1 /* 2 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved. 3 * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the BSD-type 9 * license below: 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 15 * Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 18 * Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials provided 21 * with the distribution. 22 * 23 * Neither the name of the Network Appliance, Inc. nor the names of 24 * its contributors may be used to endorse or promote products 25 * derived from this software without specific prior written 26 * permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Author: Tom Tucker <tom@opengridcomputing.com> 41 */ 42 43 #include <linux/sunrpc/svc_xprt.h> 44 #include <linux/sunrpc/debug.h> 45 #include <linux/sunrpc/rpc_rdma.h> 46 #include <linux/interrupt.h> 47 #include <linux/sched.h> 48 #include <linux/slab.h> 49 #include <linux/spinlock.h> 50 #include <linux/workqueue.h> 51 #include <rdma/ib_verbs.h> 52 #include <rdma/rdma_cm.h> 53 #include <linux/sunrpc/svc_rdma.h> 54 #include <linux/export.h> 55 #include "xprt_rdma.h" 56 57 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 58 59 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *, int); 60 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv, 61 struct net *net, 62 struct sockaddr *sa, int salen, 63 int flags); 64 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt); 65 static void svc_rdma_release_rqst(struct svc_rqst *); 66 static void svc_rdma_detach(struct svc_xprt *xprt); 67 static void svc_rdma_free(struct svc_xprt *xprt); 68 static int svc_rdma_has_wspace(struct svc_xprt *xprt); 69 static int svc_rdma_secure_port(struct svc_rqst *); 70 71 static struct svc_xprt_ops svc_rdma_ops = { 72 .xpo_create = svc_rdma_create, 73 .xpo_recvfrom = svc_rdma_recvfrom, 74 .xpo_sendto = svc_rdma_sendto, 75 .xpo_release_rqst = svc_rdma_release_rqst, 76 .xpo_detach = svc_rdma_detach, 77 .xpo_free = svc_rdma_free, 78 .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr, 79 .xpo_has_wspace = svc_rdma_has_wspace, 80 .xpo_accept = svc_rdma_accept, 81 .xpo_secure_port = svc_rdma_secure_port, 82 }; 83 84 struct svc_xprt_class svc_rdma_class = { 85 .xcl_name = "rdma", 86 .xcl_owner = THIS_MODULE, 87 .xcl_ops = &svc_rdma_ops, 88 .xcl_max_payload = RPCSVC_MAXPAYLOAD_RDMA, 89 .xcl_ident = XPRT_TRANSPORT_RDMA, 90 }; 91 92 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 93 static struct svc_xprt *svc_rdma_bc_create(struct svc_serv *, struct net *, 94 struct sockaddr *, int, int); 95 static void svc_rdma_bc_detach(struct svc_xprt *); 96 static void svc_rdma_bc_free(struct svc_xprt *); 97 98 static struct svc_xprt_ops svc_rdma_bc_ops = { 99 .xpo_create = svc_rdma_bc_create, 100 .xpo_detach = svc_rdma_bc_detach, 101 .xpo_free = svc_rdma_bc_free, 102 .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr, 103 .xpo_secure_port = svc_rdma_secure_port, 104 }; 105 106 struct svc_xprt_class svc_rdma_bc_class = { 107 .xcl_name = "rdma-bc", 108 .xcl_owner = THIS_MODULE, 109 .xcl_ops = &svc_rdma_bc_ops, 110 .xcl_max_payload = (1024 - RPCRDMA_HDRLEN_MIN) 111 }; 112 113 static struct svc_xprt *svc_rdma_bc_create(struct svc_serv *serv, 114 struct net *net, 115 struct sockaddr *sa, int salen, 116 int flags) 117 { 118 struct svcxprt_rdma *cma_xprt; 119 struct svc_xprt *xprt; 120 121 cma_xprt = rdma_create_xprt(serv, 0); 122 if (!cma_xprt) 123 return ERR_PTR(-ENOMEM); 124 xprt = &cma_xprt->sc_xprt; 125 126 svc_xprt_init(net, &svc_rdma_bc_class, xprt, serv); 127 serv->sv_bc_xprt = xprt; 128 129 dprintk("svcrdma: %s(%p)\n", __func__, xprt); 130 return xprt; 131 } 132 133 static void svc_rdma_bc_detach(struct svc_xprt *xprt) 134 { 135 dprintk("svcrdma: %s(%p)\n", __func__, xprt); 136 } 137 138 static void svc_rdma_bc_free(struct svc_xprt *xprt) 139 { 140 struct svcxprt_rdma *rdma = 141 container_of(xprt, struct svcxprt_rdma, sc_xprt); 142 143 dprintk("svcrdma: %s(%p)\n", __func__, xprt); 144 if (xprt) 145 kfree(rdma); 146 } 147 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 148 149 static struct svc_rdma_op_ctxt *alloc_ctxt(struct svcxprt_rdma *xprt, 150 gfp_t flags) 151 { 152 struct svc_rdma_op_ctxt *ctxt; 153 154 ctxt = kmalloc(sizeof(*ctxt), flags); 155 if (ctxt) { 156 ctxt->xprt = xprt; 157 INIT_LIST_HEAD(&ctxt->free); 158 INIT_LIST_HEAD(&ctxt->dto_q); 159 } 160 return ctxt; 161 } 162 163 static bool svc_rdma_prealloc_ctxts(struct svcxprt_rdma *xprt) 164 { 165 unsigned int i; 166 167 /* Each RPC/RDMA credit can consume a number of send 168 * and receive WQEs. One ctxt is allocated for each. 169 */ 170 i = xprt->sc_sq_depth + xprt->sc_rq_depth; 171 172 while (i--) { 173 struct svc_rdma_op_ctxt *ctxt; 174 175 ctxt = alloc_ctxt(xprt, GFP_KERNEL); 176 if (!ctxt) { 177 dprintk("svcrdma: No memory for RDMA ctxt\n"); 178 return false; 179 } 180 list_add(&ctxt->free, &xprt->sc_ctxts); 181 } 182 return true; 183 } 184 185 struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt) 186 { 187 struct svc_rdma_op_ctxt *ctxt = NULL; 188 189 spin_lock_bh(&xprt->sc_ctxt_lock); 190 xprt->sc_ctxt_used++; 191 if (list_empty(&xprt->sc_ctxts)) 192 goto out_empty; 193 194 ctxt = list_first_entry(&xprt->sc_ctxts, 195 struct svc_rdma_op_ctxt, free); 196 list_del_init(&ctxt->free); 197 spin_unlock_bh(&xprt->sc_ctxt_lock); 198 199 out: 200 ctxt->count = 0; 201 ctxt->frmr = NULL; 202 return ctxt; 203 204 out_empty: 205 /* Either pre-allocation missed the mark, or send 206 * queue accounting is broken. 207 */ 208 spin_unlock_bh(&xprt->sc_ctxt_lock); 209 210 ctxt = alloc_ctxt(xprt, GFP_NOIO); 211 if (ctxt) 212 goto out; 213 214 spin_lock_bh(&xprt->sc_ctxt_lock); 215 xprt->sc_ctxt_used--; 216 spin_unlock_bh(&xprt->sc_ctxt_lock); 217 WARN_ONCE(1, "svcrdma: empty RDMA ctxt list?\n"); 218 return NULL; 219 } 220 221 void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt) 222 { 223 struct svcxprt_rdma *xprt = ctxt->xprt; 224 int i; 225 for (i = 0; i < ctxt->count && ctxt->sge[i].length; i++) { 226 /* 227 * Unmap the DMA addr in the SGE if the lkey matches 228 * the local_dma_lkey, otherwise, ignore it since it is 229 * an FRMR lkey and will be unmapped later when the 230 * last WR that uses it completes. 231 */ 232 if (ctxt->sge[i].lkey == xprt->sc_pd->local_dma_lkey) { 233 atomic_dec(&xprt->sc_dma_used); 234 ib_dma_unmap_page(xprt->sc_cm_id->device, 235 ctxt->sge[i].addr, 236 ctxt->sge[i].length, 237 ctxt->direction); 238 } 239 } 240 } 241 242 void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages) 243 { 244 struct svcxprt_rdma *xprt = ctxt->xprt; 245 int i; 246 247 if (free_pages) 248 for (i = 0; i < ctxt->count; i++) 249 put_page(ctxt->pages[i]); 250 251 spin_lock_bh(&xprt->sc_ctxt_lock); 252 xprt->sc_ctxt_used--; 253 list_add(&ctxt->free, &xprt->sc_ctxts); 254 spin_unlock_bh(&xprt->sc_ctxt_lock); 255 } 256 257 static void svc_rdma_destroy_ctxts(struct svcxprt_rdma *xprt) 258 { 259 while (!list_empty(&xprt->sc_ctxts)) { 260 struct svc_rdma_op_ctxt *ctxt; 261 262 ctxt = list_first_entry(&xprt->sc_ctxts, 263 struct svc_rdma_op_ctxt, free); 264 list_del(&ctxt->free); 265 kfree(ctxt); 266 } 267 } 268 269 static struct svc_rdma_req_map *alloc_req_map(gfp_t flags) 270 { 271 struct svc_rdma_req_map *map; 272 273 map = kmalloc(sizeof(*map), flags); 274 if (map) 275 INIT_LIST_HEAD(&map->free); 276 return map; 277 } 278 279 static bool svc_rdma_prealloc_maps(struct svcxprt_rdma *xprt) 280 { 281 unsigned int i; 282 283 /* One for each receive buffer on this connection. */ 284 i = xprt->sc_max_requests; 285 286 while (i--) { 287 struct svc_rdma_req_map *map; 288 289 map = alloc_req_map(GFP_KERNEL); 290 if (!map) { 291 dprintk("svcrdma: No memory for request map\n"); 292 return false; 293 } 294 list_add(&map->free, &xprt->sc_maps); 295 } 296 return true; 297 } 298 299 struct svc_rdma_req_map *svc_rdma_get_req_map(struct svcxprt_rdma *xprt) 300 { 301 struct svc_rdma_req_map *map = NULL; 302 303 spin_lock(&xprt->sc_map_lock); 304 if (list_empty(&xprt->sc_maps)) 305 goto out_empty; 306 307 map = list_first_entry(&xprt->sc_maps, 308 struct svc_rdma_req_map, free); 309 list_del_init(&map->free); 310 spin_unlock(&xprt->sc_map_lock); 311 312 out: 313 map->count = 0; 314 return map; 315 316 out_empty: 317 spin_unlock(&xprt->sc_map_lock); 318 319 /* Pre-allocation amount was incorrect */ 320 map = alloc_req_map(GFP_NOIO); 321 if (map) 322 goto out; 323 324 WARN_ONCE(1, "svcrdma: empty request map list?\n"); 325 return NULL; 326 } 327 328 void svc_rdma_put_req_map(struct svcxprt_rdma *xprt, 329 struct svc_rdma_req_map *map) 330 { 331 spin_lock(&xprt->sc_map_lock); 332 list_add(&map->free, &xprt->sc_maps); 333 spin_unlock(&xprt->sc_map_lock); 334 } 335 336 static void svc_rdma_destroy_maps(struct svcxprt_rdma *xprt) 337 { 338 while (!list_empty(&xprt->sc_maps)) { 339 struct svc_rdma_req_map *map; 340 341 map = list_first_entry(&xprt->sc_maps, 342 struct svc_rdma_req_map, free); 343 list_del(&map->free); 344 kfree(map); 345 } 346 } 347 348 /* QP event handler */ 349 static void qp_event_handler(struct ib_event *event, void *context) 350 { 351 struct svc_xprt *xprt = context; 352 353 switch (event->event) { 354 /* These are considered benign events */ 355 case IB_EVENT_PATH_MIG: 356 case IB_EVENT_COMM_EST: 357 case IB_EVENT_SQ_DRAINED: 358 case IB_EVENT_QP_LAST_WQE_REACHED: 359 dprintk("svcrdma: QP event %s (%d) received for QP=%p\n", 360 ib_event_msg(event->event), event->event, 361 event->element.qp); 362 break; 363 /* These are considered fatal events */ 364 case IB_EVENT_PATH_MIG_ERR: 365 case IB_EVENT_QP_FATAL: 366 case IB_EVENT_QP_REQ_ERR: 367 case IB_EVENT_QP_ACCESS_ERR: 368 case IB_EVENT_DEVICE_FATAL: 369 default: 370 dprintk("svcrdma: QP ERROR event %s (%d) received for QP=%p, " 371 "closing transport\n", 372 ib_event_msg(event->event), event->event, 373 event->element.qp); 374 set_bit(XPT_CLOSE, &xprt->xpt_flags); 375 break; 376 } 377 } 378 379 /** 380 * svc_rdma_wc_receive - Invoked by RDMA provider for each polled Receive WC 381 * @cq: completion queue 382 * @wc: completed WR 383 * 384 */ 385 static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) 386 { 387 struct svcxprt_rdma *xprt = cq->cq_context; 388 struct ib_cqe *cqe = wc->wr_cqe; 389 struct svc_rdma_op_ctxt *ctxt; 390 391 /* WARNING: Only wc->wr_cqe and wc->status are reliable */ 392 ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe); 393 ctxt->wc_status = wc->status; 394 svc_rdma_unmap_dma(ctxt); 395 396 if (wc->status != IB_WC_SUCCESS) 397 goto flushed; 398 399 /* All wc fields are now known to be valid */ 400 ctxt->byte_len = wc->byte_len; 401 spin_lock(&xprt->sc_rq_dto_lock); 402 list_add_tail(&ctxt->dto_q, &xprt->sc_rq_dto_q); 403 spin_unlock(&xprt->sc_rq_dto_lock); 404 405 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags); 406 if (test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags)) 407 goto out; 408 svc_xprt_enqueue(&xprt->sc_xprt); 409 goto out; 410 411 flushed: 412 if (wc->status != IB_WC_WR_FLUSH_ERR) 413 pr_warn("svcrdma: receive: %s (%u/0x%x)\n", 414 ib_wc_status_msg(wc->status), 415 wc->status, wc->vendor_err); 416 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 417 svc_rdma_put_context(ctxt, 1); 418 419 out: 420 svc_xprt_put(&xprt->sc_xprt); 421 } 422 423 static void svc_rdma_send_wc_common(struct svcxprt_rdma *xprt, 424 struct ib_wc *wc, 425 const char *opname) 426 { 427 if (wc->status != IB_WC_SUCCESS) 428 goto err; 429 430 out: 431 atomic_dec(&xprt->sc_sq_count); 432 wake_up(&xprt->sc_send_wait); 433 return; 434 435 err: 436 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 437 if (wc->status != IB_WC_WR_FLUSH_ERR) 438 pr_err("svcrdma: %s: %s (%u/0x%x)\n", 439 opname, ib_wc_status_msg(wc->status), 440 wc->status, wc->vendor_err); 441 goto out; 442 } 443 444 static void svc_rdma_send_wc_common_put(struct ib_cq *cq, struct ib_wc *wc, 445 const char *opname) 446 { 447 struct svcxprt_rdma *xprt = cq->cq_context; 448 449 svc_rdma_send_wc_common(xprt, wc, opname); 450 svc_xprt_put(&xprt->sc_xprt); 451 } 452 453 /** 454 * svc_rdma_wc_send - Invoked by RDMA provider for each polled Send WC 455 * @cq: completion queue 456 * @wc: completed WR 457 * 458 */ 459 void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 460 { 461 struct ib_cqe *cqe = wc->wr_cqe; 462 struct svc_rdma_op_ctxt *ctxt; 463 464 svc_rdma_send_wc_common_put(cq, wc, "send"); 465 466 ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe); 467 svc_rdma_unmap_dma(ctxt); 468 svc_rdma_put_context(ctxt, 1); 469 } 470 471 /** 472 * svc_rdma_wc_write - Invoked by RDMA provider for each polled Write WC 473 * @cq: completion queue 474 * @wc: completed WR 475 * 476 */ 477 void svc_rdma_wc_write(struct ib_cq *cq, struct ib_wc *wc) 478 { 479 struct ib_cqe *cqe = wc->wr_cqe; 480 struct svc_rdma_op_ctxt *ctxt; 481 482 svc_rdma_send_wc_common_put(cq, wc, "write"); 483 484 ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe); 485 svc_rdma_unmap_dma(ctxt); 486 svc_rdma_put_context(ctxt, 0); 487 } 488 489 /** 490 * svc_rdma_wc_reg - Invoked by RDMA provider for each polled FASTREG WC 491 * @cq: completion queue 492 * @wc: completed WR 493 * 494 */ 495 void svc_rdma_wc_reg(struct ib_cq *cq, struct ib_wc *wc) 496 { 497 svc_rdma_send_wc_common_put(cq, wc, "fastreg"); 498 } 499 500 /** 501 * svc_rdma_wc_read - Invoked by RDMA provider for each polled Read WC 502 * @cq: completion queue 503 * @wc: completed WR 504 * 505 */ 506 void svc_rdma_wc_read(struct ib_cq *cq, struct ib_wc *wc) 507 { 508 struct svcxprt_rdma *xprt = cq->cq_context; 509 struct ib_cqe *cqe = wc->wr_cqe; 510 struct svc_rdma_op_ctxt *ctxt; 511 512 svc_rdma_send_wc_common(xprt, wc, "read"); 513 514 ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe); 515 svc_rdma_unmap_dma(ctxt); 516 svc_rdma_put_frmr(xprt, ctxt->frmr); 517 518 if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) { 519 struct svc_rdma_op_ctxt *read_hdr; 520 521 read_hdr = ctxt->read_hdr; 522 spin_lock(&xprt->sc_rq_dto_lock); 523 list_add_tail(&read_hdr->dto_q, 524 &xprt->sc_read_complete_q); 525 spin_unlock(&xprt->sc_rq_dto_lock); 526 527 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags); 528 svc_xprt_enqueue(&xprt->sc_xprt); 529 } 530 531 svc_rdma_put_context(ctxt, 0); 532 svc_xprt_put(&xprt->sc_xprt); 533 } 534 535 /** 536 * svc_rdma_wc_inv - Invoked by RDMA provider for each polled LOCAL_INV WC 537 * @cq: completion queue 538 * @wc: completed WR 539 * 540 */ 541 void svc_rdma_wc_inv(struct ib_cq *cq, struct ib_wc *wc) 542 { 543 svc_rdma_send_wc_common_put(cq, wc, "localInv"); 544 } 545 546 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv, 547 int listener) 548 { 549 struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL); 550 551 if (!cma_xprt) 552 return NULL; 553 svc_xprt_init(&init_net, &svc_rdma_class, &cma_xprt->sc_xprt, serv); 554 INIT_LIST_HEAD(&cma_xprt->sc_accept_q); 555 INIT_LIST_HEAD(&cma_xprt->sc_dto_q); 556 INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q); 557 INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q); 558 INIT_LIST_HEAD(&cma_xprt->sc_frmr_q); 559 INIT_LIST_HEAD(&cma_xprt->sc_ctxts); 560 INIT_LIST_HEAD(&cma_xprt->sc_maps); 561 init_waitqueue_head(&cma_xprt->sc_send_wait); 562 563 spin_lock_init(&cma_xprt->sc_lock); 564 spin_lock_init(&cma_xprt->sc_rq_dto_lock); 565 spin_lock_init(&cma_xprt->sc_frmr_q_lock); 566 spin_lock_init(&cma_xprt->sc_ctxt_lock); 567 spin_lock_init(&cma_xprt->sc_map_lock); 568 569 if (listener) 570 set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags); 571 572 return cma_xprt; 573 } 574 575 int svc_rdma_post_recv(struct svcxprt_rdma *xprt, gfp_t flags) 576 { 577 struct ib_recv_wr recv_wr, *bad_recv_wr; 578 struct svc_rdma_op_ctxt *ctxt; 579 struct page *page; 580 dma_addr_t pa; 581 int sge_no; 582 int buflen; 583 int ret; 584 585 ctxt = svc_rdma_get_context(xprt); 586 buflen = 0; 587 ctxt->direction = DMA_FROM_DEVICE; 588 ctxt->cqe.done = svc_rdma_wc_receive; 589 for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) { 590 if (sge_no >= xprt->sc_max_sge) { 591 pr_err("svcrdma: Too many sges (%d)\n", sge_no); 592 goto err_put_ctxt; 593 } 594 page = alloc_page(flags); 595 if (!page) 596 goto err_put_ctxt; 597 ctxt->pages[sge_no] = page; 598 pa = ib_dma_map_page(xprt->sc_cm_id->device, 599 page, 0, PAGE_SIZE, 600 DMA_FROM_DEVICE); 601 if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa)) 602 goto err_put_ctxt; 603 atomic_inc(&xprt->sc_dma_used); 604 ctxt->sge[sge_no].addr = pa; 605 ctxt->sge[sge_no].length = PAGE_SIZE; 606 ctxt->sge[sge_no].lkey = xprt->sc_pd->local_dma_lkey; 607 ctxt->count = sge_no + 1; 608 buflen += PAGE_SIZE; 609 } 610 recv_wr.next = NULL; 611 recv_wr.sg_list = &ctxt->sge[0]; 612 recv_wr.num_sge = ctxt->count; 613 recv_wr.wr_cqe = &ctxt->cqe; 614 615 svc_xprt_get(&xprt->sc_xprt); 616 ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr); 617 if (ret) { 618 svc_rdma_unmap_dma(ctxt); 619 svc_rdma_put_context(ctxt, 1); 620 svc_xprt_put(&xprt->sc_xprt); 621 } 622 return ret; 623 624 err_put_ctxt: 625 svc_rdma_unmap_dma(ctxt); 626 svc_rdma_put_context(ctxt, 1); 627 return -ENOMEM; 628 } 629 630 int svc_rdma_repost_recv(struct svcxprt_rdma *xprt, gfp_t flags) 631 { 632 int ret = 0; 633 634 ret = svc_rdma_post_recv(xprt, flags); 635 if (ret) { 636 pr_err("svcrdma: could not post a receive buffer, err=%d.\n", 637 ret); 638 pr_err("svcrdma: closing transport %p.\n", xprt); 639 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 640 ret = -ENOTCONN; 641 } 642 return ret; 643 } 644 645 /* 646 * This function handles the CONNECT_REQUEST event on a listening 647 * endpoint. It is passed the cma_id for the _new_ connection. The context in 648 * this cma_id is inherited from the listening cma_id and is the svc_xprt 649 * structure for the listening endpoint. 650 * 651 * This function creates a new xprt for the new connection and enqueues it on 652 * the accept queue for the listent xprt. When the listen thread is kicked, it 653 * will call the recvfrom method on the listen xprt which will accept the new 654 * connection. 655 */ 656 static void handle_connect_req(struct rdma_cm_id *new_cma_id, size_t client_ird) 657 { 658 struct svcxprt_rdma *listen_xprt = new_cma_id->context; 659 struct svcxprt_rdma *newxprt; 660 struct sockaddr *sa; 661 662 /* Create a new transport */ 663 newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0); 664 if (!newxprt) { 665 dprintk("svcrdma: failed to create new transport\n"); 666 return; 667 } 668 newxprt->sc_cm_id = new_cma_id; 669 new_cma_id->context = newxprt; 670 dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n", 671 newxprt, newxprt->sc_cm_id, listen_xprt); 672 673 /* Save client advertised inbound read limit for use later in accept. */ 674 newxprt->sc_ord = client_ird; 675 676 /* Set the local and remote addresses in the transport */ 677 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr; 678 svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa)); 679 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr; 680 svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa)); 681 682 /* 683 * Enqueue the new transport on the accept queue of the listening 684 * transport 685 */ 686 spin_lock_bh(&listen_xprt->sc_lock); 687 list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q); 688 spin_unlock_bh(&listen_xprt->sc_lock); 689 690 set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags); 691 svc_xprt_enqueue(&listen_xprt->sc_xprt); 692 } 693 694 /* 695 * Handles events generated on the listening endpoint. These events will be 696 * either be incoming connect requests or adapter removal events. 697 */ 698 static int rdma_listen_handler(struct rdma_cm_id *cma_id, 699 struct rdma_cm_event *event) 700 { 701 struct svcxprt_rdma *xprt = cma_id->context; 702 int ret = 0; 703 704 switch (event->event) { 705 case RDMA_CM_EVENT_CONNECT_REQUEST: 706 dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, " 707 "event = %s (%d)\n", cma_id, cma_id->context, 708 rdma_event_msg(event->event), event->event); 709 handle_connect_req(cma_id, 710 event->param.conn.initiator_depth); 711 break; 712 713 case RDMA_CM_EVENT_ESTABLISHED: 714 /* Accept complete */ 715 dprintk("svcrdma: Connection completed on LISTEN xprt=%p, " 716 "cm_id=%p\n", xprt, cma_id); 717 break; 718 719 case RDMA_CM_EVENT_DEVICE_REMOVAL: 720 dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n", 721 xprt, cma_id); 722 if (xprt) 723 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 724 break; 725 726 default: 727 dprintk("svcrdma: Unexpected event on listening endpoint %p, " 728 "event = %s (%d)\n", cma_id, 729 rdma_event_msg(event->event), event->event); 730 break; 731 } 732 733 return ret; 734 } 735 736 static int rdma_cma_handler(struct rdma_cm_id *cma_id, 737 struct rdma_cm_event *event) 738 { 739 struct svc_xprt *xprt = cma_id->context; 740 struct svcxprt_rdma *rdma = 741 container_of(xprt, struct svcxprt_rdma, sc_xprt); 742 switch (event->event) { 743 case RDMA_CM_EVENT_ESTABLISHED: 744 /* Accept complete */ 745 svc_xprt_get(xprt); 746 dprintk("svcrdma: Connection completed on DTO xprt=%p, " 747 "cm_id=%p\n", xprt, cma_id); 748 clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags); 749 svc_xprt_enqueue(xprt); 750 break; 751 case RDMA_CM_EVENT_DISCONNECTED: 752 dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n", 753 xprt, cma_id); 754 if (xprt) { 755 set_bit(XPT_CLOSE, &xprt->xpt_flags); 756 svc_xprt_enqueue(xprt); 757 svc_xprt_put(xprt); 758 } 759 break; 760 case RDMA_CM_EVENT_DEVICE_REMOVAL: 761 dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, " 762 "event = %s (%d)\n", cma_id, xprt, 763 rdma_event_msg(event->event), event->event); 764 if (xprt) { 765 set_bit(XPT_CLOSE, &xprt->xpt_flags); 766 svc_xprt_enqueue(xprt); 767 svc_xprt_put(xprt); 768 } 769 break; 770 default: 771 dprintk("svcrdma: Unexpected event on DTO endpoint %p, " 772 "event = %s (%d)\n", cma_id, 773 rdma_event_msg(event->event), event->event); 774 break; 775 } 776 return 0; 777 } 778 779 /* 780 * Create a listening RDMA service endpoint. 781 */ 782 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv, 783 struct net *net, 784 struct sockaddr *sa, int salen, 785 int flags) 786 { 787 struct rdma_cm_id *listen_id; 788 struct svcxprt_rdma *cma_xprt; 789 int ret; 790 791 dprintk("svcrdma: Creating RDMA socket\n"); 792 if ((sa->sa_family != AF_INET) && (sa->sa_family != AF_INET6)) { 793 dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family); 794 return ERR_PTR(-EAFNOSUPPORT); 795 } 796 cma_xprt = rdma_create_xprt(serv, 1); 797 if (!cma_xprt) 798 return ERR_PTR(-ENOMEM); 799 800 listen_id = rdma_create_id(&init_net, rdma_listen_handler, cma_xprt, 801 RDMA_PS_TCP, IB_QPT_RC); 802 if (IS_ERR(listen_id)) { 803 ret = PTR_ERR(listen_id); 804 dprintk("svcrdma: rdma_create_id failed = %d\n", ret); 805 goto err0; 806 } 807 808 /* Allow both IPv4 and IPv6 sockets to bind a single port 809 * at the same time. 810 */ 811 #if IS_ENABLED(CONFIG_IPV6) 812 ret = rdma_set_afonly(listen_id, 1); 813 if (ret) { 814 dprintk("svcrdma: rdma_set_afonly failed = %d\n", ret); 815 goto err1; 816 } 817 #endif 818 ret = rdma_bind_addr(listen_id, sa); 819 if (ret) { 820 dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret); 821 goto err1; 822 } 823 cma_xprt->sc_cm_id = listen_id; 824 825 ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG); 826 if (ret) { 827 dprintk("svcrdma: rdma_listen failed = %d\n", ret); 828 goto err1; 829 } 830 831 /* 832 * We need to use the address from the cm_id in case the 833 * caller specified 0 for the port number. 834 */ 835 sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr; 836 svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen); 837 838 return &cma_xprt->sc_xprt; 839 840 err1: 841 rdma_destroy_id(listen_id); 842 err0: 843 kfree(cma_xprt); 844 return ERR_PTR(ret); 845 } 846 847 static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt) 848 { 849 struct ib_mr *mr; 850 struct scatterlist *sg; 851 struct svc_rdma_fastreg_mr *frmr; 852 u32 num_sg; 853 854 frmr = kmalloc(sizeof(*frmr), GFP_KERNEL); 855 if (!frmr) 856 goto err; 857 858 num_sg = min_t(u32, RPCSVC_MAXPAGES, xprt->sc_frmr_pg_list_len); 859 mr = ib_alloc_mr(xprt->sc_pd, IB_MR_TYPE_MEM_REG, num_sg); 860 if (IS_ERR(mr)) 861 goto err_free_frmr; 862 863 sg = kcalloc(RPCSVC_MAXPAGES, sizeof(*sg), GFP_KERNEL); 864 if (!sg) 865 goto err_free_mr; 866 867 sg_init_table(sg, RPCSVC_MAXPAGES); 868 869 frmr->mr = mr; 870 frmr->sg = sg; 871 INIT_LIST_HEAD(&frmr->frmr_list); 872 return frmr; 873 874 err_free_mr: 875 ib_dereg_mr(mr); 876 err_free_frmr: 877 kfree(frmr); 878 err: 879 return ERR_PTR(-ENOMEM); 880 } 881 882 static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt) 883 { 884 struct svc_rdma_fastreg_mr *frmr; 885 886 while (!list_empty(&xprt->sc_frmr_q)) { 887 frmr = list_entry(xprt->sc_frmr_q.next, 888 struct svc_rdma_fastreg_mr, frmr_list); 889 list_del_init(&frmr->frmr_list); 890 kfree(frmr->sg); 891 ib_dereg_mr(frmr->mr); 892 kfree(frmr); 893 } 894 } 895 896 struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma) 897 { 898 struct svc_rdma_fastreg_mr *frmr = NULL; 899 900 spin_lock_bh(&rdma->sc_frmr_q_lock); 901 if (!list_empty(&rdma->sc_frmr_q)) { 902 frmr = list_entry(rdma->sc_frmr_q.next, 903 struct svc_rdma_fastreg_mr, frmr_list); 904 list_del_init(&frmr->frmr_list); 905 frmr->sg_nents = 0; 906 } 907 spin_unlock_bh(&rdma->sc_frmr_q_lock); 908 if (frmr) 909 return frmr; 910 911 return rdma_alloc_frmr(rdma); 912 } 913 914 void svc_rdma_put_frmr(struct svcxprt_rdma *rdma, 915 struct svc_rdma_fastreg_mr *frmr) 916 { 917 if (frmr) { 918 ib_dma_unmap_sg(rdma->sc_cm_id->device, 919 frmr->sg, frmr->sg_nents, frmr->direction); 920 atomic_dec(&rdma->sc_dma_used); 921 spin_lock_bh(&rdma->sc_frmr_q_lock); 922 WARN_ON_ONCE(!list_empty(&frmr->frmr_list)); 923 list_add(&frmr->frmr_list, &rdma->sc_frmr_q); 924 spin_unlock_bh(&rdma->sc_frmr_q_lock); 925 } 926 } 927 928 /* 929 * This is the xpo_recvfrom function for listening endpoints. Its 930 * purpose is to accept incoming connections. The CMA callback handler 931 * has already created a new transport and attached it to the new CMA 932 * ID. 933 * 934 * There is a queue of pending connections hung on the listening 935 * transport. This queue contains the new svc_xprt structure. This 936 * function takes svc_xprt structures off the accept_q and completes 937 * the connection. 938 */ 939 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt) 940 { 941 struct svcxprt_rdma *listen_rdma; 942 struct svcxprt_rdma *newxprt = NULL; 943 struct rdma_conn_param conn_param; 944 struct ib_qp_init_attr qp_attr; 945 struct ib_device *dev; 946 unsigned int i; 947 int ret = 0; 948 949 listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt); 950 clear_bit(XPT_CONN, &xprt->xpt_flags); 951 /* Get the next entry off the accept list */ 952 spin_lock_bh(&listen_rdma->sc_lock); 953 if (!list_empty(&listen_rdma->sc_accept_q)) { 954 newxprt = list_entry(listen_rdma->sc_accept_q.next, 955 struct svcxprt_rdma, sc_accept_q); 956 list_del_init(&newxprt->sc_accept_q); 957 } 958 if (!list_empty(&listen_rdma->sc_accept_q)) 959 set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags); 960 spin_unlock_bh(&listen_rdma->sc_lock); 961 if (!newxprt) 962 return NULL; 963 964 dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n", 965 newxprt, newxprt->sc_cm_id); 966 967 dev = newxprt->sc_cm_id->device; 968 969 /* Qualify the transport resource defaults with the 970 * capabilities of this particular device */ 971 newxprt->sc_max_sge = min((size_t)dev->attrs.max_sge, 972 (size_t)RPCSVC_MAXPAGES); 973 newxprt->sc_max_sge_rd = min_t(size_t, dev->attrs.max_sge_rd, 974 RPCSVC_MAXPAGES); 975 newxprt->sc_max_req_size = svcrdma_max_req_size; 976 newxprt->sc_max_requests = min_t(u32, dev->attrs.max_qp_wr, 977 svcrdma_max_requests); 978 newxprt->sc_max_bc_requests = min_t(u32, dev->attrs.max_qp_wr, 979 svcrdma_max_bc_requests); 980 newxprt->sc_rq_depth = newxprt->sc_max_requests + 981 newxprt->sc_max_bc_requests; 982 newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_rq_depth; 983 984 if (!svc_rdma_prealloc_ctxts(newxprt)) 985 goto errout; 986 if (!svc_rdma_prealloc_maps(newxprt)) 987 goto errout; 988 989 /* 990 * Limit ORD based on client limit, local device limit, and 991 * configured svcrdma limit. 992 */ 993 newxprt->sc_ord = min_t(size_t, dev->attrs.max_qp_rd_atom, newxprt->sc_ord); 994 newxprt->sc_ord = min_t(size_t, svcrdma_ord, newxprt->sc_ord); 995 996 newxprt->sc_pd = ib_alloc_pd(dev); 997 if (IS_ERR(newxprt->sc_pd)) { 998 dprintk("svcrdma: error creating PD for connect request\n"); 999 goto errout; 1000 } 1001 newxprt->sc_sq_cq = ib_alloc_cq(dev, newxprt, newxprt->sc_sq_depth, 1002 0, IB_POLL_SOFTIRQ); 1003 if (IS_ERR(newxprt->sc_sq_cq)) { 1004 dprintk("svcrdma: error creating SQ CQ for connect request\n"); 1005 goto errout; 1006 } 1007 newxprt->sc_rq_cq = ib_alloc_cq(dev, newxprt, newxprt->sc_rq_depth, 1008 0, IB_POLL_SOFTIRQ); 1009 if (IS_ERR(newxprt->sc_rq_cq)) { 1010 dprintk("svcrdma: error creating RQ CQ for connect request\n"); 1011 goto errout; 1012 } 1013 1014 memset(&qp_attr, 0, sizeof qp_attr); 1015 qp_attr.event_handler = qp_event_handler; 1016 qp_attr.qp_context = &newxprt->sc_xprt; 1017 qp_attr.cap.max_send_wr = newxprt->sc_sq_depth; 1018 qp_attr.cap.max_recv_wr = newxprt->sc_rq_depth; 1019 qp_attr.cap.max_send_sge = newxprt->sc_max_sge; 1020 qp_attr.cap.max_recv_sge = newxprt->sc_max_sge; 1021 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1022 qp_attr.qp_type = IB_QPT_RC; 1023 qp_attr.send_cq = newxprt->sc_sq_cq; 1024 qp_attr.recv_cq = newxprt->sc_rq_cq; 1025 dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n" 1026 " cm_id->device=%p, sc_pd->device=%p\n" 1027 " cap.max_send_wr = %d\n" 1028 " cap.max_recv_wr = %d\n" 1029 " cap.max_send_sge = %d\n" 1030 " cap.max_recv_sge = %d\n", 1031 newxprt->sc_cm_id, newxprt->sc_pd, 1032 dev, newxprt->sc_pd->device, 1033 qp_attr.cap.max_send_wr, 1034 qp_attr.cap.max_recv_wr, 1035 qp_attr.cap.max_send_sge, 1036 qp_attr.cap.max_recv_sge); 1037 1038 ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr); 1039 if (ret) { 1040 dprintk("svcrdma: failed to create QP, ret=%d\n", ret); 1041 goto errout; 1042 } 1043 newxprt->sc_qp = newxprt->sc_cm_id->qp; 1044 1045 /* 1046 * Use the most secure set of MR resources based on the 1047 * transport type and available memory management features in 1048 * the device. Here's the table implemented below: 1049 * 1050 * Fast Global DMA Remote WR 1051 * Reg LKEY MR Access 1052 * Sup'd Sup'd Needed Needed 1053 * 1054 * IWARP N N Y Y 1055 * N Y Y Y 1056 * Y N Y N 1057 * Y Y N - 1058 * 1059 * IB N N Y N 1060 * N Y N - 1061 * Y N Y N 1062 * Y Y N - 1063 * 1064 * NB: iWARP requires remote write access for the data sink 1065 * of an RDMA_READ. IB does not. 1066 */ 1067 newxprt->sc_reader = rdma_read_chunk_lcl; 1068 if (dev->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) { 1069 newxprt->sc_frmr_pg_list_len = 1070 dev->attrs.max_fast_reg_page_list_len; 1071 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG; 1072 newxprt->sc_reader = rdma_read_chunk_frmr; 1073 } 1074 1075 /* 1076 * Determine if a DMA MR is required and if so, what privs are required 1077 */ 1078 if (!rdma_protocol_iwarp(dev, newxprt->sc_cm_id->port_num) && 1079 !rdma_ib_or_roce(dev, newxprt->sc_cm_id->port_num)) 1080 goto errout; 1081 1082 if (rdma_protocol_iwarp(dev, newxprt->sc_cm_id->port_num)) 1083 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV; 1084 1085 /* Post receive buffers */ 1086 for (i = 0; i < newxprt->sc_max_requests; i++) { 1087 ret = svc_rdma_post_recv(newxprt, GFP_KERNEL); 1088 if (ret) { 1089 dprintk("svcrdma: failure posting receive buffers\n"); 1090 goto errout; 1091 } 1092 } 1093 1094 /* Swap out the handler */ 1095 newxprt->sc_cm_id->event_handler = rdma_cma_handler; 1096 1097 /* Accept Connection */ 1098 set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags); 1099 memset(&conn_param, 0, sizeof conn_param); 1100 conn_param.responder_resources = 0; 1101 conn_param.initiator_depth = newxprt->sc_ord; 1102 ret = rdma_accept(newxprt->sc_cm_id, &conn_param); 1103 if (ret) { 1104 dprintk("svcrdma: failed to accept new connection, ret=%d\n", 1105 ret); 1106 goto errout; 1107 } 1108 1109 dprintk("svcrdma: new connection %p accepted with the following " 1110 "attributes:\n" 1111 " local_ip : %pI4\n" 1112 " local_port : %d\n" 1113 " remote_ip : %pI4\n" 1114 " remote_port : %d\n" 1115 " max_sge : %d\n" 1116 " max_sge_rd : %d\n" 1117 " sq_depth : %d\n" 1118 " max_requests : %d\n" 1119 " ord : %d\n", 1120 newxprt, 1121 &((struct sockaddr_in *)&newxprt->sc_cm_id-> 1122 route.addr.src_addr)->sin_addr.s_addr, 1123 ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id-> 1124 route.addr.src_addr)->sin_port), 1125 &((struct sockaddr_in *)&newxprt->sc_cm_id-> 1126 route.addr.dst_addr)->sin_addr.s_addr, 1127 ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id-> 1128 route.addr.dst_addr)->sin_port), 1129 newxprt->sc_max_sge, 1130 newxprt->sc_max_sge_rd, 1131 newxprt->sc_sq_depth, 1132 newxprt->sc_max_requests, 1133 newxprt->sc_ord); 1134 1135 return &newxprt->sc_xprt; 1136 1137 errout: 1138 dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret); 1139 /* Take a reference in case the DTO handler runs */ 1140 svc_xprt_get(&newxprt->sc_xprt); 1141 if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp)) 1142 ib_destroy_qp(newxprt->sc_qp); 1143 rdma_destroy_id(newxprt->sc_cm_id); 1144 /* This call to put will destroy the transport */ 1145 svc_xprt_put(&newxprt->sc_xprt); 1146 return NULL; 1147 } 1148 1149 static void svc_rdma_release_rqst(struct svc_rqst *rqstp) 1150 { 1151 } 1152 1153 /* 1154 * When connected, an svc_xprt has at least two references: 1155 * 1156 * - A reference held by the cm_id between the ESTABLISHED and 1157 * DISCONNECTED events. If the remote peer disconnected first, this 1158 * reference could be gone. 1159 * 1160 * - A reference held by the svc_recv code that called this function 1161 * as part of close processing. 1162 * 1163 * At a minimum one references should still be held. 1164 */ 1165 static void svc_rdma_detach(struct svc_xprt *xprt) 1166 { 1167 struct svcxprt_rdma *rdma = 1168 container_of(xprt, struct svcxprt_rdma, sc_xprt); 1169 dprintk("svc: svc_rdma_detach(%p)\n", xprt); 1170 1171 /* Disconnect and flush posted WQE */ 1172 rdma_disconnect(rdma->sc_cm_id); 1173 } 1174 1175 static void __svc_rdma_free(struct work_struct *work) 1176 { 1177 struct svcxprt_rdma *rdma = 1178 container_of(work, struct svcxprt_rdma, sc_work); 1179 struct svc_xprt *xprt = &rdma->sc_xprt; 1180 1181 dprintk("svcrdma: %s(%p)\n", __func__, rdma); 1182 1183 if (rdma->sc_qp && !IS_ERR(rdma->sc_qp)) 1184 ib_drain_qp(rdma->sc_qp); 1185 1186 /* We should only be called from kref_put */ 1187 if (atomic_read(&xprt->xpt_ref.refcount) != 0) 1188 pr_err("svcrdma: sc_xprt still in use? (%d)\n", 1189 atomic_read(&xprt->xpt_ref.refcount)); 1190 1191 /* 1192 * Destroy queued, but not processed read completions. Note 1193 * that this cleanup has to be done before destroying the 1194 * cm_id because the device ptr is needed to unmap the dma in 1195 * svc_rdma_put_context. 1196 */ 1197 while (!list_empty(&rdma->sc_read_complete_q)) { 1198 struct svc_rdma_op_ctxt *ctxt; 1199 ctxt = list_entry(rdma->sc_read_complete_q.next, 1200 struct svc_rdma_op_ctxt, 1201 dto_q); 1202 list_del_init(&ctxt->dto_q); 1203 svc_rdma_put_context(ctxt, 1); 1204 } 1205 1206 /* Destroy queued, but not processed recv completions */ 1207 while (!list_empty(&rdma->sc_rq_dto_q)) { 1208 struct svc_rdma_op_ctxt *ctxt; 1209 ctxt = list_entry(rdma->sc_rq_dto_q.next, 1210 struct svc_rdma_op_ctxt, 1211 dto_q); 1212 list_del_init(&ctxt->dto_q); 1213 svc_rdma_put_context(ctxt, 1); 1214 } 1215 1216 /* Warn if we leaked a resource or under-referenced */ 1217 if (rdma->sc_ctxt_used != 0) 1218 pr_err("svcrdma: ctxt still in use? (%d)\n", 1219 rdma->sc_ctxt_used); 1220 if (atomic_read(&rdma->sc_dma_used) != 0) 1221 pr_err("svcrdma: dma still in use? (%d)\n", 1222 atomic_read(&rdma->sc_dma_used)); 1223 1224 /* Final put of backchannel client transport */ 1225 if (xprt->xpt_bc_xprt) { 1226 xprt_put(xprt->xpt_bc_xprt); 1227 xprt->xpt_bc_xprt = NULL; 1228 } 1229 1230 rdma_dealloc_frmr_q(rdma); 1231 svc_rdma_destroy_ctxts(rdma); 1232 svc_rdma_destroy_maps(rdma); 1233 1234 /* Destroy the QP if present (not a listener) */ 1235 if (rdma->sc_qp && !IS_ERR(rdma->sc_qp)) 1236 ib_destroy_qp(rdma->sc_qp); 1237 1238 if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq)) 1239 ib_free_cq(rdma->sc_sq_cq); 1240 1241 if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq)) 1242 ib_free_cq(rdma->sc_rq_cq); 1243 1244 if (rdma->sc_pd && !IS_ERR(rdma->sc_pd)) 1245 ib_dealloc_pd(rdma->sc_pd); 1246 1247 /* Destroy the CM ID */ 1248 rdma_destroy_id(rdma->sc_cm_id); 1249 1250 kfree(rdma); 1251 } 1252 1253 static void svc_rdma_free(struct svc_xprt *xprt) 1254 { 1255 struct svcxprt_rdma *rdma = 1256 container_of(xprt, struct svcxprt_rdma, sc_xprt); 1257 INIT_WORK(&rdma->sc_work, __svc_rdma_free); 1258 queue_work(svc_rdma_wq, &rdma->sc_work); 1259 } 1260 1261 static int svc_rdma_has_wspace(struct svc_xprt *xprt) 1262 { 1263 struct svcxprt_rdma *rdma = 1264 container_of(xprt, struct svcxprt_rdma, sc_xprt); 1265 1266 /* 1267 * If there are already waiters on the SQ, 1268 * return false. 1269 */ 1270 if (waitqueue_active(&rdma->sc_send_wait)) 1271 return 0; 1272 1273 /* Otherwise return true. */ 1274 return 1; 1275 } 1276 1277 static int svc_rdma_secure_port(struct svc_rqst *rqstp) 1278 { 1279 return 1; 1280 } 1281 1282 int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr) 1283 { 1284 struct ib_send_wr *bad_wr, *n_wr; 1285 int wr_count; 1286 int i; 1287 int ret; 1288 1289 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags)) 1290 return -ENOTCONN; 1291 1292 wr_count = 1; 1293 for (n_wr = wr->next; n_wr; n_wr = n_wr->next) 1294 wr_count++; 1295 1296 /* If the SQ is full, wait until an SQ entry is available */ 1297 while (1) { 1298 spin_lock_bh(&xprt->sc_lock); 1299 if (xprt->sc_sq_depth < atomic_read(&xprt->sc_sq_count) + wr_count) { 1300 spin_unlock_bh(&xprt->sc_lock); 1301 atomic_inc(&rdma_stat_sq_starve); 1302 1303 /* Wait until SQ WR available if SQ still full */ 1304 wait_event(xprt->sc_send_wait, 1305 atomic_read(&xprt->sc_sq_count) < 1306 xprt->sc_sq_depth); 1307 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags)) 1308 return -ENOTCONN; 1309 continue; 1310 } 1311 /* Take a transport ref for each WR posted */ 1312 for (i = 0; i < wr_count; i++) 1313 svc_xprt_get(&xprt->sc_xprt); 1314 1315 /* Bump used SQ WR count and post */ 1316 atomic_add(wr_count, &xprt->sc_sq_count); 1317 ret = ib_post_send(xprt->sc_qp, wr, &bad_wr); 1318 if (ret) { 1319 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 1320 atomic_sub(wr_count, &xprt->sc_sq_count); 1321 for (i = 0; i < wr_count; i ++) 1322 svc_xprt_put(&xprt->sc_xprt); 1323 dprintk("svcrdma: failed to post SQ WR rc=%d, " 1324 "sc_sq_count=%d, sc_sq_depth=%d\n", 1325 ret, atomic_read(&xprt->sc_sq_count), 1326 xprt->sc_sq_depth); 1327 } 1328 spin_unlock_bh(&xprt->sc_lock); 1329 if (ret) 1330 wake_up(&xprt->sc_send_wait); 1331 break; 1332 } 1333 return ret; 1334 } 1335