrdma_marshal_req(rqst);
615 	if (rc < 0)
616 		goto failed_marshal;
617 
618 	if (req->rl_reply == NULL) 		/* e.g. reconnection */
619 		rpcrdma_recv_buffer_get(req);
620 
621 	if (req->rl_reply) {
622 		req->rl_reply->rr_func = rpcrdma_reply_handler;
623 		/* this need only be done once, but... */
624 		req->rl_reply->rr_xprt = xprt;
625 	}
626 
627 	/* Must suppress retransmit to maintain credits */
628 	if (req->rl_connect_cookie == xprt->connect_cookie)
629 		goto drop_connection;
630 	req->rl_connect_cookie = xprt->connect_cookie;
631 
632 	if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
633 		goto drop_connection;
634 
635 	rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
636 	rqst->rq_bytes_sent = 0;
637 	return 0;
638 
639 failed_marshal:
640 	r_xprt->rx_stats.failed_marshal_count++;
641 	dprintk("RPC:       %s: rpcrdma_marshal_req failed, status %i\n",
642 		__func__, rc);
643 	if (rc == -EIO)
644 		return -EIO;
645 drop_connection:
646 	xprt_disconnect_done(xprt);
647 	return -ENOTCONN;	/* implies disconnect */
648 }
649 
650 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
651 {
652 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
653 	long idle_time = 0;
654 
655 	if (xprt_connected(xprt))
656 		idle_time = (long)(jiffies - xprt->last_used) / HZ;
657 
658 	seq_printf(seq,
659 	  "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
660 	  "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
661 
662 	   0,	/* need a local port? */
663 	   xprt->stat.bind_count,
664 	   xprt->stat.connect_count,
665 	   xprt->stat.connect_time,
666 	   idle_time,
667 	   xprt->stat.sends,
668 	   xprt->stat.recvs,
669 	   xprt->stat.bad_xids,
670 	   xprt->stat.req_u,
671 	   xprt->stat.bklog_u,
672 
673 	   r_xprt->rx_stats.read_chunk_count,
674 	   r_xprt->rx_stats.write_chunk_count,
675 	   r_xprt->rx_stats.reply_chunk_count,
676 	   r_xprt->rx_stats.total_rdma_request,
677 	   r_xprt->rx_stats.total_rdma_reply,
678 	   r_xprt->rx_stats.pullup_copy_count,
679 	   r_xprt->rx_stats.fixup_copy_count,
680 	   r_xprt->rx_stats.hardway_register_count,
681 	   r_xprt->rx_stats.failed_marshal_count,
682 	   r_xprt->rx_stats.bad_reply_count);
683 }
684 
685 /*
686  * Plumbing for rpc transport switch and kernel module
687  */
688 
689 static struct rpc_xprt_ops xprt_rdma_procs = {
690 	.reserve_xprt		= xprt_reserve_xprt_cong,
691 	.release_xprt		= xprt_release_xprt_cong, /* sunrpc/xprt.c */
692 	.alloc_slot		= xprt_alloc_slot,
693 	.release_request	= xprt_release_rqst_cong,       /* ditto */
694 	.set_retrans_timeout	= xprt_set_retrans_timeout_def, /* ditto */
695 	.rpcbind		= rpcb_getport_async,	/* sunrpc/rpcb_clnt.c */
696 	.set_port		= xprt_rdma_set_port,
697 	.connect		= xprt_rdma_connect,
698 	.buf_alloc		= xprt_rdma_allocate,
699 	.buf_free		= xprt_rdma_free,
700 	.send_request		= xprt_rdma_send_request,
701 	.close			= xprt_rdma_close,
702 	.destroy		= xprt_rdma_destroy,
703 	.print_stats		= xprt_rdma_print_stats
704 };
705 
706 static struct xprt_class xprt_rdma = {
707 	.list			= LIST_HEAD_INIT(xprt_rdma.list),
708 	.name			= "rdma",
709 	.owner			= THIS_MODULE,
710 	.ident			= XPRT_TRANSPORT_RDMA,
711 	.setup			= xprt_setup_rdma,
712 };
713 
714 static void __exit xprt_rdma_cleanup(void)
715 {
716 	int rc;
717 
718 	dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n");
719 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
720 	if (sunrpc_table_header) {
721 		unregister_sysctl_table(sunrpc_table_header);
722 		sunrpc_table_header = NULL;
723 	}
724 #endif
725 	rc = xprt_unregister_transport(&xprt_rdma);
726 	if (rc)
727 		dprintk("RPC:       %s: xprt_unregister returned %i\n",
728 			__func__, rc);
729 }
730 
731 static int __init xprt_rdma_init(void)
732 {
733 	int rc;
734 
735 	rc = xprt_register_transport(&xprt_rdma);
736 
737 	if (rc)
738 		return rc;
739 
740 	dprintk("RPCRDMA Module Init, register RPC RDMA transport\n");
741 
742 	dprintk("Defaults:\n");
743 	dprintk("\tSlots %d\n"
744 		"\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
745 		xprt_rdma_slot_table_entries,
746 		xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
747 	dprintk("\tPadding %d\n\tMemreg %d\n",
748 		xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
749 
750 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
751 	if (!sunrpc_table_header)
752 		sunrpc_table_header = register_sysctl_table(sunrpc_table);
753 #endif
754 	return 0;
755 }
756 
757 module_init(xprt_rdma_init);
758 module_exit(xprt_rdma_cleanup);
759