1 /* 2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the BSD-type 8 * license below: 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 14 * Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 17 * Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials provided 20 * with the distribution. 21 * 22 * Neither the name of the Network Appliance, Inc. nor the names of 23 * its contributors may be used to endorse or promote products 24 * derived from this software without specific prior written 25 * permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * transport.c 42 * 43 * This file contains the top-level implementation of an RPC RDMA 44 * transport. 45 * 46 * Naming convention: functions beginning with xprt_ are part of the 47 * transport switch. All others are RPC RDMA internal. 48 */ 49 50 #include <linux/module.h> 51 #include <linux/slab.h> 52 #include <linux/seq_file.h> 53 #include <linux/sunrpc/addr.h> 54 55 #include "xprt_rdma.h" 56 57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 58 # define RPCDBG_FACILITY RPCDBG_TRANS 59 #endif 60 61 /* 62 * tunables 63 */ 64 65 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE; 66 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE; 67 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE; 68 static unsigned int xprt_rdma_inline_write_padding; 69 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR; 70 int xprt_rdma_pad_optimize = 1; 71 72 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 73 74 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE; 75 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE; 76 static unsigned int zero; 77 static unsigned int max_padding = PAGE_SIZE; 78 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS; 79 static unsigned int max_memreg = RPCRDMA_LAST - 1; 80 81 static struct ctl_table_header *sunrpc_table_header; 82 83 static struct ctl_table xr_tunables_table[] = { 84 { 85 .procname = "rdma_slot_table_entries", 86 .data = &xprt_rdma_slot_table_entries, 87 .maxlen = sizeof(unsigned int), 88 .mode = 0644, 89 .proc_handler = proc_dointvec_minmax, 90 .extra1 = &min_slot_table_size, 91 .extra2 = &max_slot_table_size 92 }, 93 { 94 .procname = "rdma_max_inline_read", 95 .data = &xprt_rdma_max_inline_read, 96 .maxlen = sizeof(unsigned int), 97 .mode = 0644, 98 .proc_handler = proc_dointvec, 99 }, 100 { 101 .procname = "rdma_max_inline_write", 102 .data = &xprt_rdma_max_inline_write, 103 .maxlen = sizeof(unsigned int), 104 .mode = 0644, 105 .proc_handler = proc_dointvec, 106 }, 107 { 108 .procname = "rdma_inline_write_padding", 109 .data = &xprt_rdma_inline_write_padding, 110 .maxlen = sizeof(unsigned int), 111 .mode = 0644, 112 .proc_handler = proc_dointvec_minmax, 113 .extra1 = &zero, 114 .extra2 = &max_padding, 115 }, 116 { 117 .procname = "rdma_memreg_strategy", 118 .data = &xprt_rdma_memreg_strategy, 119 .maxlen = sizeof(unsigned int), 120 .mode = 0644, 121 .proc_handler = proc_dointvec_minmax, 122 .extra1 = &min_memreg, 123 .extra2 = &max_memreg, 124 }, 125 { 126 .procname = "rdma_pad_optimize", 127 .data = &xprt_rdma_pad_optimize, 128 .maxlen = sizeof(unsigned int), 129 .mode = 0644, 130 .proc_handler = proc_dointvec, 131 }, 132 { }, 133 }; 134 135 static struct ctl_table sunrpc_table[] = { 136 { 137 .procname = "sunrpc", 138 .mode = 0555, 139 .child = xr_tunables_table 140 }, 141 { }, 142 }; 143 144 #endif 145 146 #define RPCRDMA_BIND_TO (60U * HZ) 147 #define RPCRDMA_INIT_REEST_TO (5U * HZ) 148 #define RPCRDMA_MAX_REEST_TO (30U * HZ) 149 #define RPCRDMA_IDLE_DISC_TO (5U * 60 * HZ) 150 151 static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */ 152 153 static void 154 xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap) 155 { 156 struct sockaddr_in *sin = (struct sockaddr_in *)sap; 157 char buf[20]; 158 159 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr)); 160 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); 161 162 xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA; 163 } 164 165 static void 166 xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap) 167 { 168 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap; 169 char buf[40]; 170 171 snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr); 172 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); 173 174 xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6; 175 } 176 177 static void 178 xprt_rdma_format_addresses(struct rpc_xprt *xprt) 179 { 180 struct sockaddr *sap = (struct sockaddr *) 181 &rpcx_to_rdmad(xprt).addr; 182 char buf[128]; 183 184 switch (sap->sa_family) { 185 case AF_INET: 186 xprt_rdma_format_addresses4(xprt, sap); 187 break; 188 case AF_INET6: 189 xprt_rdma_format_addresses6(xprt, sap); 190 break; 191 default: 192 pr_err("rpcrdma: Unrecognized address family\n"); 193 return; 194 } 195 196 (void)rpc_ntop(sap, buf, sizeof(buf)); 197 xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL); 198 199 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); 200 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); 201 202 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); 203 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); 204 205 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma"; 206 } 207 208 static void 209 xprt_rdma_free_addresses(struct rpc_xprt *xprt) 210 { 211 unsigned int i; 212 213 for (i = 0; i < RPC_DISPLAY_MAX; i++) 214 switch (i) { 215 case RPC_DISPLAY_PROTO: 216 case RPC_DISPLAY_NETID: 217 continue; 218 default: 219 kfree(xprt->address_strings[i]); 220 } 221 } 222 223 static void 224 xprt_rdma_connect_worker(struct work_struct *work) 225 { 226 struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt, 227 rx_connect_worker.work); 228 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 229 int rc = 0; 230 231 xprt_clear_connected(xprt); 232 233 dprintk("RPC: %s: %sconnect\n", __func__, 234 r_xprt->rx_ep.rep_connected != 0 ? "re" : ""); 235 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia); 236 if (rc) 237 xprt_wake_pending_tasks(xprt, rc); 238 239 dprintk("RPC: %s: exit\n", __func__); 240 xprt_clear_connecting(xprt); 241 } 242 243 static void 244 xprt_rdma_inject_disconnect(struct rpc_xprt *xprt) 245 { 246 struct rpcrdma_xprt *r_xprt = container_of(xprt, struct rpcrdma_xprt, 247 rx_xprt); 248 249 pr_info("rpcrdma: injecting transport disconnect on xprt=%p\n", xprt); 250 rdma_disconnect(r_xprt->rx_ia.ri_id); 251 } 252 253 /* 254 * xprt_rdma_destroy 255 * 256 * Destroy the xprt. 257 * Free all memory associated with the object, including its own. 258 * NOTE: none of the *destroy methods free memory for their top-level 259 * objects, even though they may have allocated it (they do free 260 * private memory). It's up to the caller to handle it. In this 261 * case (RDMA transport), all structure memory is inlined with the 262 * struct rpcrdma_xprt. 263 */ 264 static void 265 xprt_rdma_destroy(struct rpc_xprt *xprt) 266 { 267 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 268 269 dprintk("RPC: %s: called\n", __func__); 270 271 cancel_delayed_work_sync(&r_xprt->rx_connect_worker); 272 273 xprt_clear_connected(xprt); 274 275 rpcrdma_buffer_destroy(&r_xprt->rx_buf); 276 rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia); 277 rpcrdma_ia_close(&r_xprt->rx_ia); 278 279 xprt_rdma_free_addresses(xprt); 280 281 xprt_free(xprt); 282 283 dprintk("RPC: %s: returning\n", __func__); 284 285 module_put(THIS_MODULE); 286 } 287 288 static const struct rpc_timeout xprt_rdma_default_timeout = { 289 .to_initval = 60 * HZ, 290 .to_maxval = 60 * HZ, 291 }; 292 293 /** 294 * xprt_setup_rdma - Set up transport to use RDMA 295 * 296 * @args: rpc transport arguments 297 */ 298 static struct rpc_xprt * 299 xprt_setup_rdma(struct xprt_create *args) 300 { 301 struct rpcrdma_create_data_internal cdata; 302 struct rpc_xprt *xprt; 303 struct rpcrdma_xprt *new_xprt; 304 struct rpcrdma_ep *new_ep; 305 struct sockaddr_in *sin; 306 int rc; 307 308 if (args->addrlen > sizeof(xprt->addr)) { 309 dprintk("RPC: %s: address too large\n", __func__); 310 return ERR_PTR(-EBADF); 311 } 312 313 xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt), 314 xprt_rdma_slot_table_entries, 315 xprt_rdma_slot_table_entries); 316 if (xprt == NULL) { 317 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n", 318 __func__); 319 return ERR_PTR(-ENOMEM); 320 } 321 322 /* 60 second timeout, no retries */ 323 xprt->timeout = &xprt_rdma_default_timeout; 324 xprt->bind_timeout = RPCRDMA_BIND_TO; 325 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; 326 xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO; 327 328 xprt->resvport = 0; /* privileged port not needed */ 329 xprt->tsh_size = 0; /* RPC-RDMA handles framing */ 330 xprt->ops = &xprt_rdma_procs; 331 332 /* 333 * Set up RDMA-specific connect data. 334 */ 335 336 /* Put server RDMA address in local cdata */ 337 memcpy(&cdata.addr, args->dstaddr, args->addrlen); 338 339 /* Ensure xprt->addr holds valid server TCP (not RDMA) 340 * address, for any side protocols which peek at it */ 341 xprt->prot = IPPROTO_TCP; 342 xprt->addrlen = args->addrlen; 343 memcpy(&xprt->addr, &cdata.addr, xprt->addrlen); 344 345 sin = (struct sockaddr_in *)&cdata.addr; 346 if (ntohs(sin->sin_port) != 0) 347 xprt_set_bound(xprt); 348 349 dprintk("RPC: %s: %pI4:%u\n", 350 __func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port)); 351 352 /* Set max requests */ 353 cdata.max_requests = xprt->max_reqs; 354 355 /* Set some length limits */ 356 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */ 357 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */ 358 359 cdata.inline_wsize = xprt_rdma_max_inline_write; 360 if (cdata.inline_wsize > cdata.wsize) 361 cdata.inline_wsize = cdata.wsize; 362 363 cdata.inline_rsize = xprt_rdma_max_inline_read; 364 if (cdata.inline_rsize > cdata.rsize) 365 cdata.inline_rsize = cdata.rsize; 366 367 cdata.padding = xprt_rdma_inline_write_padding; 368 369 /* 370 * Create new transport instance, which includes initialized 371 * o ia 372 * o endpoint 373 * o buffers 374 */ 375 376 new_xprt = rpcx_to_rdmax(xprt); 377 378 rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr, 379 xprt_rdma_memreg_strategy); 380 if (rc) 381 goto out1; 382 383 /* 384 * initialize and create ep 385 */ 386 new_xprt->rx_data = cdata; 387 new_ep = &new_xprt->rx_ep; 388 new_ep->rep_remote_addr = cdata.addr; 389 390 rc = rpcrdma_ep_create(&new_xprt->rx_ep, 391 &new_xprt->rx_ia, &new_xprt->rx_data); 392 if (rc) 393 goto out2; 394 395 /* 396 * Allocate pre-registered send and receive buffers for headers and 397 * any inline data. Also specify any padding which will be provided 398 * from a preregistered zero buffer. 399 */ 400 rc = rpcrdma_buffer_create(new_xprt); 401 if (rc) 402 goto out3; 403 404 /* 405 * Register a callback for connection events. This is necessary because 406 * connection loss notification is async. We also catch connection loss 407 * when reaping receives. 408 */ 409 INIT_DELAYED_WORK(&new_xprt->rx_connect_worker, 410 xprt_rdma_connect_worker); 411 412 xprt_rdma_format_addresses(xprt); 413 xprt->max_payload = new_xprt->rx_ia.ri_ops->ro_maxpages(new_xprt); 414 if (xprt->max_payload == 0) 415 goto out4; 416 xprt->max_payload <<= PAGE_SHIFT; 417 dprintk("RPC: %s: transport data payload maximum: %zu bytes\n", 418 __func__, xprt->max_payload); 419 420 if (!try_module_get(THIS_MODULE)) 421 goto out4; 422 423 return xprt; 424 425 out4: 426 xprt_rdma_free_addresses(xprt); 427 rc = -EINVAL; 428 out3: 429 rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia); 430 out2: 431 rpcrdma_ia_close(&new_xprt->rx_ia); 432 out1: 433 xprt_free(xprt); 434 return ERR_PTR(rc); 435 } 436 437 /* 438 * Close a connection, during shutdown or timeout/reconnect 439 */ 440 static void 441 xprt_rdma_close(struct rpc_xprt *xprt) 442 { 443 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 444 445 dprintk("RPC: %s: closing\n", __func__); 446 if (r_xprt->rx_ep.rep_connected > 0) 447 xprt->reestablish_timeout = 0; 448 xprt_disconnect_done(xprt); 449 rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia); 450 } 451 452 static void 453 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port) 454 { 455 struct sockaddr_in *sap; 456 457 sap = (struct sockaddr_in *)&xprt->addr; 458 sap->sin_port = htons(port); 459 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr; 460 sap->sin_port = htons(port); 461 dprintk("RPC: %s: %u\n", __func__, port); 462 } 463 464 static void 465 xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task) 466 { 467 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 468 469 if (r_xprt->rx_ep.rep_connected != 0) { 470 /* Reconnect */ 471 schedule_delayed_work(&r_xprt->rx_connect_worker, 472 xprt->reestablish_timeout); 473 xprt->reestablish_timeout <<= 1; 474 if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO) 475 xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO; 476 else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO) 477 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; 478 } else { 479 schedule_delayed_work(&r_xprt->rx_connect_worker, 0); 480 if (!RPC_IS_ASYNC(task)) 481 flush_delayed_work(&r_xprt->rx_connect_worker); 482 } 483 } 484 485 /* 486 * The RDMA allocate/free functions need the task structure as a place 487 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv 488 * sequence. 489 * 490 * The RPC layer allocates both send and receive buffers in the same call 491 * (rq_send_buf and rq_rcv_buf are both part of a single contiguous buffer). 492 * We may register rq_rcv_buf when using reply chunks. 493 */ 494 static void * 495 xprt_rdma_allocate(struct rpc_task *task, size_t size) 496 { 497 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 498 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 499 struct rpcrdma_regbuf *rb; 500 struct rpcrdma_req *req; 501 size_t min_size; 502 gfp_t flags; 503 504 req = rpcrdma_buffer_get(&r_xprt->rx_buf); 505 if (req == NULL) 506 return NULL; 507 508 flags = GFP_NOIO | __GFP_NOWARN; 509 if (RPC_IS_SWAPPER(task)) 510 flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN; 511 512 if (req->rl_rdmabuf == NULL) 513 goto out_rdmabuf; 514 if (req->rl_sendbuf == NULL) 515 goto out_sendbuf; 516 if (size > req->rl_sendbuf->rg_size) 517 goto out_sendbuf; 518 519 out: 520 dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req); 521 req->rl_connect_cookie = 0; /* our reserved value */ 522 return req->rl_sendbuf->rg_base; 523 524 out_rdmabuf: 525 min_size = RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp); 526 rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, min_size, flags); 527 if (IS_ERR(rb)) 528 goto out_fail; 529 req->rl_rdmabuf = rb; 530 531 out_sendbuf: 532 /* XDR encoding and RPC/RDMA marshaling of this request has not 533 * yet occurred. Thus a lower bound is needed to prevent buffer 534 * overrun during marshaling. 535 * 536 * RPC/RDMA marshaling may choose to send payload bearing ops 537 * inline, if the result is smaller than the inline threshold. 538 * The value of the "size" argument accounts for header 539 * requirements but not for the payload in these cases. 540 * 541 * Likewise, allocate enough space to receive a reply up to the 542 * size of the inline threshold. 543 * 544 * It's unlikely that both the send header and the received 545 * reply will be large, but slush is provided here to allow 546 * flexibility when marshaling. 547 */ 548 min_size = RPCRDMA_INLINE_READ_THRESHOLD(task->tk_rqstp); 549 min_size += RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp); 550 if (size < min_size) 551 size = min_size; 552 553 rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, size, flags); 554 if (IS_ERR(rb)) 555 goto out_fail; 556 rb->rg_owner = req; 557 558 r_xprt->rx_stats.hardway_register_count += size; 559 rpcrdma_free_regbuf(&r_xprt->rx_ia, req->rl_sendbuf); 560 req->rl_sendbuf = rb; 561 goto out; 562 563 out_fail: 564 rpcrdma_buffer_put(req); 565 r_xprt->rx_stats.failed_marshal_count++; 566 return NULL; 567 } 568 569 /* 570 * This function returns all RDMA resources to the pool. 571 */ 572 static void 573 xprt_rdma_free(void *buffer) 574 { 575 struct rpcrdma_req *req; 576 struct rpcrdma_xprt *r_xprt; 577 struct rpcrdma_regbuf *rb; 578 int i; 579 580 if (buffer == NULL) 581 return; 582 583 rb = container_of(buffer, struct rpcrdma_regbuf, rg_base[0]); 584 req = rb->rg_owner; 585 r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf); 586 587 dprintk("RPC: %s: called on 0x%p\n", __func__, req->rl_reply); 588 589 for (i = 0; req->rl_nchunks;) { 590 --req->rl_nchunks; 591 i += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt, 592 &req->rl_segments[i]); 593 } 594 595 rpcrdma_buffer_put(req); 596 } 597 598 /* 599 * send_request invokes the meat of RPC RDMA. It must do the following: 600 * 1. Marshal the RPC request into an RPC RDMA request, which means 601 * putting a header in front of data, and creating IOVs for RDMA 602 * from those in the request. 603 * 2. In marshaling, detect opportunities for RDMA, and use them. 604 * 3. Post a recv message to set up asynch completion, then send 605 * the request (rpcrdma_ep_post). 606 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP). 607 */ 608 609 static int 610 xprt_rdma_send_request(struct rpc_task *task) 611 { 612 struct rpc_rqst *rqst = task->tk_rqstp; 613 struct rpc_xprt *xprt = rqst->rq_xprt; 614 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 615 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 616 int rc = 0; 617 618 rc = rpcrdma_marshal_req(rqst); 619 if (rc < 0) 620 goto failed_marshal; 621 622 if (req->rl_reply == NULL) /* e.g. reconnection */ 623 rpcrdma_recv_buffer_get(req); 624 625 /* Must suppress retransmit to maintain credits */ 626 if (req->rl_connect_cookie == xprt->connect_cookie) 627 goto drop_connection; 628 req->rl_connect_cookie = xprt->connect_cookie; 629 630 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req)) 631 goto drop_connection; 632 633 rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len; 634 rqst->rq_bytes_sent = 0; 635 return 0; 636 637 failed_marshal: 638 r_xprt->rx_stats.failed_marshal_count++; 639 dprintk("RPC: %s: rpcrdma_marshal_req failed, status %i\n", 640 __func__, rc); 641 if (rc == -EIO) 642 return -EIO; 643 drop_connection: 644 xprt_disconnect_done(xprt); 645 return -ENOTCONN; /* implies disconnect */ 646 } 647 648 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 649 { 650 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 651 long idle_time = 0; 652 653 if (xprt_connected(xprt)) 654 idle_time = (long)(jiffies - xprt->last_used) / HZ; 655 656 seq_printf(seq, 657 "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu " 658 "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n", 659 660 0, /* need a local port? */ 661 xprt->stat.bind_count, 662 xprt->stat.connect_count, 663 xprt->stat.connect_time, 664 idle_time, 665 xprt->stat.sends, 666 xprt->stat.recvs, 667 xprt->stat.bad_xids, 668 xprt->stat.req_u, 669 xprt->stat.bklog_u, 670 671 r_xprt->rx_stats.read_chunk_count, 672 r_xprt->rx_stats.write_chunk_count, 673 r_xprt->rx_stats.reply_chunk_count, 674 r_xprt->rx_stats.total_rdma_request, 675 r_xprt->rx_stats.total_rdma_reply, 676 r_xprt->rx_stats.pullup_copy_count, 677 r_xprt->rx_stats.fixup_copy_count, 678 r_xprt->rx_stats.hardway_register_count, 679 r_xprt->rx_stats.failed_marshal_count, 680 r_xprt->rx_stats.bad_reply_count); 681 } 682 683 static int 684 xprt_rdma_enable_swap(struct rpc_xprt *xprt) 685 { 686 return -EINVAL; 687 } 688 689 static void 690 xprt_rdma_disable_swap(struct rpc_xprt *xprt) 691 { 692 } 693 694 /* 695 * Plumbing for rpc transport switch and kernel module 696 */ 697 698 static struct rpc_xprt_ops xprt_rdma_procs = { 699 .reserve_xprt = xprt_reserve_xprt_cong, 700 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */ 701 .alloc_slot = xprt_alloc_slot, 702 .release_request = xprt_release_rqst_cong, /* ditto */ 703 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */ 704 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */ 705 .set_port = xprt_rdma_set_port, 706 .connect = xprt_rdma_connect, 707 .buf_alloc = xprt_rdma_allocate, 708 .buf_free = xprt_rdma_free, 709 .send_request = xprt_rdma_send_request, 710 .close = xprt_rdma_close, 711 .destroy = xprt_rdma_destroy, 712 .print_stats = xprt_rdma_print_stats, 713 .enable_swap = xprt_rdma_enable_swap, 714 .disable_swap = xprt_rdma_disable_swap, 715 .inject_disconnect = xprt_rdma_inject_disconnect 716 }; 717 718 static struct xprt_class xprt_rdma = { 719 .list = LIST_HEAD_INIT(xprt_rdma.list), 720 .name = "rdma", 721 .owner = THIS_MODULE, 722 .ident = XPRT_TRANSPORT_RDMA, 723 .setup = xprt_setup_rdma, 724 }; 725 726 void xprt_rdma_cleanup(void) 727 { 728 int rc; 729 730 dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n"); 731 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 732 if (sunrpc_table_header) { 733 unregister_sysctl_table(sunrpc_table_header); 734 sunrpc_table_header = NULL; 735 } 736 #endif 737 rc = xprt_unregister_transport(&xprt_rdma); 738 if (rc) 739 dprintk("RPC: %s: xprt_unregister returned %i\n", 740 __func__, rc); 741 742 frwr_destroy_recovery_wq(); 743 } 744 745 int xprt_rdma_init(void) 746 { 747 int rc; 748 749 rc = frwr_alloc_recovery_wq(); 750 if (rc) 751 return rc; 752 753 rc = xprt_register_transport(&xprt_rdma); 754 if (rc) { 755 frwr_destroy_recovery_wq(); 756 return rc; 757 } 758 759 dprintk("RPCRDMA Module Init, register RPC RDMA transport\n"); 760 761 dprintk("Defaults:\n"); 762 dprintk("\tSlots %d\n" 763 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n", 764 xprt_rdma_slot_table_entries, 765 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write); 766 dprintk("\tPadding %d\n\tMemreg %d\n", 767 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy); 768 769 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 770 if (!sunrpc_table_header) 771 sunrpc_table_header = register_sysctl_table(sunrpc_table); 772 #endif 773 return 0; 774 } 775