1 /* 2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the BSD-type 8 * license below: 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 14 * Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 17 * Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials provided 20 * with the distribution. 21 * 22 * Neither the name of the Network Appliance, Inc. nor the names of 23 * its contributors may be used to endorse or promote products 24 * derived from this software without specific prior written 25 * permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * transport.c 42 * 43 * This file contains the top-level implementation of an RPC RDMA 44 * transport. 45 * 46 * Naming convention: functions beginning with xprt_ are part of the 47 * transport switch. All others are RPC RDMA internal. 48 */ 49 50 #include <linux/module.h> 51 #include <linux/init.h> 52 #include <linux/slab.h> 53 #include <linux/seq_file.h> 54 #include <linux/sunrpc/addr.h> 55 56 #include "xprt_rdma.h" 57 58 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 59 # define RPCDBG_FACILITY RPCDBG_TRANS 60 #endif 61 62 MODULE_LICENSE("Dual BSD/GPL"); 63 64 MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS"); 65 MODULE_AUTHOR("Network Appliance, Inc."); 66 67 /* 68 * tunables 69 */ 70 71 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE; 72 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE; 73 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE; 74 static unsigned int xprt_rdma_inline_write_padding; 75 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR; 76 int xprt_rdma_pad_optimize = 1; 77 78 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 79 80 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE; 81 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE; 82 static unsigned int zero; 83 static unsigned int max_padding = PAGE_SIZE; 84 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS; 85 static unsigned int max_memreg = RPCRDMA_LAST - 1; 86 87 static struct ctl_table_header *sunrpc_table_header; 88 89 static struct ctl_table xr_tunables_table[] = { 90 { 91 .procname = "rdma_slot_table_entries", 92 .data = &xprt_rdma_slot_table_entries, 93 .maxlen = sizeof(unsigned int), 94 .mode = 0644, 95 .proc_handler = proc_dointvec_minmax, 96 .extra1 = &min_slot_table_size, 97 .extra2 = &max_slot_table_size 98 }, 99 { 100 .procname = "rdma_max_inline_read", 101 .data = &xprt_rdma_max_inline_read, 102 .maxlen = sizeof(unsigned int), 103 .mode = 0644, 104 .proc_handler = proc_dointvec, 105 }, 106 { 107 .procname = "rdma_max_inline_write", 108 .data = &xprt_rdma_max_inline_write, 109 .maxlen = sizeof(unsigned int), 110 .mode = 0644, 111 .proc_handler = proc_dointvec, 112 }, 113 { 114 .procname = "rdma_inline_write_padding", 115 .data = &xprt_rdma_inline_write_padding, 116 .maxlen = sizeof(unsigned int), 117 .mode = 0644, 118 .proc_handler = proc_dointvec_minmax, 119 .extra1 = &zero, 120 .extra2 = &max_padding, 121 }, 122 { 123 .procname = "rdma_memreg_strategy", 124 .data = &xprt_rdma_memreg_strategy, 125 .maxlen = sizeof(unsigned int), 126 .mode = 0644, 127 .proc_handler = proc_dointvec_minmax, 128 .extra1 = &min_memreg, 129 .extra2 = &max_memreg, 130 }, 131 { 132 .procname = "rdma_pad_optimize", 133 .data = &xprt_rdma_pad_optimize, 134 .maxlen = sizeof(unsigned int), 135 .mode = 0644, 136 .proc_handler = proc_dointvec, 137 }, 138 { }, 139 }; 140 141 static struct ctl_table sunrpc_table[] = { 142 { 143 .procname = "sunrpc", 144 .mode = 0555, 145 .child = xr_tunables_table 146 }, 147 { }, 148 }; 149 150 #endif 151 152 #define RPCRDMA_BIND_TO (60U * HZ) 153 #define RPCRDMA_INIT_REEST_TO (5U * HZ) 154 #define RPCRDMA_MAX_REEST_TO (30U * HZ) 155 #define RPCRDMA_IDLE_DISC_TO (5U * 60 * HZ) 156 157 static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */ 158 159 static void 160 xprt_rdma_format_addresses(struct rpc_xprt *xprt) 161 { 162 struct sockaddr *sap = (struct sockaddr *) 163 &rpcx_to_rdmad(xprt).addr; 164 struct sockaddr_in *sin = (struct sockaddr_in *)sap; 165 char buf[64]; 166 167 (void)rpc_ntop(sap, buf, sizeof(buf)); 168 xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL); 169 170 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); 171 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); 172 173 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma"; 174 175 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr)); 176 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); 177 178 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); 179 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); 180 181 /* netid */ 182 xprt->address_strings[RPC_DISPLAY_NETID] = "rdma"; 183 } 184 185 static void 186 xprt_rdma_free_addresses(struct rpc_xprt *xprt) 187 { 188 unsigned int i; 189 190 for (i = 0; i < RPC_DISPLAY_MAX; i++) 191 switch (i) { 192 case RPC_DISPLAY_PROTO: 193 case RPC_DISPLAY_NETID: 194 continue; 195 default: 196 kfree(xprt->address_strings[i]); 197 } 198 } 199 200 static void 201 xprt_rdma_connect_worker(struct work_struct *work) 202 { 203 struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt, 204 rx_connect_worker.work); 205 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 206 int rc = 0; 207 208 xprt_clear_connected(xprt); 209 210 dprintk("RPC: %s: %sconnect\n", __func__, 211 r_xprt->rx_ep.rep_connected != 0 ? "re" : ""); 212 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia); 213 if (rc) 214 xprt_wake_pending_tasks(xprt, rc); 215 216 dprintk("RPC: %s: exit\n", __func__); 217 xprt_clear_connecting(xprt); 218 } 219 220 /* 221 * xprt_rdma_destroy 222 * 223 * Destroy the xprt. 224 * Free all memory associated with the object, including its own. 225 * NOTE: none of the *destroy methods free memory for their top-level 226 * objects, even though they may have allocated it (they do free 227 * private memory). It's up to the caller to handle it. In this 228 * case (RDMA transport), all structure memory is inlined with the 229 * struct rpcrdma_xprt. 230 */ 231 static void 232 xprt_rdma_destroy(struct rpc_xprt *xprt) 233 { 234 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 235 236 dprintk("RPC: %s: called\n", __func__); 237 238 cancel_delayed_work_sync(&r_xprt->rx_connect_worker); 239 240 xprt_clear_connected(xprt); 241 242 rpcrdma_buffer_destroy(&r_xprt->rx_buf); 243 rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia); 244 rpcrdma_ia_close(&r_xprt->rx_ia); 245 246 xprt_rdma_free_addresses(xprt); 247 248 xprt_free(xprt); 249 250 dprintk("RPC: %s: returning\n", __func__); 251 252 module_put(THIS_MODULE); 253 } 254 255 static const struct rpc_timeout xprt_rdma_default_timeout = { 256 .to_initval = 60 * HZ, 257 .to_maxval = 60 * HZ, 258 }; 259 260 /** 261 * xprt_setup_rdma - Set up transport to use RDMA 262 * 263 * @args: rpc transport arguments 264 */ 265 static struct rpc_xprt * 266 xprt_setup_rdma(struct xprt_create *args) 267 { 268 struct rpcrdma_create_data_internal cdata; 269 struct rpc_xprt *xprt; 270 struct rpcrdma_xprt *new_xprt; 271 struct rpcrdma_ep *new_ep; 272 struct sockaddr_in *sin; 273 int rc; 274 275 if (args->addrlen > sizeof(xprt->addr)) { 276 dprintk("RPC: %s: address too large\n", __func__); 277 return ERR_PTR(-EBADF); 278 } 279 280 xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt), 281 xprt_rdma_slot_table_entries, 282 xprt_rdma_slot_table_entries); 283 if (xprt == NULL) { 284 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n", 285 __func__); 286 return ERR_PTR(-ENOMEM); 287 } 288 289 /* 60 second timeout, no retries */ 290 xprt->timeout = &xprt_rdma_default_timeout; 291 xprt->bind_timeout = RPCRDMA_BIND_TO; 292 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; 293 xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO; 294 295 xprt->resvport = 0; /* privileged port not needed */ 296 xprt->tsh_size = 0; /* RPC-RDMA handles framing */ 297 xprt->ops = &xprt_rdma_procs; 298 299 /* 300 * Set up RDMA-specific connect data. 301 */ 302 303 /* Put server RDMA address in local cdata */ 304 memcpy(&cdata.addr, args->dstaddr, args->addrlen); 305 306 /* Ensure xprt->addr holds valid server TCP (not RDMA) 307 * address, for any side protocols which peek at it */ 308 xprt->prot = IPPROTO_TCP; 309 xprt->addrlen = args->addrlen; 310 memcpy(&xprt->addr, &cdata.addr, xprt->addrlen); 311 312 sin = (struct sockaddr_in *)&cdata.addr; 313 if (ntohs(sin->sin_port) != 0) 314 xprt_set_bound(xprt); 315 316 dprintk("RPC: %s: %pI4:%u\n", 317 __func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port)); 318 319 /* Set max requests */ 320 cdata.max_requests = xprt->max_reqs; 321 322 /* Set some length limits */ 323 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */ 324 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */ 325 326 cdata.inline_wsize = xprt_rdma_max_inline_write; 327 if (cdata.inline_wsize > cdata.wsize) 328 cdata.inline_wsize = cdata.wsize; 329 330 cdata.inline_rsize = xprt_rdma_max_inline_read; 331 if (cdata.inline_rsize > cdata.rsize) 332 cdata.inline_rsize = cdata.rsize; 333 334 cdata.padding = xprt_rdma_inline_write_padding; 335 336 /* 337 * Create new transport instance, which includes initialized 338 * o ia 339 * o endpoint 340 * o buffers 341 */ 342 343 new_xprt = rpcx_to_rdmax(xprt); 344 345 rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr, 346 xprt_rdma_memreg_strategy); 347 if (rc) 348 goto out1; 349 350 /* 351 * initialize and create ep 352 */ 353 new_xprt->rx_data = cdata; 354 new_ep = &new_xprt->rx_ep; 355 new_ep->rep_remote_addr = cdata.addr; 356 357 rc = rpcrdma_ep_create(&new_xprt->rx_ep, 358 &new_xprt->rx_ia, &new_xprt->rx_data); 359 if (rc) 360 goto out2; 361 362 /* 363 * Allocate pre-registered send and receive buffers for headers and 364 * any inline data. Also specify any padding which will be provided 365 * from a preregistered zero buffer. 366 */ 367 rc = rpcrdma_buffer_create(new_xprt); 368 if (rc) 369 goto out3; 370 371 /* 372 * Register a callback for connection events. This is necessary because 373 * connection loss notification is async. We also catch connection loss 374 * when reaping receives. 375 */ 376 INIT_DELAYED_WORK(&new_xprt->rx_connect_worker, 377 xprt_rdma_connect_worker); 378 379 xprt_rdma_format_addresses(xprt); 380 xprt->max_payload = rpcrdma_max_payload(new_xprt); 381 dprintk("RPC: %s: transport data payload maximum: %zu bytes\n", 382 __func__, xprt->max_payload); 383 384 if (!try_module_get(THIS_MODULE)) 385 goto out4; 386 387 return xprt; 388 389 out4: 390 xprt_rdma_free_addresses(xprt); 391 rc = -EINVAL; 392 out3: 393 rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia); 394 out2: 395 rpcrdma_ia_close(&new_xprt->rx_ia); 396 out1: 397 xprt_free(xprt); 398 return ERR_PTR(rc); 399 } 400 401 /* 402 * Close a connection, during shutdown or timeout/reconnect 403 */ 404 static void 405 xprt_rdma_close(struct rpc_xprt *xprt) 406 { 407 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 408 409 dprintk("RPC: %s: closing\n", __func__); 410 if (r_xprt->rx_ep.rep_connected > 0) 411 xprt->reestablish_timeout = 0; 412 xprt_disconnect_done(xprt); 413 rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia); 414 } 415 416 static void 417 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port) 418 { 419 struct sockaddr_in *sap; 420 421 sap = (struct sockaddr_in *)&xprt->addr; 422 sap->sin_port = htons(port); 423 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr; 424 sap->sin_port = htons(port); 425 dprintk("RPC: %s: %u\n", __func__, port); 426 } 427 428 static void 429 xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task) 430 { 431 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 432 433 if (r_xprt->rx_ep.rep_connected != 0) { 434 /* Reconnect */ 435 schedule_delayed_work(&r_xprt->rx_connect_worker, 436 xprt->reestablish_timeout); 437 xprt->reestablish_timeout <<= 1; 438 if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO) 439 xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO; 440 else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO) 441 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; 442 } else { 443 schedule_delayed_work(&r_xprt->rx_connect_worker, 0); 444 if (!RPC_IS_ASYNC(task)) 445 flush_delayed_work(&r_xprt->rx_connect_worker); 446 } 447 } 448 449 /* 450 * The RDMA allocate/free functions need the task structure as a place 451 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv 452 * sequence. 453 * 454 * The RPC layer allocates both send and receive buffers in the same call 455 * (rq_send_buf and rq_rcv_buf are both part of a single contiguous buffer). 456 * We may register rq_rcv_buf when using reply chunks. 457 */ 458 static void * 459 xprt_rdma_allocate(struct rpc_task *task, size_t size) 460 { 461 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 462 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 463 struct rpcrdma_regbuf *rb; 464 struct rpcrdma_req *req; 465 size_t min_size; 466 gfp_t flags; 467 468 req = rpcrdma_buffer_get(&r_xprt->rx_buf); 469 if (req == NULL) 470 return NULL; 471 472 flags = GFP_NOIO | __GFP_NOWARN; 473 if (RPC_IS_SWAPPER(task)) 474 flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN; 475 476 if (req->rl_rdmabuf == NULL) 477 goto out_rdmabuf; 478 if (req->rl_sendbuf == NULL) 479 goto out_sendbuf; 480 if (size > req->rl_sendbuf->rg_size) 481 goto out_sendbuf; 482 483 out: 484 dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req); 485 req->rl_connect_cookie = 0; /* our reserved value */ 486 return req->rl_sendbuf->rg_base; 487 488 out_rdmabuf: 489 min_size = RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp); 490 rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, min_size, flags); 491 if (IS_ERR(rb)) 492 goto out_fail; 493 req->rl_rdmabuf = rb; 494 495 out_sendbuf: 496 /* XDR encoding and RPC/RDMA marshaling of this request has not 497 * yet occurred. Thus a lower bound is needed to prevent buffer 498 * overrun during marshaling. 499 * 500 * RPC/RDMA marshaling may choose to send payload bearing ops 501 * inline, if the result is smaller than the inline threshold. 502 * The value of the "size" argument accounts for header 503 * requirements but not for the payload in these cases. 504 * 505 * Likewise, allocate enough space to receive a reply up to the 506 * size of the inline threshold. 507 * 508 * It's unlikely that both the send header and the received 509 * reply will be large, but slush is provided here to allow 510 * flexibility when marshaling. 511 */ 512 min_size = RPCRDMA_INLINE_READ_THRESHOLD(task->tk_rqstp); 513 min_size += RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp); 514 if (size < min_size) 515 size = min_size; 516 517 rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, size, flags); 518 if (IS_ERR(rb)) 519 goto out_fail; 520 rb->rg_owner = req; 521 522 r_xprt->rx_stats.hardway_register_count += size; 523 rpcrdma_free_regbuf(&r_xprt->rx_ia, req->rl_sendbuf); 524 req->rl_sendbuf = rb; 525 goto out; 526 527 out_fail: 528 rpcrdma_buffer_put(req); 529 r_xprt->rx_stats.failed_marshal_count++; 530 return NULL; 531 } 532 533 /* 534 * This function returns all RDMA resources to the pool. 535 */ 536 static void 537 xprt_rdma_free(void *buffer) 538 { 539 struct rpcrdma_req *req; 540 struct rpcrdma_xprt *r_xprt; 541 struct rpcrdma_regbuf *rb; 542 int i; 543 544 if (buffer == NULL) 545 return; 546 547 rb = container_of(buffer, struct rpcrdma_regbuf, rg_base[0]); 548 req = rb->rg_owner; 549 r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf); 550 551 dprintk("RPC: %s: called on 0x%p\n", __func__, req->rl_reply); 552 553 for (i = 0; req->rl_nchunks;) { 554 --req->rl_nchunks; 555 i += rpcrdma_deregister_external( 556 &req->rl_segments[i], r_xprt); 557 } 558 559 rpcrdma_buffer_put(req); 560 } 561 562 /* 563 * send_request invokes the meat of RPC RDMA. It must do the following: 564 * 1. Marshal the RPC request into an RPC RDMA request, which means 565 * putting a header in front of data, and creating IOVs for RDMA 566 * from those in the request. 567 * 2. In marshaling, detect opportunities for RDMA, and use them. 568 * 3. Post a recv message to set up asynch completion, then send 569 * the request (rpcrdma_ep_post). 570 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP). 571 */ 572 573 static int 574 xprt_rdma_send_request(struct rpc_task *task) 575 { 576 struct rpc_rqst *rqst = task->tk_rqstp; 577 struct rpc_xprt *xprt = rqst->rq_xprt; 578 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 579 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 580 int rc = 0; 581 582 if (req->rl_niovs == 0) 583 rc = rpcrdma_marshal_req(rqst); 584 else if (r_xprt->rx_ia.ri_memreg_strategy != RPCRDMA_ALLPHYSICAL) 585 rc = rpcrdma_marshal_chunks(rqst, 0); 586 if (rc < 0) 587 goto failed_marshal; 588 589 if (req->rl_reply == NULL) /* e.g. reconnection */ 590 rpcrdma_recv_buffer_get(req); 591 592 if (req->rl_reply) { 593 req->rl_reply->rr_func = rpcrdma_reply_handler; 594 /* this need only be done once, but... */ 595 req->rl_reply->rr_xprt = xprt; 596 } 597 598 /* Must suppress retransmit to maintain credits */ 599 if (req->rl_connect_cookie == xprt->connect_cookie) 600 goto drop_connection; 601 req->rl_connect_cookie = xprt->connect_cookie; 602 603 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req)) 604 goto drop_connection; 605 606 rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len; 607 rqst->rq_bytes_sent = 0; 608 return 0; 609 610 failed_marshal: 611 r_xprt->rx_stats.failed_marshal_count++; 612 dprintk("RPC: %s: rpcrdma_marshal_req failed, status %i\n", 613 __func__, rc); 614 if (rc == -EIO) 615 return -EIO; 616 drop_connection: 617 xprt_disconnect_done(xprt); 618 return -ENOTCONN; /* implies disconnect */ 619 } 620 621 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 622 { 623 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 624 long idle_time = 0; 625 626 if (xprt_connected(xprt)) 627 idle_time = (long)(jiffies - xprt->last_used) / HZ; 628 629 seq_printf(seq, 630 "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu " 631 "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n", 632 633 0, /* need a local port? */ 634 xprt->stat.bind_count, 635 xprt->stat.connect_count, 636 xprt->stat.connect_time, 637 idle_time, 638 xprt->stat.sends, 639 xprt->stat.recvs, 640 xprt->stat.bad_xids, 641 xprt->stat.req_u, 642 xprt->stat.bklog_u, 643 644 r_xprt->rx_stats.read_chunk_count, 645 r_xprt->rx_stats.write_chunk_count, 646 r_xprt->rx_stats.reply_chunk_count, 647 r_xprt->rx_stats.total_rdma_request, 648 r_xprt->rx_stats.total_rdma_reply, 649 r_xprt->rx_stats.pullup_copy_count, 650 r_xprt->rx_stats.fixup_copy_count, 651 r_xprt->rx_stats.hardway_register_count, 652 r_xprt->rx_stats.failed_marshal_count, 653 r_xprt->rx_stats.bad_reply_count); 654 } 655 656 /* 657 * Plumbing for rpc transport switch and kernel module 658 */ 659 660 static struct rpc_xprt_ops xprt_rdma_procs = { 661 .reserve_xprt = xprt_reserve_xprt_cong, 662 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */ 663 .alloc_slot = xprt_alloc_slot, 664 .release_request = xprt_release_rqst_cong, /* ditto */ 665 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */ 666 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */ 667 .set_port = xprt_rdma_set_port, 668 .connect = xprt_rdma_connect, 669 .buf_alloc = xprt_rdma_allocate, 670 .buf_free = xprt_rdma_free, 671 .send_request = xprt_rdma_send_request, 672 .close = xprt_rdma_close, 673 .destroy = xprt_rdma_destroy, 674 .print_stats = xprt_rdma_print_stats 675 }; 676 677 static struct xprt_class xprt_rdma = { 678 .list = LIST_HEAD_INIT(xprt_rdma.list), 679 .name = "rdma", 680 .owner = THIS_MODULE, 681 .ident = XPRT_TRANSPORT_RDMA, 682 .setup = xprt_setup_rdma, 683 }; 684 685 static void __exit xprt_rdma_cleanup(void) 686 { 687 int rc; 688 689 dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n"); 690 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 691 if (sunrpc_table_header) { 692 unregister_sysctl_table(sunrpc_table_header); 693 sunrpc_table_header = NULL; 694 } 695 #endif 696 rc = xprt_unregister_transport(&xprt_rdma); 697 if (rc) 698 dprintk("RPC: %s: xprt_unregister returned %i\n", 699 __func__, rc); 700 } 701 702 static int __init xprt_rdma_init(void) 703 { 704 int rc; 705 706 rc = xprt_register_transport(&xprt_rdma); 707 708 if (rc) 709 return rc; 710 711 dprintk("RPCRDMA Module Init, register RPC RDMA transport\n"); 712 713 dprintk("Defaults:\n"); 714 dprintk("\tSlots %d\n" 715 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n", 716 xprt_rdma_slot_table_entries, 717 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write); 718 dprintk("\tPadding %d\n\tMemreg %d\n", 719 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy); 720 721 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 722 if (!sunrpc_table_header) 723 sunrpc_table_header = register_sysctl_table(sunrpc_table); 724 #endif 725 return 0; 726 } 727 728 module_init(xprt_rdma_init); 729 module_exit(xprt_rdma_cleanup); 730