1 /* 2 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved. 3 * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the BSD-type 9 * license below: 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 15 * Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 18 * Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials provided 21 * with the distribution. 22 * 23 * Neither the name of the Network Appliance, Inc. nor the names of 24 * its contributors may be used to endorse or promote products 25 * derived from this software without specific prior written 26 * permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Author: Tom Tucker <tom@opengridcomputing.com> 41 */ 42 43 #include <linux/sunrpc/svc_xprt.h> 44 #include <linux/sunrpc/debug.h> 45 #include <linux/sunrpc/rpc_rdma.h> 46 #include <linux/interrupt.h> 47 #include <linux/sched.h> 48 #include <linux/slab.h> 49 #include <linux/spinlock.h> 50 #include <linux/workqueue.h> 51 #include <rdma/ib_verbs.h> 52 #include <rdma/rdma_cm.h> 53 #include <linux/sunrpc/svc_rdma.h> 54 #include <linux/export.h> 55 #include "xprt_rdma.h" 56 57 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 58 59 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv, 60 struct net *net, 61 struct sockaddr *sa, int salen, 62 int flags); 63 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt); 64 static void svc_rdma_release_rqst(struct svc_rqst *); 65 static void dto_tasklet_func(unsigned long data); 66 static void svc_rdma_detach(struct svc_xprt *xprt); 67 static void svc_rdma_free(struct svc_xprt *xprt); 68 static int svc_rdma_has_wspace(struct svc_xprt *xprt); 69 static int svc_rdma_secure_port(struct svc_rqst *); 70 static void rq_cq_reap(struct svcxprt_rdma *xprt); 71 static void sq_cq_reap(struct svcxprt_rdma *xprt); 72 73 static DECLARE_TASKLET(dto_tasklet, dto_tasklet_func, 0UL); 74 static DEFINE_SPINLOCK(dto_lock); 75 static LIST_HEAD(dto_xprt_q); 76 77 static struct svc_xprt_ops svc_rdma_ops = { 78 .xpo_create = svc_rdma_create, 79 .xpo_recvfrom = svc_rdma_recvfrom, 80 .xpo_sendto = svc_rdma_sendto, 81 .xpo_release_rqst = svc_rdma_release_rqst, 82 .xpo_detach = svc_rdma_detach, 83 .xpo_free = svc_rdma_free, 84 .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr, 85 .xpo_has_wspace = svc_rdma_has_wspace, 86 .xpo_accept = svc_rdma_accept, 87 .xpo_secure_port = svc_rdma_secure_port, 88 }; 89 90 struct svc_xprt_class svc_rdma_class = { 91 .xcl_name = "rdma", 92 .xcl_owner = THIS_MODULE, 93 .xcl_ops = &svc_rdma_ops, 94 .xcl_max_payload = RPCSVC_MAXPAYLOAD_RDMA, 95 .xcl_ident = XPRT_TRANSPORT_RDMA, 96 }; 97 98 struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt) 99 { 100 struct svc_rdma_op_ctxt *ctxt; 101 102 while (1) { 103 ctxt = kmem_cache_alloc(svc_rdma_ctxt_cachep, GFP_KERNEL); 104 if (ctxt) 105 break; 106 schedule_timeout_uninterruptible(msecs_to_jiffies(500)); 107 } 108 ctxt->xprt = xprt; 109 INIT_LIST_HEAD(&ctxt->dto_q); 110 ctxt->count = 0; 111 ctxt->frmr = NULL; 112 atomic_inc(&xprt->sc_ctxt_used); 113 return ctxt; 114 } 115 116 void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt) 117 { 118 struct svcxprt_rdma *xprt = ctxt->xprt; 119 int i; 120 for (i = 0; i < ctxt->count && ctxt->sge[i].length; i++) { 121 /* 122 * Unmap the DMA addr in the SGE if the lkey matches 123 * the sc_dma_lkey, otherwise, ignore it since it is 124 * an FRMR lkey and will be unmapped later when the 125 * last WR that uses it completes. 126 */ 127 if (ctxt->sge[i].lkey == xprt->sc_dma_lkey) { 128 atomic_dec(&xprt->sc_dma_used); 129 ib_dma_unmap_page(xprt->sc_cm_id->device, 130 ctxt->sge[i].addr, 131 ctxt->sge[i].length, 132 ctxt->direction); 133 } 134 } 135 } 136 137 void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages) 138 { 139 struct svcxprt_rdma *xprt; 140 int i; 141 142 xprt = ctxt->xprt; 143 if (free_pages) 144 for (i = 0; i < ctxt->count; i++) 145 put_page(ctxt->pages[i]); 146 147 kmem_cache_free(svc_rdma_ctxt_cachep, ctxt); 148 atomic_dec(&xprt->sc_ctxt_used); 149 } 150 151 /* 152 * Temporary NFS req mappings are shared across all transport 153 * instances. These are short lived and should be bounded by the number 154 * of concurrent server threads * depth of the SQ. 155 */ 156 struct svc_rdma_req_map *svc_rdma_get_req_map(void) 157 { 158 struct svc_rdma_req_map *map; 159 while (1) { 160 map = kmem_cache_alloc(svc_rdma_map_cachep, GFP_KERNEL); 161 if (map) 162 break; 163 schedule_timeout_uninterruptible(msecs_to_jiffies(500)); 164 } 165 map->count = 0; 166 return map; 167 } 168 169 void svc_rdma_put_req_map(struct svc_rdma_req_map *map) 170 { 171 kmem_cache_free(svc_rdma_map_cachep, map); 172 } 173 174 /* ib_cq event handler */ 175 static void cq_event_handler(struct ib_event *event, void *context) 176 { 177 struct svc_xprt *xprt = context; 178 dprintk("svcrdma: received CQ event id=%d, context=%p\n", 179 event->event, context); 180 set_bit(XPT_CLOSE, &xprt->xpt_flags); 181 } 182 183 /* QP event handler */ 184 static void qp_event_handler(struct ib_event *event, void *context) 185 { 186 struct svc_xprt *xprt = context; 187 188 switch (event->event) { 189 /* These are considered benign events */ 190 case IB_EVENT_PATH_MIG: 191 case IB_EVENT_COMM_EST: 192 case IB_EVENT_SQ_DRAINED: 193 case IB_EVENT_QP_LAST_WQE_REACHED: 194 dprintk("svcrdma: QP event %d received for QP=%p\n", 195 event->event, event->element.qp); 196 break; 197 /* These are considered fatal events */ 198 case IB_EVENT_PATH_MIG_ERR: 199 case IB_EVENT_QP_FATAL: 200 case IB_EVENT_QP_REQ_ERR: 201 case IB_EVENT_QP_ACCESS_ERR: 202 case IB_EVENT_DEVICE_FATAL: 203 default: 204 dprintk("svcrdma: QP ERROR event %d received for QP=%p, " 205 "closing transport\n", 206 event->event, event->element.qp); 207 set_bit(XPT_CLOSE, &xprt->xpt_flags); 208 break; 209 } 210 } 211 212 /* 213 * Data Transfer Operation Tasklet 214 * 215 * Walks a list of transports with I/O pending, removing entries as 216 * they are added to the server's I/O pending list. Two bits indicate 217 * if SQ, RQ, or both have I/O pending. The dto_lock is an irqsave 218 * spinlock that serializes access to the transport list with the RQ 219 * and SQ interrupt handlers. 220 */ 221 static void dto_tasklet_func(unsigned long data) 222 { 223 struct svcxprt_rdma *xprt; 224 unsigned long flags; 225 226 spin_lock_irqsave(&dto_lock, flags); 227 while (!list_empty(&dto_xprt_q)) { 228 xprt = list_entry(dto_xprt_q.next, 229 struct svcxprt_rdma, sc_dto_q); 230 list_del_init(&xprt->sc_dto_q); 231 spin_unlock_irqrestore(&dto_lock, flags); 232 233 rq_cq_reap(xprt); 234 sq_cq_reap(xprt); 235 236 svc_xprt_put(&xprt->sc_xprt); 237 spin_lock_irqsave(&dto_lock, flags); 238 } 239 spin_unlock_irqrestore(&dto_lock, flags); 240 } 241 242 /* 243 * Receive Queue Completion Handler 244 * 245 * Since an RQ completion handler is called on interrupt context, we 246 * need to defer the handling of the I/O to a tasklet 247 */ 248 static void rq_comp_handler(struct ib_cq *cq, void *cq_context) 249 { 250 struct svcxprt_rdma *xprt = cq_context; 251 unsigned long flags; 252 253 /* Guard against unconditional flush call for destroyed QP */ 254 if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0) 255 return; 256 257 /* 258 * Set the bit regardless of whether or not it's on the list 259 * because it may be on the list already due to an SQ 260 * completion. 261 */ 262 set_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags); 263 264 /* 265 * If this transport is not already on the DTO transport queue, 266 * add it 267 */ 268 spin_lock_irqsave(&dto_lock, flags); 269 if (list_empty(&xprt->sc_dto_q)) { 270 svc_xprt_get(&xprt->sc_xprt); 271 list_add_tail(&xprt->sc_dto_q, &dto_xprt_q); 272 } 273 spin_unlock_irqrestore(&dto_lock, flags); 274 275 /* Tasklet does all the work to avoid irqsave locks. */ 276 tasklet_schedule(&dto_tasklet); 277 } 278 279 /* 280 * rq_cq_reap - Process the RQ CQ. 281 * 282 * Take all completing WC off the CQE and enqueue the associated DTO 283 * context on the dto_q for the transport. 284 * 285 * Note that caller must hold a transport reference. 286 */ 287 static void rq_cq_reap(struct svcxprt_rdma *xprt) 288 { 289 int ret; 290 struct ib_wc wc; 291 struct svc_rdma_op_ctxt *ctxt = NULL; 292 293 if (!test_and_clear_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags)) 294 return; 295 296 ib_req_notify_cq(xprt->sc_rq_cq, IB_CQ_NEXT_COMP); 297 atomic_inc(&rdma_stat_rq_poll); 298 299 while ((ret = ib_poll_cq(xprt->sc_rq_cq, 1, &wc)) > 0) { 300 ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id; 301 ctxt->wc_status = wc.status; 302 ctxt->byte_len = wc.byte_len; 303 svc_rdma_unmap_dma(ctxt); 304 if (wc.status != IB_WC_SUCCESS) { 305 /* Close the transport */ 306 dprintk("svcrdma: transport closing putting ctxt %p\n", ctxt); 307 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 308 svc_rdma_put_context(ctxt, 1); 309 svc_xprt_put(&xprt->sc_xprt); 310 continue; 311 } 312 spin_lock_bh(&xprt->sc_rq_dto_lock); 313 list_add_tail(&ctxt->dto_q, &xprt->sc_rq_dto_q); 314 spin_unlock_bh(&xprt->sc_rq_dto_lock); 315 svc_xprt_put(&xprt->sc_xprt); 316 } 317 318 if (ctxt) 319 atomic_inc(&rdma_stat_rq_prod); 320 321 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags); 322 /* 323 * If data arrived before established event, 324 * don't enqueue. This defers RPC I/O until the 325 * RDMA connection is complete. 326 */ 327 if (!test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags)) 328 svc_xprt_enqueue(&xprt->sc_xprt); 329 } 330 331 /* 332 * Process a completion context 333 */ 334 static void process_context(struct svcxprt_rdma *xprt, 335 struct svc_rdma_op_ctxt *ctxt) 336 { 337 svc_rdma_unmap_dma(ctxt); 338 339 switch (ctxt->wr_op) { 340 case IB_WR_SEND: 341 if (ctxt->frmr) 342 pr_err("svcrdma: SEND: ctxt->frmr != NULL\n"); 343 svc_rdma_put_context(ctxt, 1); 344 break; 345 346 case IB_WR_RDMA_WRITE: 347 if (ctxt->frmr) 348 pr_err("svcrdma: WRITE: ctxt->frmr != NULL\n"); 349 svc_rdma_put_context(ctxt, 0); 350 break; 351 352 case IB_WR_RDMA_READ: 353 case IB_WR_RDMA_READ_WITH_INV: 354 svc_rdma_put_frmr(xprt, ctxt->frmr); 355 if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) { 356 struct svc_rdma_op_ctxt *read_hdr = ctxt->read_hdr; 357 if (read_hdr) { 358 spin_lock_bh(&xprt->sc_rq_dto_lock); 359 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags); 360 list_add_tail(&read_hdr->dto_q, 361 &xprt->sc_read_complete_q); 362 spin_unlock_bh(&xprt->sc_rq_dto_lock); 363 } else { 364 pr_err("svcrdma: ctxt->read_hdr == NULL\n"); 365 } 366 svc_xprt_enqueue(&xprt->sc_xprt); 367 } 368 svc_rdma_put_context(ctxt, 0); 369 break; 370 371 default: 372 printk(KERN_ERR "svcrdma: unexpected completion type, " 373 "opcode=%d\n", 374 ctxt->wr_op); 375 break; 376 } 377 } 378 379 /* 380 * Send Queue Completion Handler - potentially called on interrupt context. 381 * 382 * Note that caller must hold a transport reference. 383 */ 384 static void sq_cq_reap(struct svcxprt_rdma *xprt) 385 { 386 struct svc_rdma_op_ctxt *ctxt = NULL; 387 struct ib_wc wc_a[6]; 388 struct ib_wc *wc; 389 struct ib_cq *cq = xprt->sc_sq_cq; 390 int ret; 391 392 memset(wc_a, 0, sizeof(wc_a)); 393 394 if (!test_and_clear_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags)) 395 return; 396 397 ib_req_notify_cq(xprt->sc_sq_cq, IB_CQ_NEXT_COMP); 398 atomic_inc(&rdma_stat_sq_poll); 399 while ((ret = ib_poll_cq(cq, ARRAY_SIZE(wc_a), wc_a)) > 0) { 400 int i; 401 402 for (i = 0; i < ret; i++) { 403 wc = &wc_a[i]; 404 if (wc->status != IB_WC_SUCCESS) { 405 dprintk("svcrdma: sq wc err status %d\n", 406 wc->status); 407 408 /* Close the transport */ 409 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 410 } 411 412 /* Decrement used SQ WR count */ 413 atomic_dec(&xprt->sc_sq_count); 414 wake_up(&xprt->sc_send_wait); 415 416 ctxt = (struct svc_rdma_op_ctxt *) 417 (unsigned long)wc->wr_id; 418 if (ctxt) 419 process_context(xprt, ctxt); 420 421 svc_xprt_put(&xprt->sc_xprt); 422 } 423 } 424 425 if (ctxt) 426 atomic_inc(&rdma_stat_sq_prod); 427 } 428 429 static void sq_comp_handler(struct ib_cq *cq, void *cq_context) 430 { 431 struct svcxprt_rdma *xprt = cq_context; 432 unsigned long flags; 433 434 /* Guard against unconditional flush call for destroyed QP */ 435 if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0) 436 return; 437 438 /* 439 * Set the bit regardless of whether or not it's on the list 440 * because it may be on the list already due to an RQ 441 * completion. 442 */ 443 set_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags); 444 445 /* 446 * If this transport is not already on the DTO transport queue, 447 * add it 448 */ 449 spin_lock_irqsave(&dto_lock, flags); 450 if (list_empty(&xprt->sc_dto_q)) { 451 svc_xprt_get(&xprt->sc_xprt); 452 list_add_tail(&xprt->sc_dto_q, &dto_xprt_q); 453 } 454 spin_unlock_irqrestore(&dto_lock, flags); 455 456 /* Tasklet does all the work to avoid irqsave locks. */ 457 tasklet_schedule(&dto_tasklet); 458 } 459 460 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv, 461 int listener) 462 { 463 struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL); 464 465 if (!cma_xprt) 466 return NULL; 467 svc_xprt_init(&init_net, &svc_rdma_class, &cma_xprt->sc_xprt, serv); 468 INIT_LIST_HEAD(&cma_xprt->sc_accept_q); 469 INIT_LIST_HEAD(&cma_xprt->sc_dto_q); 470 INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q); 471 INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q); 472 INIT_LIST_HEAD(&cma_xprt->sc_frmr_q); 473 init_waitqueue_head(&cma_xprt->sc_send_wait); 474 475 spin_lock_init(&cma_xprt->sc_lock); 476 spin_lock_init(&cma_xprt->sc_rq_dto_lock); 477 spin_lock_init(&cma_xprt->sc_frmr_q_lock); 478 479 cma_xprt->sc_ord = svcrdma_ord; 480 481 cma_xprt->sc_max_req_size = svcrdma_max_req_size; 482 cma_xprt->sc_max_requests = svcrdma_max_requests; 483 cma_xprt->sc_sq_depth = svcrdma_max_requests * RPCRDMA_SQ_DEPTH_MULT; 484 atomic_set(&cma_xprt->sc_sq_count, 0); 485 atomic_set(&cma_xprt->sc_ctxt_used, 0); 486 487 if (listener) 488 set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags); 489 490 return cma_xprt; 491 } 492 493 struct page *svc_rdma_get_page(void) 494 { 495 struct page *page; 496 497 while ((page = alloc_page(GFP_KERNEL)) == NULL) { 498 /* If we can't get memory, wait a bit and try again */ 499 printk(KERN_INFO "svcrdma: out of memory...retrying in 1s\n"); 500 schedule_timeout_uninterruptible(msecs_to_jiffies(1000)); 501 } 502 return page; 503 } 504 505 int svc_rdma_post_recv(struct svcxprt_rdma *xprt) 506 { 507 struct ib_recv_wr recv_wr, *bad_recv_wr; 508 struct svc_rdma_op_ctxt *ctxt; 509 struct page *page; 510 dma_addr_t pa; 511 int sge_no; 512 int buflen; 513 int ret; 514 515 ctxt = svc_rdma_get_context(xprt); 516 buflen = 0; 517 ctxt->direction = DMA_FROM_DEVICE; 518 for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) { 519 if (sge_no >= xprt->sc_max_sge) { 520 pr_err("svcrdma: Too many sges (%d)\n", sge_no); 521 goto err_put_ctxt; 522 } 523 page = svc_rdma_get_page(); 524 ctxt->pages[sge_no] = page; 525 pa = ib_dma_map_page(xprt->sc_cm_id->device, 526 page, 0, PAGE_SIZE, 527 DMA_FROM_DEVICE); 528 if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa)) 529 goto err_put_ctxt; 530 atomic_inc(&xprt->sc_dma_used); 531 ctxt->sge[sge_no].addr = pa; 532 ctxt->sge[sge_no].length = PAGE_SIZE; 533 ctxt->sge[sge_no].lkey = xprt->sc_dma_lkey; 534 ctxt->count = sge_no + 1; 535 buflen += PAGE_SIZE; 536 } 537 recv_wr.next = NULL; 538 recv_wr.sg_list = &ctxt->sge[0]; 539 recv_wr.num_sge = ctxt->count; 540 recv_wr.wr_id = (u64)(unsigned long)ctxt; 541 542 svc_xprt_get(&xprt->sc_xprt); 543 ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr); 544 if (ret) { 545 svc_rdma_unmap_dma(ctxt); 546 svc_rdma_put_context(ctxt, 1); 547 svc_xprt_put(&xprt->sc_xprt); 548 } 549 return ret; 550 551 err_put_ctxt: 552 svc_rdma_unmap_dma(ctxt); 553 svc_rdma_put_context(ctxt, 1); 554 return -ENOMEM; 555 } 556 557 /* 558 * This function handles the CONNECT_REQUEST event on a listening 559 * endpoint. It is passed the cma_id for the _new_ connection. The context in 560 * this cma_id is inherited from the listening cma_id and is the svc_xprt 561 * structure for the listening endpoint. 562 * 563 * This function creates a new xprt for the new connection and enqueues it on 564 * the accept queue for the listent xprt. When the listen thread is kicked, it 565 * will call the recvfrom method on the listen xprt which will accept the new 566 * connection. 567 */ 568 static void handle_connect_req(struct rdma_cm_id *new_cma_id, size_t client_ird) 569 { 570 struct svcxprt_rdma *listen_xprt = new_cma_id->context; 571 struct svcxprt_rdma *newxprt; 572 struct sockaddr *sa; 573 574 /* Create a new transport */ 575 newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0); 576 if (!newxprt) { 577 dprintk("svcrdma: failed to create new transport\n"); 578 return; 579 } 580 newxprt->sc_cm_id = new_cma_id; 581 new_cma_id->context = newxprt; 582 dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n", 583 newxprt, newxprt->sc_cm_id, listen_xprt); 584 585 /* Save client advertised inbound read limit for use later in accept. */ 586 newxprt->sc_ord = client_ird; 587 588 /* Set the local and remote addresses in the transport */ 589 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr; 590 svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa)); 591 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr; 592 svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa)); 593 594 /* 595 * Enqueue the new transport on the accept queue of the listening 596 * transport 597 */ 598 spin_lock_bh(&listen_xprt->sc_lock); 599 list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q); 600 spin_unlock_bh(&listen_xprt->sc_lock); 601 602 set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags); 603 svc_xprt_enqueue(&listen_xprt->sc_xprt); 604 } 605 606 /* 607 * Handles events generated on the listening endpoint. These events will be 608 * either be incoming connect requests or adapter removal events. 609 */ 610 static int rdma_listen_handler(struct rdma_cm_id *cma_id, 611 struct rdma_cm_event *event) 612 { 613 struct svcxprt_rdma *xprt = cma_id->context; 614 int ret = 0; 615 616 switch (event->event) { 617 case RDMA_CM_EVENT_CONNECT_REQUEST: 618 dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, " 619 "event=%d\n", cma_id, cma_id->context, event->event); 620 handle_connect_req(cma_id, 621 event->param.conn.initiator_depth); 622 break; 623 624 case RDMA_CM_EVENT_ESTABLISHED: 625 /* Accept complete */ 626 dprintk("svcrdma: Connection completed on LISTEN xprt=%p, " 627 "cm_id=%p\n", xprt, cma_id); 628 break; 629 630 case RDMA_CM_EVENT_DEVICE_REMOVAL: 631 dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n", 632 xprt, cma_id); 633 if (xprt) 634 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 635 break; 636 637 default: 638 dprintk("svcrdma: Unexpected event on listening endpoint %p, " 639 "event=%d\n", cma_id, event->event); 640 break; 641 } 642 643 return ret; 644 } 645 646 static int rdma_cma_handler(struct rdma_cm_id *cma_id, 647 struct rdma_cm_event *event) 648 { 649 struct svc_xprt *xprt = cma_id->context; 650 struct svcxprt_rdma *rdma = 651 container_of(xprt, struct svcxprt_rdma, sc_xprt); 652 switch (event->event) { 653 case RDMA_CM_EVENT_ESTABLISHED: 654 /* Accept complete */ 655 svc_xprt_get(xprt); 656 dprintk("svcrdma: Connection completed on DTO xprt=%p, " 657 "cm_id=%p\n", xprt, cma_id); 658 clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags); 659 svc_xprt_enqueue(xprt); 660 break; 661 case RDMA_CM_EVENT_DISCONNECTED: 662 dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n", 663 xprt, cma_id); 664 if (xprt) { 665 set_bit(XPT_CLOSE, &xprt->xpt_flags); 666 svc_xprt_enqueue(xprt); 667 svc_xprt_put(xprt); 668 } 669 break; 670 case RDMA_CM_EVENT_DEVICE_REMOVAL: 671 dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, " 672 "event=%d\n", cma_id, xprt, event->event); 673 if (xprt) { 674 set_bit(XPT_CLOSE, &xprt->xpt_flags); 675 svc_xprt_enqueue(xprt); 676 } 677 break; 678 default: 679 dprintk("svcrdma: Unexpected event on DTO endpoint %p, " 680 "event=%d\n", cma_id, event->event); 681 break; 682 } 683 return 0; 684 } 685 686 /* 687 * Create a listening RDMA service endpoint. 688 */ 689 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv, 690 struct net *net, 691 struct sockaddr *sa, int salen, 692 int flags) 693 { 694 struct rdma_cm_id *listen_id; 695 struct svcxprt_rdma *cma_xprt; 696 int ret; 697 698 dprintk("svcrdma: Creating RDMA socket\n"); 699 if (sa->sa_family != AF_INET) { 700 dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family); 701 return ERR_PTR(-EAFNOSUPPORT); 702 } 703 cma_xprt = rdma_create_xprt(serv, 1); 704 if (!cma_xprt) 705 return ERR_PTR(-ENOMEM); 706 707 listen_id = rdma_create_id(rdma_listen_handler, cma_xprt, RDMA_PS_TCP, 708 IB_QPT_RC); 709 if (IS_ERR(listen_id)) { 710 ret = PTR_ERR(listen_id); 711 dprintk("svcrdma: rdma_create_id failed = %d\n", ret); 712 goto err0; 713 } 714 715 ret = rdma_bind_addr(listen_id, sa); 716 if (ret) { 717 dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret); 718 goto err1; 719 } 720 cma_xprt->sc_cm_id = listen_id; 721 722 ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG); 723 if (ret) { 724 dprintk("svcrdma: rdma_listen failed = %d\n", ret); 725 goto err1; 726 } 727 728 /* 729 * We need to use the address from the cm_id in case the 730 * caller specified 0 for the port number. 731 */ 732 sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr; 733 svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen); 734 735 return &cma_xprt->sc_xprt; 736 737 err1: 738 rdma_destroy_id(listen_id); 739 err0: 740 kfree(cma_xprt); 741 return ERR_PTR(ret); 742 } 743 744 static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt) 745 { 746 struct ib_mr *mr; 747 struct ib_fast_reg_page_list *pl; 748 struct svc_rdma_fastreg_mr *frmr; 749 750 frmr = kmalloc(sizeof(*frmr), GFP_KERNEL); 751 if (!frmr) 752 goto err; 753 754 mr = ib_alloc_fast_reg_mr(xprt->sc_pd, RPCSVC_MAXPAGES); 755 if (IS_ERR(mr)) 756 goto err_free_frmr; 757 758 pl = ib_alloc_fast_reg_page_list(xprt->sc_cm_id->device, 759 RPCSVC_MAXPAGES); 760 if (IS_ERR(pl)) 761 goto err_free_mr; 762 763 frmr->mr = mr; 764 frmr->page_list = pl; 765 INIT_LIST_HEAD(&frmr->frmr_list); 766 return frmr; 767 768 err_free_mr: 769 ib_dereg_mr(mr); 770 err_free_frmr: 771 kfree(frmr); 772 err: 773 return ERR_PTR(-ENOMEM); 774 } 775 776 static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt) 777 { 778 struct svc_rdma_fastreg_mr *frmr; 779 780 while (!list_empty(&xprt->sc_frmr_q)) { 781 frmr = list_entry(xprt->sc_frmr_q.next, 782 struct svc_rdma_fastreg_mr, frmr_list); 783 list_del_init(&frmr->frmr_list); 784 ib_dereg_mr(frmr->mr); 785 ib_free_fast_reg_page_list(frmr->page_list); 786 kfree(frmr); 787 } 788 } 789 790 struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma) 791 { 792 struct svc_rdma_fastreg_mr *frmr = NULL; 793 794 spin_lock_bh(&rdma->sc_frmr_q_lock); 795 if (!list_empty(&rdma->sc_frmr_q)) { 796 frmr = list_entry(rdma->sc_frmr_q.next, 797 struct svc_rdma_fastreg_mr, frmr_list); 798 list_del_init(&frmr->frmr_list); 799 frmr->map_len = 0; 800 frmr->page_list_len = 0; 801 } 802 spin_unlock_bh(&rdma->sc_frmr_q_lock); 803 if (frmr) 804 return frmr; 805 806 return rdma_alloc_frmr(rdma); 807 } 808 809 static void frmr_unmap_dma(struct svcxprt_rdma *xprt, 810 struct svc_rdma_fastreg_mr *frmr) 811 { 812 int page_no; 813 for (page_no = 0; page_no < frmr->page_list_len; page_no++) { 814 dma_addr_t addr = frmr->page_list->page_list[page_no]; 815 if (ib_dma_mapping_error(frmr->mr->device, addr)) 816 continue; 817 atomic_dec(&xprt->sc_dma_used); 818 ib_dma_unmap_page(frmr->mr->device, addr, PAGE_SIZE, 819 frmr->direction); 820 } 821 } 822 823 void svc_rdma_put_frmr(struct svcxprt_rdma *rdma, 824 struct svc_rdma_fastreg_mr *frmr) 825 { 826 if (frmr) { 827 frmr_unmap_dma(rdma, frmr); 828 spin_lock_bh(&rdma->sc_frmr_q_lock); 829 WARN_ON_ONCE(!list_empty(&frmr->frmr_list)); 830 list_add(&frmr->frmr_list, &rdma->sc_frmr_q); 831 spin_unlock_bh(&rdma->sc_frmr_q_lock); 832 } 833 } 834 835 /* 836 * This is the xpo_recvfrom function for listening endpoints. Its 837 * purpose is to accept incoming connections. The CMA callback handler 838 * has already created a new transport and attached it to the new CMA 839 * ID. 840 * 841 * There is a queue of pending connections hung on the listening 842 * transport. This queue contains the new svc_xprt structure. This 843 * function takes svc_xprt structures off the accept_q and completes 844 * the connection. 845 */ 846 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt) 847 { 848 struct svcxprt_rdma *listen_rdma; 849 struct svcxprt_rdma *newxprt = NULL; 850 struct rdma_conn_param conn_param; 851 struct ib_qp_init_attr qp_attr; 852 struct ib_device_attr devattr; 853 int uninitialized_var(dma_mr_acc); 854 int need_dma_mr; 855 int ret; 856 int i; 857 858 listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt); 859 clear_bit(XPT_CONN, &xprt->xpt_flags); 860 /* Get the next entry off the accept list */ 861 spin_lock_bh(&listen_rdma->sc_lock); 862 if (!list_empty(&listen_rdma->sc_accept_q)) { 863 newxprt = list_entry(listen_rdma->sc_accept_q.next, 864 struct svcxprt_rdma, sc_accept_q); 865 list_del_init(&newxprt->sc_accept_q); 866 } 867 if (!list_empty(&listen_rdma->sc_accept_q)) 868 set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags); 869 spin_unlock_bh(&listen_rdma->sc_lock); 870 if (!newxprt) 871 return NULL; 872 873 dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n", 874 newxprt, newxprt->sc_cm_id); 875 876 ret = ib_query_device(newxprt->sc_cm_id->device, &devattr); 877 if (ret) { 878 dprintk("svcrdma: could not query device attributes on " 879 "device %p, rc=%d\n", newxprt->sc_cm_id->device, ret); 880 goto errout; 881 } 882 883 /* Qualify the transport resource defaults with the 884 * capabilities of this particular device */ 885 newxprt->sc_max_sge = min((size_t)devattr.max_sge, 886 (size_t)RPCSVC_MAXPAGES); 887 newxprt->sc_max_requests = min((size_t)devattr.max_qp_wr, 888 (size_t)svcrdma_max_requests); 889 newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_max_requests; 890 891 /* 892 * Limit ORD based on client limit, local device limit, and 893 * configured svcrdma limit. 894 */ 895 newxprt->sc_ord = min_t(size_t, devattr.max_qp_rd_atom, newxprt->sc_ord); 896 newxprt->sc_ord = min_t(size_t, svcrdma_ord, newxprt->sc_ord); 897 898 newxprt->sc_pd = ib_alloc_pd(newxprt->sc_cm_id->device); 899 if (IS_ERR(newxprt->sc_pd)) { 900 dprintk("svcrdma: error creating PD for connect request\n"); 901 goto errout; 902 } 903 newxprt->sc_sq_cq = ib_create_cq(newxprt->sc_cm_id->device, 904 sq_comp_handler, 905 cq_event_handler, 906 newxprt, 907 newxprt->sc_sq_depth, 908 0); 909 if (IS_ERR(newxprt->sc_sq_cq)) { 910 dprintk("svcrdma: error creating SQ CQ for connect request\n"); 911 goto errout; 912 } 913 newxprt->sc_rq_cq = ib_create_cq(newxprt->sc_cm_id->device, 914 rq_comp_handler, 915 cq_event_handler, 916 newxprt, 917 newxprt->sc_max_requests, 918 0); 919 if (IS_ERR(newxprt->sc_rq_cq)) { 920 dprintk("svcrdma: error creating RQ CQ for connect request\n"); 921 goto errout; 922 } 923 924 memset(&qp_attr, 0, sizeof qp_attr); 925 qp_attr.event_handler = qp_event_handler; 926 qp_attr.qp_context = &newxprt->sc_xprt; 927 qp_attr.cap.max_send_wr = newxprt->sc_sq_depth; 928 qp_attr.cap.max_recv_wr = newxprt->sc_max_requests; 929 qp_attr.cap.max_send_sge = newxprt->sc_max_sge; 930 qp_attr.cap.max_recv_sge = newxprt->sc_max_sge; 931 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 932 qp_attr.qp_type = IB_QPT_RC; 933 qp_attr.send_cq = newxprt->sc_sq_cq; 934 qp_attr.recv_cq = newxprt->sc_rq_cq; 935 dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n" 936 " cm_id->device=%p, sc_pd->device=%p\n" 937 " cap.max_send_wr = %d\n" 938 " cap.max_recv_wr = %d\n" 939 " cap.max_send_sge = %d\n" 940 " cap.max_recv_sge = %d\n", 941 newxprt->sc_cm_id, newxprt->sc_pd, 942 newxprt->sc_cm_id->device, newxprt->sc_pd->device, 943 qp_attr.cap.max_send_wr, 944 qp_attr.cap.max_recv_wr, 945 qp_attr.cap.max_send_sge, 946 qp_attr.cap.max_recv_sge); 947 948 ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr); 949 if (ret) { 950 dprintk("svcrdma: failed to create QP, ret=%d\n", ret); 951 goto errout; 952 } 953 newxprt->sc_qp = newxprt->sc_cm_id->qp; 954 955 /* 956 * Use the most secure set of MR resources based on the 957 * transport type and available memory management features in 958 * the device. Here's the table implemented below: 959 * 960 * Fast Global DMA Remote WR 961 * Reg LKEY MR Access 962 * Sup'd Sup'd Needed Needed 963 * 964 * IWARP N N Y Y 965 * N Y Y Y 966 * Y N Y N 967 * Y Y N - 968 * 969 * IB N N Y N 970 * N Y N - 971 * Y N Y N 972 * Y Y N - 973 * 974 * NB: iWARP requires remote write access for the data sink 975 * of an RDMA_READ. IB does not. 976 */ 977 newxprt->sc_reader = rdma_read_chunk_lcl; 978 if (devattr.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) { 979 newxprt->sc_frmr_pg_list_len = 980 devattr.max_fast_reg_page_list_len; 981 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG; 982 newxprt->sc_reader = rdma_read_chunk_frmr; 983 } 984 985 /* 986 * Determine if a DMA MR is required and if so, what privs are required 987 */ 988 switch (rdma_node_get_transport(newxprt->sc_cm_id->device->node_type)) { 989 case RDMA_TRANSPORT_IWARP: 990 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV; 991 if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG)) { 992 need_dma_mr = 1; 993 dma_mr_acc = 994 (IB_ACCESS_LOCAL_WRITE | 995 IB_ACCESS_REMOTE_WRITE); 996 } else if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) { 997 need_dma_mr = 1; 998 dma_mr_acc = IB_ACCESS_LOCAL_WRITE; 999 } else 1000 need_dma_mr = 0; 1001 break; 1002 case RDMA_TRANSPORT_IB: 1003 if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG)) { 1004 need_dma_mr = 1; 1005 dma_mr_acc = IB_ACCESS_LOCAL_WRITE; 1006 } else if (!(devattr.device_cap_flags & 1007 IB_DEVICE_LOCAL_DMA_LKEY)) { 1008 need_dma_mr = 1; 1009 dma_mr_acc = IB_ACCESS_LOCAL_WRITE; 1010 } else 1011 need_dma_mr = 0; 1012 break; 1013 default: 1014 goto errout; 1015 } 1016 1017 /* Create the DMA MR if needed, otherwise, use the DMA LKEY */ 1018 if (need_dma_mr) { 1019 /* Register all of physical memory */ 1020 newxprt->sc_phys_mr = 1021 ib_get_dma_mr(newxprt->sc_pd, dma_mr_acc); 1022 if (IS_ERR(newxprt->sc_phys_mr)) { 1023 dprintk("svcrdma: Failed to create DMA MR ret=%d\n", 1024 ret); 1025 goto errout; 1026 } 1027 newxprt->sc_dma_lkey = newxprt->sc_phys_mr->lkey; 1028 } else 1029 newxprt->sc_dma_lkey = 1030 newxprt->sc_cm_id->device->local_dma_lkey; 1031 1032 /* Post receive buffers */ 1033 for (i = 0; i < newxprt->sc_max_requests; i++) { 1034 ret = svc_rdma_post_recv(newxprt); 1035 if (ret) { 1036 dprintk("svcrdma: failure posting receive buffers\n"); 1037 goto errout; 1038 } 1039 } 1040 1041 /* Swap out the handler */ 1042 newxprt->sc_cm_id->event_handler = rdma_cma_handler; 1043 1044 /* 1045 * Arm the CQs for the SQ and RQ before accepting so we can't 1046 * miss the first message 1047 */ 1048 ib_req_notify_cq(newxprt->sc_sq_cq, IB_CQ_NEXT_COMP); 1049 ib_req_notify_cq(newxprt->sc_rq_cq, IB_CQ_NEXT_COMP); 1050 1051 /* Accept Connection */ 1052 set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags); 1053 memset(&conn_param, 0, sizeof conn_param); 1054 conn_param.responder_resources = 0; 1055 conn_param.initiator_depth = newxprt->sc_ord; 1056 ret = rdma_accept(newxprt->sc_cm_id, &conn_param); 1057 if (ret) { 1058 dprintk("svcrdma: failed to accept new connection, ret=%d\n", 1059 ret); 1060 goto errout; 1061 } 1062 1063 dprintk("svcrdma: new connection %p accepted with the following " 1064 "attributes:\n" 1065 " local_ip : %pI4\n" 1066 " local_port : %d\n" 1067 " remote_ip : %pI4\n" 1068 " remote_port : %d\n" 1069 " max_sge : %d\n" 1070 " sq_depth : %d\n" 1071 " max_requests : %d\n" 1072 " ord : %d\n", 1073 newxprt, 1074 &((struct sockaddr_in *)&newxprt->sc_cm_id-> 1075 route.addr.src_addr)->sin_addr.s_addr, 1076 ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id-> 1077 route.addr.src_addr)->sin_port), 1078 &((struct sockaddr_in *)&newxprt->sc_cm_id-> 1079 route.addr.dst_addr)->sin_addr.s_addr, 1080 ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id-> 1081 route.addr.dst_addr)->sin_port), 1082 newxprt->sc_max_sge, 1083 newxprt->sc_sq_depth, 1084 newxprt->sc_max_requests, 1085 newxprt->sc_ord); 1086 1087 return &newxprt->sc_xprt; 1088 1089 errout: 1090 dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret); 1091 /* Take a reference in case the DTO handler runs */ 1092 svc_xprt_get(&newxprt->sc_xprt); 1093 if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp)) 1094 ib_destroy_qp(newxprt->sc_qp); 1095 rdma_destroy_id(newxprt->sc_cm_id); 1096 /* This call to put will destroy the transport */ 1097 svc_xprt_put(&newxprt->sc_xprt); 1098 return NULL; 1099 } 1100 1101 static void svc_rdma_release_rqst(struct svc_rqst *rqstp) 1102 { 1103 } 1104 1105 /* 1106 * When connected, an svc_xprt has at least two references: 1107 * 1108 * - A reference held by the cm_id between the ESTABLISHED and 1109 * DISCONNECTED events. If the remote peer disconnected first, this 1110 * reference could be gone. 1111 * 1112 * - A reference held by the svc_recv code that called this function 1113 * as part of close processing. 1114 * 1115 * At a minimum one references should still be held. 1116 */ 1117 static void svc_rdma_detach(struct svc_xprt *xprt) 1118 { 1119 struct svcxprt_rdma *rdma = 1120 container_of(xprt, struct svcxprt_rdma, sc_xprt); 1121 dprintk("svc: svc_rdma_detach(%p)\n", xprt); 1122 1123 /* Disconnect and flush posted WQE */ 1124 rdma_disconnect(rdma->sc_cm_id); 1125 } 1126 1127 static void __svc_rdma_free(struct work_struct *work) 1128 { 1129 struct svcxprt_rdma *rdma = 1130 container_of(work, struct svcxprt_rdma, sc_work); 1131 dprintk("svcrdma: svc_rdma_free(%p)\n", rdma); 1132 1133 /* We should only be called from kref_put */ 1134 if (atomic_read(&rdma->sc_xprt.xpt_ref.refcount) != 0) 1135 pr_err("svcrdma: sc_xprt still in use? (%d)\n", 1136 atomic_read(&rdma->sc_xprt.xpt_ref.refcount)); 1137 1138 /* 1139 * Destroy queued, but not processed read completions. Note 1140 * that this cleanup has to be done before destroying the 1141 * cm_id because the device ptr is needed to unmap the dma in 1142 * svc_rdma_put_context. 1143 */ 1144 while (!list_empty(&rdma->sc_read_complete_q)) { 1145 struct svc_rdma_op_ctxt *ctxt; 1146 ctxt = list_entry(rdma->sc_read_complete_q.next, 1147 struct svc_rdma_op_ctxt, 1148 dto_q); 1149 list_del_init(&ctxt->dto_q); 1150 svc_rdma_put_context(ctxt, 1); 1151 } 1152 1153 /* Destroy queued, but not processed recv completions */ 1154 while (!list_empty(&rdma->sc_rq_dto_q)) { 1155 struct svc_rdma_op_ctxt *ctxt; 1156 ctxt = list_entry(rdma->sc_rq_dto_q.next, 1157 struct svc_rdma_op_ctxt, 1158 dto_q); 1159 list_del_init(&ctxt->dto_q); 1160 svc_rdma_put_context(ctxt, 1); 1161 } 1162 1163 /* Warn if we leaked a resource or under-referenced */ 1164 if (atomic_read(&rdma->sc_ctxt_used) != 0) 1165 pr_err("svcrdma: ctxt still in use? (%d)\n", 1166 atomic_read(&rdma->sc_ctxt_used)); 1167 if (atomic_read(&rdma->sc_dma_used) != 0) 1168 pr_err("svcrdma: dma still in use? (%d)\n", 1169 atomic_read(&rdma->sc_dma_used)); 1170 1171 /* De-allocate fastreg mr */ 1172 rdma_dealloc_frmr_q(rdma); 1173 1174 /* Destroy the QP if present (not a listener) */ 1175 if (rdma->sc_qp && !IS_ERR(rdma->sc_qp)) 1176 ib_destroy_qp(rdma->sc_qp); 1177 1178 if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq)) 1179 ib_destroy_cq(rdma->sc_sq_cq); 1180 1181 if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq)) 1182 ib_destroy_cq(rdma->sc_rq_cq); 1183 1184 if (rdma->sc_phys_mr && !IS_ERR(rdma->sc_phys_mr)) 1185 ib_dereg_mr(rdma->sc_phys_mr); 1186 1187 if (rdma->sc_pd && !IS_ERR(rdma->sc_pd)) 1188 ib_dealloc_pd(rdma->sc_pd); 1189 1190 /* Destroy the CM ID */ 1191 rdma_destroy_id(rdma->sc_cm_id); 1192 1193 kfree(rdma); 1194 } 1195 1196 static void svc_rdma_free(struct svc_xprt *xprt) 1197 { 1198 struct svcxprt_rdma *rdma = 1199 container_of(xprt, struct svcxprt_rdma, sc_xprt); 1200 INIT_WORK(&rdma->sc_work, __svc_rdma_free); 1201 queue_work(svc_rdma_wq, &rdma->sc_work); 1202 } 1203 1204 static int svc_rdma_has_wspace(struct svc_xprt *xprt) 1205 { 1206 struct svcxprt_rdma *rdma = 1207 container_of(xprt, struct svcxprt_rdma, sc_xprt); 1208 1209 /* 1210 * If there are already waiters on the SQ, 1211 * return false. 1212 */ 1213 if (waitqueue_active(&rdma->sc_send_wait)) 1214 return 0; 1215 1216 /* Otherwise return true. */ 1217 return 1; 1218 } 1219 1220 static int svc_rdma_secure_port(struct svc_rqst *rqstp) 1221 { 1222 return 1; 1223 } 1224 1225 /* 1226 * Attempt to register the kvec representing the RPC memory with the 1227 * device. 1228 * 1229 * Returns: 1230 * NULL : The device does not support fastreg or there were no more 1231 * fastreg mr. 1232 * frmr : The kvec register request was successfully posted. 1233 * <0 : An error was encountered attempting to register the kvec. 1234 */ 1235 int svc_rdma_fastreg(struct svcxprt_rdma *xprt, 1236 struct svc_rdma_fastreg_mr *frmr) 1237 { 1238 struct ib_send_wr fastreg_wr; 1239 u8 key; 1240 1241 /* Bump the key */ 1242 key = (u8)(frmr->mr->lkey & 0x000000FF); 1243 ib_update_fast_reg_key(frmr->mr, ++key); 1244 1245 /* Prepare FASTREG WR */ 1246 memset(&fastreg_wr, 0, sizeof fastreg_wr); 1247 fastreg_wr.opcode = IB_WR_FAST_REG_MR; 1248 fastreg_wr.send_flags = IB_SEND_SIGNALED; 1249 fastreg_wr.wr.fast_reg.iova_start = (unsigned long)frmr->kva; 1250 fastreg_wr.wr.fast_reg.page_list = frmr->page_list; 1251 fastreg_wr.wr.fast_reg.page_list_len = frmr->page_list_len; 1252 fastreg_wr.wr.fast_reg.page_shift = PAGE_SHIFT; 1253 fastreg_wr.wr.fast_reg.length = frmr->map_len; 1254 fastreg_wr.wr.fast_reg.access_flags = frmr->access_flags; 1255 fastreg_wr.wr.fast_reg.rkey = frmr->mr->lkey; 1256 return svc_rdma_send(xprt, &fastreg_wr); 1257 } 1258 1259 int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr) 1260 { 1261 struct ib_send_wr *bad_wr, *n_wr; 1262 int wr_count; 1263 int i; 1264 int ret; 1265 1266 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags)) 1267 return -ENOTCONN; 1268 1269 wr_count = 1; 1270 for (n_wr = wr->next; n_wr; n_wr = n_wr->next) 1271 wr_count++; 1272 1273 /* If the SQ is full, wait until an SQ entry is available */ 1274 while (1) { 1275 spin_lock_bh(&xprt->sc_lock); 1276 if (xprt->sc_sq_depth < atomic_read(&xprt->sc_sq_count) + wr_count) { 1277 spin_unlock_bh(&xprt->sc_lock); 1278 atomic_inc(&rdma_stat_sq_starve); 1279 1280 /* See if we can opportunistically reap SQ WR to make room */ 1281 sq_cq_reap(xprt); 1282 1283 /* Wait until SQ WR available if SQ still full */ 1284 wait_event(xprt->sc_send_wait, 1285 atomic_read(&xprt->sc_sq_count) < 1286 xprt->sc_sq_depth); 1287 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags)) 1288 return -ENOTCONN; 1289 continue; 1290 } 1291 /* Take a transport ref for each WR posted */ 1292 for (i = 0; i < wr_count; i++) 1293 svc_xprt_get(&xprt->sc_xprt); 1294 1295 /* Bump used SQ WR count and post */ 1296 atomic_add(wr_count, &xprt->sc_sq_count); 1297 ret = ib_post_send(xprt->sc_qp, wr, &bad_wr); 1298 if (ret) { 1299 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 1300 atomic_sub(wr_count, &xprt->sc_sq_count); 1301 for (i = 0; i < wr_count; i ++) 1302 svc_xprt_put(&xprt->sc_xprt); 1303 dprintk("svcrdma: failed to post SQ WR rc=%d, " 1304 "sc_sq_count=%d, sc_sq_depth=%d\n", 1305 ret, atomic_read(&xprt->sc_sq_count), 1306 xprt->sc_sq_depth); 1307 } 1308 spin_unlock_bh(&xprt->sc_lock); 1309 if (ret) 1310 wake_up(&xprt->sc_send_wait); 1311 break; 1312 } 1313 return ret; 1314 } 1315 1316 void svc_rdma_send_error(struct svcxprt_rdma *xprt, struct rpcrdma_msg *rmsgp, 1317 enum rpcrdma_errcode err) 1318 { 1319 struct ib_send_wr err_wr; 1320 struct page *p; 1321 struct svc_rdma_op_ctxt *ctxt; 1322 u32 *va; 1323 int length; 1324 int ret; 1325 1326 p = svc_rdma_get_page(); 1327 va = page_address(p); 1328 1329 /* XDR encode error */ 1330 length = svc_rdma_xdr_encode_error(xprt, rmsgp, err, va); 1331 1332 ctxt = svc_rdma_get_context(xprt); 1333 ctxt->direction = DMA_FROM_DEVICE; 1334 ctxt->count = 1; 1335 ctxt->pages[0] = p; 1336 1337 /* Prepare SGE for local address */ 1338 ctxt->sge[0].addr = ib_dma_map_page(xprt->sc_cm_id->device, 1339 p, 0, length, DMA_FROM_DEVICE); 1340 if (ib_dma_mapping_error(xprt->sc_cm_id->device, ctxt->sge[0].addr)) { 1341 put_page(p); 1342 svc_rdma_put_context(ctxt, 1); 1343 return; 1344 } 1345 atomic_inc(&xprt->sc_dma_used); 1346 ctxt->sge[0].lkey = xprt->sc_dma_lkey; 1347 ctxt->sge[0].length = length; 1348 1349 /* Prepare SEND WR */ 1350 memset(&err_wr, 0, sizeof err_wr); 1351 ctxt->wr_op = IB_WR_SEND; 1352 err_wr.wr_id = (unsigned long)ctxt; 1353 err_wr.sg_list = ctxt->sge; 1354 err_wr.num_sge = 1; 1355 err_wr.opcode = IB_WR_SEND; 1356 err_wr.send_flags = IB_SEND_SIGNALED; 1357 1358 /* Post It */ 1359 ret = svc_rdma_send(xprt, &err_wr); 1360 if (ret) { 1361 dprintk("svcrdma: Error %d posting send for protocol error\n", 1362 ret); 1363 svc_rdma_unmap_dma(ctxt); 1364 svc_rdma_put_context(ctxt, 1); 1365 } 1366 } 1367