1 /* 2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the BSD-type 8 * license below: 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 14 * Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 17 * Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials provided 20 * with the distribution. 21 * 22 * Neither the name of the Network Appliance, Inc. nor the names of 23 * its contributors may be used to endorse or promote products 24 * derived from this software without specific prior written 25 * permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * transport.c 42 * 43 * This file contains the top-level implementation of an RPC RDMA 44 * transport. 45 * 46 * Naming convention: functions beginning with xprt_ are part of the 47 * transport switch. All others are RPC RDMA internal. 48 */ 49 50 #include <linux/module.h> 51 #include <linux/init.h> 52 #include <linux/slab.h> 53 #include <linux/seq_file.h> 54 #include <linux/sunrpc/addr.h> 55 56 #include "xprt_rdma.h" 57 58 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 59 # define RPCDBG_FACILITY RPCDBG_TRANS 60 #endif 61 62 MODULE_LICENSE("Dual BSD/GPL"); 63 64 MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS"); 65 MODULE_AUTHOR("Network Appliance, Inc."); 66 67 /* 68 * tunables 69 */ 70 71 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE; 72 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE; 73 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE; 74 static unsigned int xprt_rdma_inline_write_padding; 75 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR; 76 int xprt_rdma_pad_optimize = 1; 77 78 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 79 80 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE; 81 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE; 82 static unsigned int zero; 83 static unsigned int max_padding = PAGE_SIZE; 84 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS; 85 static unsigned int max_memreg = RPCRDMA_LAST - 1; 86 87 static struct ctl_table_header *sunrpc_table_header; 88 89 static struct ctl_table xr_tunables_table[] = { 90 { 91 .procname = "rdma_slot_table_entries", 92 .data = &xprt_rdma_slot_table_entries, 93 .maxlen = sizeof(unsigned int), 94 .mode = 0644, 95 .proc_handler = proc_dointvec_minmax, 96 .extra1 = &min_slot_table_size, 97 .extra2 = &max_slot_table_size 98 }, 99 { 100 .procname = "rdma_max_inline_read", 101 .data = &xprt_rdma_max_inline_read, 102 .maxlen = sizeof(unsigned int), 103 .mode = 0644, 104 .proc_handler = proc_dointvec, 105 }, 106 { 107 .procname = "rdma_max_inline_write", 108 .data = &xprt_rdma_max_inline_write, 109 .maxlen = sizeof(unsigned int), 110 .mode = 0644, 111 .proc_handler = proc_dointvec, 112 }, 113 { 114 .procname = "rdma_inline_write_padding", 115 .data = &xprt_rdma_inline_write_padding, 116 .maxlen = sizeof(unsigned int), 117 .mode = 0644, 118 .proc_handler = proc_dointvec_minmax, 119 .extra1 = &zero, 120 .extra2 = &max_padding, 121 }, 122 { 123 .procname = "rdma_memreg_strategy", 124 .data = &xprt_rdma_memreg_strategy, 125 .maxlen = sizeof(unsigned int), 126 .mode = 0644, 127 .proc_handler = proc_dointvec_minmax, 128 .extra1 = &min_memreg, 129 .extra2 = &max_memreg, 130 }, 131 { 132 .procname = "rdma_pad_optimize", 133 .data = &xprt_rdma_pad_optimize, 134 .maxlen = sizeof(unsigned int), 135 .mode = 0644, 136 .proc_handler = proc_dointvec, 137 }, 138 { }, 139 }; 140 141 static struct ctl_table sunrpc_table[] = { 142 { 143 .procname = "sunrpc", 144 .mode = 0555, 145 .child = xr_tunables_table 146 }, 147 { }, 148 }; 149 150 #endif 151 152 #define RPCRDMA_BIND_TO (60U * HZ) 153 #define RPCRDMA_INIT_REEST_TO (5U * HZ) 154 #define RPCRDMA_MAX_REEST_TO (30U * HZ) 155 #define RPCRDMA_IDLE_DISC_TO (5U * 60 * HZ) 156 157 static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */ 158 159 static void 160 xprt_rdma_format_addresses(struct rpc_xprt *xprt) 161 { 162 struct sockaddr *sap = (struct sockaddr *) 163 &rpcx_to_rdmad(xprt).addr; 164 struct sockaddr_in *sin = (struct sockaddr_in *)sap; 165 char buf[64]; 166 167 (void)rpc_ntop(sap, buf, sizeof(buf)); 168 xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL); 169 170 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); 171 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); 172 173 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma"; 174 175 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr)); 176 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); 177 178 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); 179 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); 180 181 /* netid */ 182 xprt->address_strings[RPC_DISPLAY_NETID] = "rdma"; 183 } 184 185 static void 186 xprt_rdma_free_addresses(struct rpc_xprt *xprt) 187 { 188 unsigned int i; 189 190 for (i = 0; i < RPC_DISPLAY_MAX; i++) 191 switch (i) { 192 case RPC_DISPLAY_PROTO: 193 case RPC_DISPLAY_NETID: 194 continue; 195 default: 196 kfree(xprt->address_strings[i]); 197 } 198 } 199 200 static void 201 xprt_rdma_connect_worker(struct work_struct *work) 202 { 203 struct rpcrdma_xprt *r_xprt = 204 container_of(work, struct rpcrdma_xprt, rdma_connect.work); 205 struct rpc_xprt *xprt = &r_xprt->xprt; 206 int rc = 0; 207 208 xprt_clear_connected(xprt); 209 210 dprintk("RPC: %s: %sconnect\n", __func__, 211 r_xprt->rx_ep.rep_connected != 0 ? "re" : ""); 212 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia); 213 if (rc) 214 xprt_wake_pending_tasks(xprt, rc); 215 216 dprintk("RPC: %s: exit\n", __func__); 217 xprt_clear_connecting(xprt); 218 } 219 220 /* 221 * xprt_rdma_destroy 222 * 223 * Destroy the xprt. 224 * Free all memory associated with the object, including its own. 225 * NOTE: none of the *destroy methods free memory for their top-level 226 * objects, even though they may have allocated it (they do free 227 * private memory). It's up to the caller to handle it. In this 228 * case (RDMA transport), all structure memory is inlined with the 229 * struct rpcrdma_xprt. 230 */ 231 static void 232 xprt_rdma_destroy(struct rpc_xprt *xprt) 233 { 234 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 235 236 dprintk("RPC: %s: called\n", __func__); 237 238 cancel_delayed_work_sync(&r_xprt->rdma_connect); 239 240 xprt_clear_connected(xprt); 241 242 rpcrdma_buffer_destroy(&r_xprt->rx_buf); 243 rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia); 244 rpcrdma_ia_close(&r_xprt->rx_ia); 245 246 xprt_rdma_free_addresses(xprt); 247 248 xprt_free(xprt); 249 250 dprintk("RPC: %s: returning\n", __func__); 251 252 module_put(THIS_MODULE); 253 } 254 255 static const struct rpc_timeout xprt_rdma_default_timeout = { 256 .to_initval = 60 * HZ, 257 .to_maxval = 60 * HZ, 258 }; 259 260 /** 261 * xprt_setup_rdma - Set up transport to use RDMA 262 * 263 * @args: rpc transport arguments 264 */ 265 static struct rpc_xprt * 266 xprt_setup_rdma(struct xprt_create *args) 267 { 268 struct rpcrdma_create_data_internal cdata; 269 struct rpc_xprt *xprt; 270 struct rpcrdma_xprt *new_xprt; 271 struct rpcrdma_ep *new_ep; 272 struct sockaddr_in *sin; 273 int rc; 274 275 if (args->addrlen > sizeof(xprt->addr)) { 276 dprintk("RPC: %s: address too large\n", __func__); 277 return ERR_PTR(-EBADF); 278 } 279 280 xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt), 281 xprt_rdma_slot_table_entries, 282 xprt_rdma_slot_table_entries); 283 if (xprt == NULL) { 284 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n", 285 __func__); 286 return ERR_PTR(-ENOMEM); 287 } 288 289 /* 60 second timeout, no retries */ 290 xprt->timeout = &xprt_rdma_default_timeout; 291 xprt->bind_timeout = RPCRDMA_BIND_TO; 292 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; 293 xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO; 294 295 xprt->resvport = 0; /* privileged port not needed */ 296 xprt->tsh_size = 0; /* RPC-RDMA handles framing */ 297 xprt->ops = &xprt_rdma_procs; 298 299 /* 300 * Set up RDMA-specific connect data. 301 */ 302 303 /* Put server RDMA address in local cdata */ 304 memcpy(&cdata.addr, args->dstaddr, args->addrlen); 305 306 /* Ensure xprt->addr holds valid server TCP (not RDMA) 307 * address, for any side protocols which peek at it */ 308 xprt->prot = IPPROTO_TCP; 309 xprt->addrlen = args->addrlen; 310 memcpy(&xprt->addr, &cdata.addr, xprt->addrlen); 311 312 sin = (struct sockaddr_in *)&cdata.addr; 313 if (ntohs(sin->sin_port) != 0) 314 xprt_set_bound(xprt); 315 316 dprintk("RPC: %s: %pI4:%u\n", 317 __func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port)); 318 319 /* Set max requests */ 320 cdata.max_requests = xprt->max_reqs; 321 322 /* Set some length limits */ 323 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */ 324 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */ 325 326 cdata.inline_wsize = xprt_rdma_max_inline_write; 327 if (cdata.inline_wsize > cdata.wsize) 328 cdata.inline_wsize = cdata.wsize; 329 330 cdata.inline_rsize = xprt_rdma_max_inline_read; 331 if (cdata.inline_rsize > cdata.rsize) 332 cdata.inline_rsize = cdata.rsize; 333 334 cdata.padding = xprt_rdma_inline_write_padding; 335 336 /* 337 * Create new transport instance, which includes initialized 338 * o ia 339 * o endpoint 340 * o buffers 341 */ 342 343 new_xprt = rpcx_to_rdmax(xprt); 344 345 rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr, 346 xprt_rdma_memreg_strategy); 347 if (rc) 348 goto out1; 349 350 /* 351 * initialize and create ep 352 */ 353 new_xprt->rx_data = cdata; 354 new_ep = &new_xprt->rx_ep; 355 new_ep->rep_remote_addr = cdata.addr; 356 357 rc = rpcrdma_ep_create(&new_xprt->rx_ep, 358 &new_xprt->rx_ia, &new_xprt->rx_data); 359 if (rc) 360 goto out2; 361 362 /* 363 * Allocate pre-registered send and receive buffers for headers and 364 * any inline data. Also specify any padding which will be provided 365 * from a preregistered zero buffer. 366 */ 367 rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia, 368 &new_xprt->rx_data); 369 if (rc) 370 goto out3; 371 372 /* 373 * Register a callback for connection events. This is necessary because 374 * connection loss notification is async. We also catch connection loss 375 * when reaping receives. 376 */ 377 INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker); 378 new_ep->rep_func = rpcrdma_conn_func; 379 new_ep->rep_xprt = xprt; 380 381 xprt_rdma_format_addresses(xprt); 382 xprt->max_payload = rpcrdma_max_payload(new_xprt); 383 dprintk("RPC: %s: transport data payload maximum: %zu bytes\n", 384 __func__, xprt->max_payload); 385 386 if (!try_module_get(THIS_MODULE)) 387 goto out4; 388 389 return xprt; 390 391 out4: 392 xprt_rdma_free_addresses(xprt); 393 rc = -EINVAL; 394 out3: 395 rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia); 396 out2: 397 rpcrdma_ia_close(&new_xprt->rx_ia); 398 out1: 399 xprt_free(xprt); 400 return ERR_PTR(rc); 401 } 402 403 /* 404 * Close a connection, during shutdown or timeout/reconnect 405 */ 406 static void 407 xprt_rdma_close(struct rpc_xprt *xprt) 408 { 409 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 410 411 dprintk("RPC: %s: closing\n", __func__); 412 if (r_xprt->rx_ep.rep_connected > 0) 413 xprt->reestablish_timeout = 0; 414 xprt_disconnect_done(xprt); 415 rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia); 416 } 417 418 static void 419 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port) 420 { 421 struct sockaddr_in *sap; 422 423 sap = (struct sockaddr_in *)&xprt->addr; 424 sap->sin_port = htons(port); 425 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr; 426 sap->sin_port = htons(port); 427 dprintk("RPC: %s: %u\n", __func__, port); 428 } 429 430 static void 431 xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task) 432 { 433 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 434 435 if (r_xprt->rx_ep.rep_connected != 0) { 436 /* Reconnect */ 437 schedule_delayed_work(&r_xprt->rdma_connect, 438 xprt->reestablish_timeout); 439 xprt->reestablish_timeout <<= 1; 440 if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO) 441 xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO; 442 else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO) 443 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; 444 } else { 445 schedule_delayed_work(&r_xprt->rdma_connect, 0); 446 if (!RPC_IS_ASYNC(task)) 447 flush_delayed_work(&r_xprt->rdma_connect); 448 } 449 } 450 451 /* 452 * The RDMA allocate/free functions need the task structure as a place 453 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv 454 * sequence. For this reason, the recv buffers are attached to send 455 * buffers for portions of the RPC. Note that the RPC layer allocates 456 * both send and receive buffers in the same call. We may register 457 * the receive buffer portion when using reply chunks. 458 */ 459 static void * 460 xprt_rdma_allocate(struct rpc_task *task, size_t size) 461 { 462 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 463 struct rpcrdma_req *req, *nreq; 464 465 req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf); 466 if (req == NULL) 467 return NULL; 468 469 if (size > req->rl_size) { 470 dprintk("RPC: %s: size %zd too large for buffer[%zd]: " 471 "prog %d vers %d proc %d\n", 472 __func__, size, req->rl_size, 473 task->tk_client->cl_prog, task->tk_client->cl_vers, 474 task->tk_msg.rpc_proc->p_proc); 475 /* 476 * Outgoing length shortage. Our inline write max must have 477 * been configured to perform direct i/o. 478 * 479 * This is therefore a large metadata operation, and the 480 * allocate call was made on the maximum possible message, 481 * e.g. containing long filename(s) or symlink data. In 482 * fact, while these metadata operations *might* carry 483 * large outgoing payloads, they rarely *do*. However, we 484 * have to commit to the request here, so reallocate and 485 * register it now. The data path will never require this 486 * reallocation. 487 * 488 * If the allocation or registration fails, the RPC framework 489 * will (doggedly) retry. 490 */ 491 if (task->tk_flags & RPC_TASK_SWAPPER) 492 nreq = kmalloc(sizeof *req + size, GFP_ATOMIC); 493 else 494 nreq = kmalloc(sizeof *req + size, GFP_NOFS); 495 if (nreq == NULL) 496 goto outfail; 497 498 if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia, 499 nreq->rl_base, size + sizeof(struct rpcrdma_req) 500 - offsetof(struct rpcrdma_req, rl_base), 501 &nreq->rl_handle, &nreq->rl_iov)) { 502 kfree(nreq); 503 goto outfail; 504 } 505 rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size; 506 nreq->rl_size = size; 507 nreq->rl_niovs = 0; 508 nreq->rl_nchunks = 0; 509 nreq->rl_buffer = (struct rpcrdma_buffer *)req; 510 nreq->rl_reply = req->rl_reply; 511 memcpy(nreq->rl_segments, 512 req->rl_segments, sizeof nreq->rl_segments); 513 /* flag the swap with an unused field */ 514 nreq->rl_iov.length = 0; 515 req->rl_reply = NULL; 516 req = nreq; 517 } 518 dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req); 519 req->rl_connect_cookie = 0; /* our reserved value */ 520 return req->rl_xdr_buf; 521 522 outfail: 523 rpcrdma_buffer_put(req); 524 rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++; 525 return NULL; 526 } 527 528 /* 529 * This function returns all RDMA resources to the pool. 530 */ 531 static void 532 xprt_rdma_free(void *buffer) 533 { 534 struct rpcrdma_req *req; 535 struct rpcrdma_xprt *r_xprt; 536 struct rpcrdma_rep *rep; 537 int i; 538 539 if (buffer == NULL) 540 return; 541 542 req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]); 543 if (req->rl_iov.length == 0) { /* see allocate above */ 544 r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer, 545 struct rpcrdma_xprt, rx_buf); 546 } else 547 r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf); 548 rep = req->rl_reply; 549 550 dprintk("RPC: %s: called on 0x%p%s\n", 551 __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : ""); 552 553 /* 554 * Finish the deregistration. The process is considered 555 * complete when the rr_func vector becomes NULL - this 556 * was put in place during rpcrdma_reply_handler() - the wait 557 * call below will not block if the dereg is "done". If 558 * interrupted, our framework will clean up. 559 */ 560 for (i = 0; req->rl_nchunks;) { 561 --req->rl_nchunks; 562 i += rpcrdma_deregister_external( 563 &req->rl_segments[i], r_xprt); 564 } 565 566 if (req->rl_iov.length == 0) { /* see allocate above */ 567 struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer; 568 oreq->rl_reply = req->rl_reply; 569 (void) rpcrdma_deregister_internal(&r_xprt->rx_ia, 570 req->rl_handle, 571 &req->rl_iov); 572 kfree(req); 573 req = oreq; 574 } 575 576 /* Put back request+reply buffers */ 577 rpcrdma_buffer_put(req); 578 } 579 580 /* 581 * send_request invokes the meat of RPC RDMA. It must do the following: 582 * 1. Marshal the RPC request into an RPC RDMA request, which means 583 * putting a header in front of data, and creating IOVs for RDMA 584 * from those in the request. 585 * 2. In marshaling, detect opportunities for RDMA, and use them. 586 * 3. Post a recv message to set up asynch completion, then send 587 * the request (rpcrdma_ep_post). 588 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP). 589 */ 590 591 static int 592 xprt_rdma_send_request(struct rpc_task *task) 593 { 594 struct rpc_rqst *rqst = task->tk_rqstp; 595 struct rpc_xprt *xprt = rqst->rq_xprt; 596 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 597 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 598 int rc = 0; 599 600 if (req->rl_niovs == 0) 601 rc = rpcrdma_marshal_req(rqst); 602 else if (r_xprt->rx_ia.ri_memreg_strategy != RPCRDMA_ALLPHYSICAL) 603 rc = rpcrdma_marshal_chunks(rqst, 0); 604 if (rc < 0) 605 goto failed_marshal; 606 607 if (req->rl_reply == NULL) /* e.g. reconnection */ 608 rpcrdma_recv_buffer_get(req); 609 610 if (req->rl_reply) { 611 req->rl_reply->rr_func = rpcrdma_reply_handler; 612 /* this need only be done once, but... */ 613 req->rl_reply->rr_xprt = xprt; 614 } 615 616 /* Must suppress retransmit to maintain credits */ 617 if (req->rl_connect_cookie == xprt->connect_cookie) 618 goto drop_connection; 619 req->rl_connect_cookie = xprt->connect_cookie; 620 621 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req)) 622 goto drop_connection; 623 624 rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len; 625 rqst->rq_bytes_sent = 0; 626 return 0; 627 628 failed_marshal: 629 r_xprt->rx_stats.failed_marshal_count++; 630 dprintk("RPC: %s: rpcrdma_marshal_req failed, status %i\n", 631 __func__, rc); 632 if (rc == -EIO) 633 return -EIO; 634 drop_connection: 635 xprt_disconnect_done(xprt); 636 return -ENOTCONN; /* implies disconnect */ 637 } 638 639 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 640 { 641 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 642 long idle_time = 0; 643 644 if (xprt_connected(xprt)) 645 idle_time = (long)(jiffies - xprt->last_used) / HZ; 646 647 seq_printf(seq, 648 "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu " 649 "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n", 650 651 0, /* need a local port? */ 652 xprt->stat.bind_count, 653 xprt->stat.connect_count, 654 xprt->stat.connect_time, 655 idle_time, 656 xprt->stat.sends, 657 xprt->stat.recvs, 658 xprt->stat.bad_xids, 659 xprt->stat.req_u, 660 xprt->stat.bklog_u, 661 662 r_xprt->rx_stats.read_chunk_count, 663 r_xprt->rx_stats.write_chunk_count, 664 r_xprt->rx_stats.reply_chunk_count, 665 r_xprt->rx_stats.total_rdma_request, 666 r_xprt->rx_stats.total_rdma_reply, 667 r_xprt->rx_stats.pullup_copy_count, 668 r_xprt->rx_stats.fixup_copy_count, 669 r_xprt->rx_stats.hardway_register_count, 670 r_xprt->rx_stats.failed_marshal_count, 671 r_xprt->rx_stats.bad_reply_count); 672 } 673 674 /* 675 * Plumbing for rpc transport switch and kernel module 676 */ 677 678 static struct rpc_xprt_ops xprt_rdma_procs = { 679 .reserve_xprt = xprt_reserve_xprt_cong, 680 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */ 681 .alloc_slot = xprt_alloc_slot, 682 .release_request = xprt_release_rqst_cong, /* ditto */ 683 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */ 684 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */ 685 .set_port = xprt_rdma_set_port, 686 .connect = xprt_rdma_connect, 687 .buf_alloc = xprt_rdma_allocate, 688 .buf_free = xprt_rdma_free, 689 .send_request = xprt_rdma_send_request, 690 .close = xprt_rdma_close, 691 .destroy = xprt_rdma_destroy, 692 .print_stats = xprt_rdma_print_stats 693 }; 694 695 static struct xprt_class xprt_rdma = { 696 .list = LIST_HEAD_INIT(xprt_rdma.list), 697 .name = "rdma", 698 .owner = THIS_MODULE, 699 .ident = XPRT_TRANSPORT_RDMA, 700 .setup = xprt_setup_rdma, 701 }; 702 703 static void __exit xprt_rdma_cleanup(void) 704 { 705 int rc; 706 707 dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n"); 708 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 709 if (sunrpc_table_header) { 710 unregister_sysctl_table(sunrpc_table_header); 711 sunrpc_table_header = NULL; 712 } 713 #endif 714 rc = xprt_unregister_transport(&xprt_rdma); 715 if (rc) 716 dprintk("RPC: %s: xprt_unregister returned %i\n", 717 __func__, rc); 718 } 719 720 static int __init xprt_rdma_init(void) 721 { 722 int rc; 723 724 rc = xprt_register_transport(&xprt_rdma); 725 726 if (rc) 727 return rc; 728 729 dprintk("RPCRDMA Module Init, register RPC RDMA transport\n"); 730 731 dprintk("Defaults:\n"); 732 dprintk("\tSlots %d\n" 733 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n", 734 xprt_rdma_slot_table_entries, 735 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write); 736 dprintk("\tPadding %d\n\tMemreg %d\n", 737 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy); 738 739 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 740 if (!sunrpc_table_header) 741 sunrpc_table_header = register_sysctl_table(sunrpc_table); 742 #endif 743 return 0; 744 } 745 746 module_init(xprt_rdma_init); 747 module_exit(xprt_rdma_cleanup); 748