1 /* 2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the BSD-type 8 * license below: 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 14 * Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 17 * Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials provided 20 * with the distribution. 21 * 22 * Neither the name of the Network Appliance, Inc. nor the names of 23 * its contributors may be used to endorse or promote products 24 * derived from this software without specific prior written 25 * permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * transport.c 42 * 43 * This file contains the top-level implementation of an RPC RDMA 44 * transport. 45 * 46 * Naming convention: functions beginning with xprt_ are part of the 47 * transport switch. All others are RPC RDMA internal. 48 */ 49 50 #include <linux/module.h> 51 #include <linux/init.h> 52 #include <linux/seq_file.h> 53 54 #include "xprt_rdma.h" 55 56 #ifdef RPC_DEBUG 57 # define RPCDBG_FACILITY RPCDBG_TRANS 58 #endif 59 60 MODULE_LICENSE("Dual BSD/GPL"); 61 62 MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS"); 63 MODULE_AUTHOR("Network Appliance, Inc."); 64 65 /* 66 * tunables 67 */ 68 69 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE; 70 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE; 71 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE; 72 static unsigned int xprt_rdma_inline_write_padding; 73 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR; 74 int xprt_rdma_pad_optimize = 0; 75 76 #ifdef RPC_DEBUG 77 78 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE; 79 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE; 80 static unsigned int zero; 81 static unsigned int max_padding = PAGE_SIZE; 82 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS; 83 static unsigned int max_memreg = RPCRDMA_LAST - 1; 84 85 static struct ctl_table_header *sunrpc_table_header; 86 87 static ctl_table xr_tunables_table[] = { 88 { 89 .ctl_name = CTL_UNNUMBERED, 90 .procname = "rdma_slot_table_entries", 91 .data = &xprt_rdma_slot_table_entries, 92 .maxlen = sizeof(unsigned int), 93 .mode = 0644, 94 .proc_handler = &proc_dointvec_minmax, 95 .strategy = &sysctl_intvec, 96 .extra1 = &min_slot_table_size, 97 .extra2 = &max_slot_table_size 98 }, 99 { 100 .ctl_name = CTL_UNNUMBERED, 101 .procname = "rdma_max_inline_read", 102 .data = &xprt_rdma_max_inline_read, 103 .maxlen = sizeof(unsigned int), 104 .mode = 0644, 105 .proc_handler = &proc_dointvec, 106 .strategy = &sysctl_intvec, 107 }, 108 { 109 .ctl_name = CTL_UNNUMBERED, 110 .procname = "rdma_max_inline_write", 111 .data = &xprt_rdma_max_inline_write, 112 .maxlen = sizeof(unsigned int), 113 .mode = 0644, 114 .proc_handler = &proc_dointvec, 115 .strategy = &sysctl_intvec, 116 }, 117 { 118 .ctl_name = CTL_UNNUMBERED, 119 .procname = "rdma_inline_write_padding", 120 .data = &xprt_rdma_inline_write_padding, 121 .maxlen = sizeof(unsigned int), 122 .mode = 0644, 123 .proc_handler = &proc_dointvec_minmax, 124 .strategy = &sysctl_intvec, 125 .extra1 = &zero, 126 .extra2 = &max_padding, 127 }, 128 { 129 .ctl_name = CTL_UNNUMBERED, 130 .procname = "rdma_memreg_strategy", 131 .data = &xprt_rdma_memreg_strategy, 132 .maxlen = sizeof(unsigned int), 133 .mode = 0644, 134 .proc_handler = &proc_dointvec_minmax, 135 .strategy = &sysctl_intvec, 136 .extra1 = &min_memreg, 137 .extra2 = &max_memreg, 138 }, 139 { 140 .ctl_name = CTL_UNNUMBERED, 141 .procname = "rdma_pad_optimize", 142 .data = &xprt_rdma_pad_optimize, 143 .maxlen = sizeof(unsigned int), 144 .mode = 0644, 145 .proc_handler = &proc_dointvec, 146 }, 147 { 148 .ctl_name = 0, 149 }, 150 }; 151 152 static ctl_table sunrpc_table[] = { 153 { 154 .ctl_name = CTL_SUNRPC, 155 .procname = "sunrpc", 156 .mode = 0555, 157 .child = xr_tunables_table 158 }, 159 { 160 .ctl_name = 0, 161 }, 162 }; 163 164 #endif 165 166 static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */ 167 168 static void 169 xprt_rdma_format_addresses(struct rpc_xprt *xprt) 170 { 171 struct sockaddr *sap = (struct sockaddr *) 172 &rpcx_to_rdmad(xprt).addr; 173 struct sockaddr_in *sin = (struct sockaddr_in *)sap; 174 char buf[64]; 175 176 (void)rpc_ntop(sap, buf, sizeof(buf)); 177 xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL); 178 179 (void)snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); 180 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); 181 182 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma"; 183 184 (void)snprintf(buf, sizeof(buf), "%02x%02x%02x%02x", 185 NIPQUAD(sin->sin_addr.s_addr)); 186 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); 187 188 (void)snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); 189 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); 190 191 /* netid */ 192 xprt->address_strings[RPC_DISPLAY_NETID] = "rdma"; 193 } 194 195 static void 196 xprt_rdma_free_addresses(struct rpc_xprt *xprt) 197 { 198 unsigned int i; 199 200 for (i = 0; i < RPC_DISPLAY_MAX; i++) 201 switch (i) { 202 case RPC_DISPLAY_PROTO: 203 case RPC_DISPLAY_NETID: 204 continue; 205 default: 206 kfree(xprt->address_strings[i]); 207 } 208 } 209 210 static void 211 xprt_rdma_connect_worker(struct work_struct *work) 212 { 213 struct rpcrdma_xprt *r_xprt = 214 container_of(work, struct rpcrdma_xprt, rdma_connect.work); 215 struct rpc_xprt *xprt = &r_xprt->xprt; 216 int rc = 0; 217 218 if (!xprt->shutdown) { 219 xprt_clear_connected(xprt); 220 221 dprintk("RPC: %s: %sconnect\n", __func__, 222 r_xprt->rx_ep.rep_connected != 0 ? "re" : ""); 223 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia); 224 if (rc) 225 goto out; 226 } 227 goto out_clear; 228 229 out: 230 xprt_wake_pending_tasks(xprt, rc); 231 232 out_clear: 233 dprintk("RPC: %s: exit\n", __func__); 234 xprt_clear_connecting(xprt); 235 } 236 237 /* 238 * xprt_rdma_destroy 239 * 240 * Destroy the xprt. 241 * Free all memory associated with the object, including its own. 242 * NOTE: none of the *destroy methods free memory for their top-level 243 * objects, even though they may have allocated it (they do free 244 * private memory). It's up to the caller to handle it. In this 245 * case (RDMA transport), all structure memory is inlined with the 246 * struct rpcrdma_xprt. 247 */ 248 static void 249 xprt_rdma_destroy(struct rpc_xprt *xprt) 250 { 251 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 252 int rc; 253 254 dprintk("RPC: %s: called\n", __func__); 255 256 cancel_delayed_work(&r_xprt->rdma_connect); 257 flush_scheduled_work(); 258 259 xprt_clear_connected(xprt); 260 261 rpcrdma_buffer_destroy(&r_xprt->rx_buf); 262 rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia); 263 if (rc) 264 dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n", 265 __func__, rc); 266 rpcrdma_ia_close(&r_xprt->rx_ia); 267 268 xprt_rdma_free_addresses(xprt); 269 270 kfree(xprt->slot); 271 xprt->slot = NULL; 272 kfree(xprt); 273 274 dprintk("RPC: %s: returning\n", __func__); 275 276 module_put(THIS_MODULE); 277 } 278 279 static const struct rpc_timeout xprt_rdma_default_timeout = { 280 .to_initval = 60 * HZ, 281 .to_maxval = 60 * HZ, 282 }; 283 284 /** 285 * xprt_setup_rdma - Set up transport to use RDMA 286 * 287 * @args: rpc transport arguments 288 */ 289 static struct rpc_xprt * 290 xprt_setup_rdma(struct xprt_create *args) 291 { 292 struct rpcrdma_create_data_internal cdata; 293 struct rpc_xprt *xprt; 294 struct rpcrdma_xprt *new_xprt; 295 struct rpcrdma_ep *new_ep; 296 struct sockaddr_in *sin; 297 int rc; 298 299 if (args->addrlen > sizeof(xprt->addr)) { 300 dprintk("RPC: %s: address too large\n", __func__); 301 return ERR_PTR(-EBADF); 302 } 303 304 xprt = kzalloc(sizeof(struct rpcrdma_xprt), GFP_KERNEL); 305 if (xprt == NULL) { 306 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n", 307 __func__); 308 return ERR_PTR(-ENOMEM); 309 } 310 311 xprt->max_reqs = xprt_rdma_slot_table_entries; 312 xprt->slot = kcalloc(xprt->max_reqs, 313 sizeof(struct rpc_rqst), GFP_KERNEL); 314 if (xprt->slot == NULL) { 315 dprintk("RPC: %s: couldn't allocate %d slots\n", 316 __func__, xprt->max_reqs); 317 kfree(xprt); 318 return ERR_PTR(-ENOMEM); 319 } 320 321 /* 60 second timeout, no retries */ 322 xprt->timeout = &xprt_rdma_default_timeout; 323 xprt->bind_timeout = (60U * HZ); 324 xprt->connect_timeout = (60U * HZ); 325 xprt->reestablish_timeout = (5U * HZ); 326 xprt->idle_timeout = (5U * 60 * HZ); 327 328 xprt->resvport = 0; /* privileged port not needed */ 329 xprt->tsh_size = 0; /* RPC-RDMA handles framing */ 330 xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE; 331 xprt->ops = &xprt_rdma_procs; 332 333 /* 334 * Set up RDMA-specific connect data. 335 */ 336 337 /* Put server RDMA address in local cdata */ 338 memcpy(&cdata.addr, args->dstaddr, args->addrlen); 339 340 /* Ensure xprt->addr holds valid server TCP (not RDMA) 341 * address, for any side protocols which peek at it */ 342 xprt->prot = IPPROTO_TCP; 343 xprt->addrlen = args->addrlen; 344 memcpy(&xprt->addr, &cdata.addr, xprt->addrlen); 345 346 sin = (struct sockaddr_in *)&cdata.addr; 347 if (ntohs(sin->sin_port) != 0) 348 xprt_set_bound(xprt); 349 350 dprintk("RPC: %s: %pI4:%u\n", 351 __func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port)); 352 353 /* Set max requests */ 354 cdata.max_requests = xprt->max_reqs; 355 356 /* Set some length limits */ 357 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */ 358 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */ 359 360 cdata.inline_wsize = xprt_rdma_max_inline_write; 361 if (cdata.inline_wsize > cdata.wsize) 362 cdata.inline_wsize = cdata.wsize; 363 364 cdata.inline_rsize = xprt_rdma_max_inline_read; 365 if (cdata.inline_rsize > cdata.rsize) 366 cdata.inline_rsize = cdata.rsize; 367 368 cdata.padding = xprt_rdma_inline_write_padding; 369 370 /* 371 * Create new transport instance, which includes initialized 372 * o ia 373 * o endpoint 374 * o buffers 375 */ 376 377 new_xprt = rpcx_to_rdmax(xprt); 378 379 rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr, 380 xprt_rdma_memreg_strategy); 381 if (rc) 382 goto out1; 383 384 /* 385 * initialize and create ep 386 */ 387 new_xprt->rx_data = cdata; 388 new_ep = &new_xprt->rx_ep; 389 new_ep->rep_remote_addr = cdata.addr; 390 391 rc = rpcrdma_ep_create(&new_xprt->rx_ep, 392 &new_xprt->rx_ia, &new_xprt->rx_data); 393 if (rc) 394 goto out2; 395 396 /* 397 * Allocate pre-registered send and receive buffers for headers and 398 * any inline data. Also specify any padding which will be provided 399 * from a preregistered zero buffer. 400 */ 401 rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia, 402 &new_xprt->rx_data); 403 if (rc) 404 goto out3; 405 406 /* 407 * Register a callback for connection events. This is necessary because 408 * connection loss notification is async. We also catch connection loss 409 * when reaping receives. 410 */ 411 INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker); 412 new_ep->rep_func = rpcrdma_conn_func; 413 new_ep->rep_xprt = xprt; 414 415 xprt_rdma_format_addresses(xprt); 416 417 if (!try_module_get(THIS_MODULE)) 418 goto out4; 419 420 return xprt; 421 422 out4: 423 xprt_rdma_free_addresses(xprt); 424 rc = -EINVAL; 425 out3: 426 (void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia); 427 out2: 428 rpcrdma_ia_close(&new_xprt->rx_ia); 429 out1: 430 kfree(xprt->slot); 431 kfree(xprt); 432 return ERR_PTR(rc); 433 } 434 435 /* 436 * Close a connection, during shutdown or timeout/reconnect 437 */ 438 static void 439 xprt_rdma_close(struct rpc_xprt *xprt) 440 { 441 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 442 443 dprintk("RPC: %s: closing\n", __func__); 444 if (r_xprt->rx_ep.rep_connected > 0) 445 xprt->reestablish_timeout = 0; 446 xprt_disconnect_done(xprt); 447 (void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia); 448 } 449 450 static void 451 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port) 452 { 453 struct sockaddr_in *sap; 454 455 sap = (struct sockaddr_in *)&xprt->addr; 456 sap->sin_port = htons(port); 457 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr; 458 sap->sin_port = htons(port); 459 dprintk("RPC: %s: %u\n", __func__, port); 460 } 461 462 static void 463 xprt_rdma_connect(struct rpc_task *task) 464 { 465 struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt; 466 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 467 468 if (!xprt_test_and_set_connecting(xprt)) { 469 if (r_xprt->rx_ep.rep_connected != 0) { 470 /* Reconnect */ 471 schedule_delayed_work(&r_xprt->rdma_connect, 472 xprt->reestablish_timeout); 473 xprt->reestablish_timeout <<= 1; 474 if (xprt->reestablish_timeout > (30 * HZ)) 475 xprt->reestablish_timeout = (30 * HZ); 476 else if (xprt->reestablish_timeout < (5 * HZ)) 477 xprt->reestablish_timeout = (5 * HZ); 478 } else { 479 schedule_delayed_work(&r_xprt->rdma_connect, 0); 480 if (!RPC_IS_ASYNC(task)) 481 flush_scheduled_work(); 482 } 483 } 484 } 485 486 static int 487 xprt_rdma_reserve_xprt(struct rpc_task *task) 488 { 489 struct rpc_xprt *xprt = task->tk_xprt; 490 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 491 int credits = atomic_read(&r_xprt->rx_buf.rb_credits); 492 493 /* == RPC_CWNDSCALE @ init, but *after* setup */ 494 if (r_xprt->rx_buf.rb_cwndscale == 0UL) { 495 r_xprt->rx_buf.rb_cwndscale = xprt->cwnd; 496 dprintk("RPC: %s: cwndscale %lu\n", __func__, 497 r_xprt->rx_buf.rb_cwndscale); 498 BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0); 499 } 500 xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale; 501 return xprt_reserve_xprt_cong(task); 502 } 503 504 /* 505 * The RDMA allocate/free functions need the task structure as a place 506 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv 507 * sequence. For this reason, the recv buffers are attached to send 508 * buffers for portions of the RPC. Note that the RPC layer allocates 509 * both send and receive buffers in the same call. We may register 510 * the receive buffer portion when using reply chunks. 511 */ 512 static void * 513 xprt_rdma_allocate(struct rpc_task *task, size_t size) 514 { 515 struct rpc_xprt *xprt = task->tk_xprt; 516 struct rpcrdma_req *req, *nreq; 517 518 req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf); 519 BUG_ON(NULL == req); 520 521 if (size > req->rl_size) { 522 dprintk("RPC: %s: size %zd too large for buffer[%zd]: " 523 "prog %d vers %d proc %d\n", 524 __func__, size, req->rl_size, 525 task->tk_client->cl_prog, task->tk_client->cl_vers, 526 task->tk_msg.rpc_proc->p_proc); 527 /* 528 * Outgoing length shortage. Our inline write max must have 529 * been configured to perform direct i/o. 530 * 531 * This is therefore a large metadata operation, and the 532 * allocate call was made on the maximum possible message, 533 * e.g. containing long filename(s) or symlink data. In 534 * fact, while these metadata operations *might* carry 535 * large outgoing payloads, they rarely *do*. However, we 536 * have to commit to the request here, so reallocate and 537 * register it now. The data path will never require this 538 * reallocation. 539 * 540 * If the allocation or registration fails, the RPC framework 541 * will (doggedly) retry. 542 */ 543 if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy == 544 RPCRDMA_BOUNCEBUFFERS) { 545 /* forced to "pure inline" */ 546 dprintk("RPC: %s: too much data (%zd) for inline " 547 "(r/w max %d/%d)\n", __func__, size, 548 rpcx_to_rdmad(xprt).inline_rsize, 549 rpcx_to_rdmad(xprt).inline_wsize); 550 size = req->rl_size; 551 rpc_exit(task, -EIO); /* fail the operation */ 552 rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++; 553 goto out; 554 } 555 if (task->tk_flags & RPC_TASK_SWAPPER) 556 nreq = kmalloc(sizeof *req + size, GFP_ATOMIC); 557 else 558 nreq = kmalloc(sizeof *req + size, GFP_NOFS); 559 if (nreq == NULL) 560 goto outfail; 561 562 if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia, 563 nreq->rl_base, size + sizeof(struct rpcrdma_req) 564 - offsetof(struct rpcrdma_req, rl_base), 565 &nreq->rl_handle, &nreq->rl_iov)) { 566 kfree(nreq); 567 goto outfail; 568 } 569 rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size; 570 nreq->rl_size = size; 571 nreq->rl_niovs = 0; 572 nreq->rl_nchunks = 0; 573 nreq->rl_buffer = (struct rpcrdma_buffer *)req; 574 nreq->rl_reply = req->rl_reply; 575 memcpy(nreq->rl_segments, 576 req->rl_segments, sizeof nreq->rl_segments); 577 /* flag the swap with an unused field */ 578 nreq->rl_iov.length = 0; 579 req->rl_reply = NULL; 580 req = nreq; 581 } 582 dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req); 583 out: 584 req->rl_connect_cookie = 0; /* our reserved value */ 585 return req->rl_xdr_buf; 586 587 outfail: 588 rpcrdma_buffer_put(req); 589 rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++; 590 return NULL; 591 } 592 593 /* 594 * This function returns all RDMA resources to the pool. 595 */ 596 static void 597 xprt_rdma_free(void *buffer) 598 { 599 struct rpcrdma_req *req; 600 struct rpcrdma_xprt *r_xprt; 601 struct rpcrdma_rep *rep; 602 int i; 603 604 if (buffer == NULL) 605 return; 606 607 req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]); 608 if (req->rl_iov.length == 0) { /* see allocate above */ 609 r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer, 610 struct rpcrdma_xprt, rx_buf); 611 } else 612 r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf); 613 rep = req->rl_reply; 614 615 dprintk("RPC: %s: called on 0x%p%s\n", 616 __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : ""); 617 618 /* 619 * Finish the deregistration. When using mw bind, this was 620 * begun in rpcrdma_reply_handler(). In all other modes, we 621 * do it here, in thread context. The process is considered 622 * complete when the rr_func vector becomes NULL - this 623 * was put in place during rpcrdma_reply_handler() - the wait 624 * call below will not block if the dereg is "done". If 625 * interrupted, our framework will clean up. 626 */ 627 for (i = 0; req->rl_nchunks;) { 628 --req->rl_nchunks; 629 i += rpcrdma_deregister_external( 630 &req->rl_segments[i], r_xprt, NULL); 631 } 632 633 if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) { 634 rep->rr_func = NULL; /* abandon the callback */ 635 req->rl_reply = NULL; 636 } 637 638 if (req->rl_iov.length == 0) { /* see allocate above */ 639 struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer; 640 oreq->rl_reply = req->rl_reply; 641 (void) rpcrdma_deregister_internal(&r_xprt->rx_ia, 642 req->rl_handle, 643 &req->rl_iov); 644 kfree(req); 645 req = oreq; 646 } 647 648 /* Put back request+reply buffers */ 649 rpcrdma_buffer_put(req); 650 } 651 652 /* 653 * send_request invokes the meat of RPC RDMA. It must do the following: 654 * 1. Marshal the RPC request into an RPC RDMA request, which means 655 * putting a header in front of data, and creating IOVs for RDMA 656 * from those in the request. 657 * 2. In marshaling, detect opportunities for RDMA, and use them. 658 * 3. Post a recv message to set up asynch completion, then send 659 * the request (rpcrdma_ep_post). 660 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP). 661 */ 662 663 static int 664 xprt_rdma_send_request(struct rpc_task *task) 665 { 666 struct rpc_rqst *rqst = task->tk_rqstp; 667 struct rpc_xprt *xprt = task->tk_xprt; 668 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 669 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 670 671 /* marshal the send itself */ 672 if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) { 673 r_xprt->rx_stats.failed_marshal_count++; 674 dprintk("RPC: %s: rpcrdma_marshal_req failed\n", 675 __func__); 676 return -EIO; 677 } 678 679 if (req->rl_reply == NULL) /* e.g. reconnection */ 680 rpcrdma_recv_buffer_get(req); 681 682 if (req->rl_reply) { 683 req->rl_reply->rr_func = rpcrdma_reply_handler; 684 /* this need only be done once, but... */ 685 req->rl_reply->rr_xprt = xprt; 686 } 687 688 /* Must suppress retransmit to maintain credits */ 689 if (req->rl_connect_cookie == xprt->connect_cookie) 690 goto drop_connection; 691 req->rl_connect_cookie = xprt->connect_cookie; 692 693 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req)) 694 goto drop_connection; 695 696 task->tk_bytes_sent += rqst->rq_snd_buf.len; 697 rqst->rq_bytes_sent = 0; 698 return 0; 699 700 drop_connection: 701 xprt_disconnect_done(xprt); 702 return -ENOTCONN; /* implies disconnect */ 703 } 704 705 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 706 { 707 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 708 long idle_time = 0; 709 710 if (xprt_connected(xprt)) 711 idle_time = (long)(jiffies - xprt->last_used) / HZ; 712 713 seq_printf(seq, 714 "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu " 715 "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n", 716 717 0, /* need a local port? */ 718 xprt->stat.bind_count, 719 xprt->stat.connect_count, 720 xprt->stat.connect_time, 721 idle_time, 722 xprt->stat.sends, 723 xprt->stat.recvs, 724 xprt->stat.bad_xids, 725 xprt->stat.req_u, 726 xprt->stat.bklog_u, 727 728 r_xprt->rx_stats.read_chunk_count, 729 r_xprt->rx_stats.write_chunk_count, 730 r_xprt->rx_stats.reply_chunk_count, 731 r_xprt->rx_stats.total_rdma_request, 732 r_xprt->rx_stats.total_rdma_reply, 733 r_xprt->rx_stats.pullup_copy_count, 734 r_xprt->rx_stats.fixup_copy_count, 735 r_xprt->rx_stats.hardway_register_count, 736 r_xprt->rx_stats.failed_marshal_count, 737 r_xprt->rx_stats.bad_reply_count); 738 } 739 740 /* 741 * Plumbing for rpc transport switch and kernel module 742 */ 743 744 static struct rpc_xprt_ops xprt_rdma_procs = { 745 .reserve_xprt = xprt_rdma_reserve_xprt, 746 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */ 747 .release_request = xprt_release_rqst_cong, /* ditto */ 748 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */ 749 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */ 750 .set_port = xprt_rdma_set_port, 751 .connect = xprt_rdma_connect, 752 .buf_alloc = xprt_rdma_allocate, 753 .buf_free = xprt_rdma_free, 754 .send_request = xprt_rdma_send_request, 755 .close = xprt_rdma_close, 756 .destroy = xprt_rdma_destroy, 757 .print_stats = xprt_rdma_print_stats 758 }; 759 760 static struct xprt_class xprt_rdma = { 761 .list = LIST_HEAD_INIT(xprt_rdma.list), 762 .name = "rdma", 763 .owner = THIS_MODULE, 764 .ident = XPRT_TRANSPORT_RDMA, 765 .setup = xprt_setup_rdma, 766 }; 767 768 static void __exit xprt_rdma_cleanup(void) 769 { 770 int rc; 771 772 dprintk(KERN_INFO "RPCRDMA Module Removed, deregister RPC RDMA transport\n"); 773 #ifdef RPC_DEBUG 774 if (sunrpc_table_header) { 775 unregister_sysctl_table(sunrpc_table_header); 776 sunrpc_table_header = NULL; 777 } 778 #endif 779 rc = xprt_unregister_transport(&xprt_rdma); 780 if (rc) 781 dprintk("RPC: %s: xprt_unregister returned %i\n", 782 __func__, rc); 783 } 784 785 static int __init xprt_rdma_init(void) 786 { 787 int rc; 788 789 rc = xprt_register_transport(&xprt_rdma); 790 791 if (rc) 792 return rc; 793 794 dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n"); 795 796 dprintk(KERN_INFO "Defaults:\n"); 797 dprintk(KERN_INFO "\tSlots %d\n" 798 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n", 799 xprt_rdma_slot_table_entries, 800 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write); 801 dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n", 802 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy); 803 804 #ifdef RPC_DEBUG 805 if (!sunrpc_table_header) 806 sunrpc_table_header = register_sysctl_table(sunrpc_table); 807 #endif 808 return 0; 809 } 810 811 module_init(xprt_rdma_init); 812 module_exit(xprt_rdma_cleanup); 813