1 /* 2 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved. 3 * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the BSD-type 9 * license below: 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 15 * Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 18 * Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials provided 21 * with the distribution. 22 * 23 * Neither the name of the Network Appliance, Inc. nor the names of 24 * its contributors may be used to endorse or promote products 25 * derived from this software without specific prior written 26 * permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Author: Tom Tucker <tom@opengridcomputing.com> 41 */ 42 43 #include <linux/sunrpc/svc_xprt.h> 44 #include <linux/sunrpc/debug.h> 45 #include <linux/sunrpc/rpc_rdma.h> 46 #include <linux/interrupt.h> 47 #include <linux/sched.h> 48 #include <linux/slab.h> 49 #include <linux/spinlock.h> 50 #include <linux/workqueue.h> 51 #include <rdma/ib_verbs.h> 52 #include <rdma/rdma_cm.h> 53 #include <linux/sunrpc/svc_rdma.h> 54 #include <linux/export.h> 55 #include "xprt_rdma.h" 56 57 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 58 59 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv, 60 struct net *net, 61 struct sockaddr *sa, int salen, 62 int flags); 63 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt); 64 static void svc_rdma_release_rqst(struct svc_rqst *); 65 static void dto_tasklet_func(unsigned long data); 66 static void svc_rdma_detach(struct svc_xprt *xprt); 67 static void svc_rdma_free(struct svc_xprt *xprt); 68 static int svc_rdma_has_wspace(struct svc_xprt *xprt); 69 static int svc_rdma_secure_port(struct svc_rqst *); 70 static void rq_cq_reap(struct svcxprt_rdma *xprt); 71 static void sq_cq_reap(struct svcxprt_rdma *xprt); 72 73 static DECLARE_TASKLET(dto_tasklet, dto_tasklet_func, 0UL); 74 static DEFINE_SPINLOCK(dto_lock); 75 static LIST_HEAD(dto_xprt_q); 76 77 static struct svc_xprt_ops svc_rdma_ops = { 78 .xpo_create = svc_rdma_create, 79 .xpo_recvfrom = svc_rdma_recvfrom, 80 .xpo_sendto = svc_rdma_sendto, 81 .xpo_release_rqst = svc_rdma_release_rqst, 82 .xpo_detach = svc_rdma_detach, 83 .xpo_free = svc_rdma_free, 84 .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr, 85 .xpo_has_wspace = svc_rdma_has_wspace, 86 .xpo_accept = svc_rdma_accept, 87 .xpo_secure_port = svc_rdma_secure_port, 88 }; 89 90 struct svc_xprt_class svc_rdma_class = { 91 .xcl_name = "rdma", 92 .xcl_owner = THIS_MODULE, 93 .xcl_ops = &svc_rdma_ops, 94 .xcl_max_payload = RPCRDMA_MAXPAYLOAD, 95 .xcl_ident = XPRT_TRANSPORT_RDMA, 96 }; 97 98 struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt) 99 { 100 struct svc_rdma_op_ctxt *ctxt; 101 102 ctxt = kmem_cache_alloc(svc_rdma_ctxt_cachep, 103 GFP_KERNEL | __GFP_NOFAIL); 104 ctxt->xprt = xprt; 105 INIT_LIST_HEAD(&ctxt->dto_q); 106 ctxt->count = 0; 107 ctxt->frmr = NULL; 108 atomic_inc(&xprt->sc_ctxt_used); 109 return ctxt; 110 } 111 112 void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt) 113 { 114 struct svcxprt_rdma *xprt = ctxt->xprt; 115 int i; 116 for (i = 0; i < ctxt->count && ctxt->sge[i].length; i++) { 117 /* 118 * Unmap the DMA addr in the SGE if the lkey matches 119 * the sc_dma_lkey, otherwise, ignore it since it is 120 * an FRMR lkey and will be unmapped later when the 121 * last WR that uses it completes. 122 */ 123 if (ctxt->sge[i].lkey == xprt->sc_dma_lkey) { 124 atomic_dec(&xprt->sc_dma_used); 125 ib_dma_unmap_page(xprt->sc_cm_id->device, 126 ctxt->sge[i].addr, 127 ctxt->sge[i].length, 128 ctxt->direction); 129 } 130 } 131 } 132 133 void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages) 134 { 135 struct svcxprt_rdma *xprt; 136 int i; 137 138 xprt = ctxt->xprt; 139 if (free_pages) 140 for (i = 0; i < ctxt->count; i++) 141 put_page(ctxt->pages[i]); 142 143 kmem_cache_free(svc_rdma_ctxt_cachep, ctxt); 144 atomic_dec(&xprt->sc_ctxt_used); 145 } 146 147 /* 148 * Temporary NFS req mappings are shared across all transport 149 * instances. These are short lived and should be bounded by the number 150 * of concurrent server threads * depth of the SQ. 151 */ 152 struct svc_rdma_req_map *svc_rdma_get_req_map(void) 153 { 154 struct svc_rdma_req_map *map; 155 map = kmem_cache_alloc(svc_rdma_map_cachep, 156 GFP_KERNEL | __GFP_NOFAIL); 157 map->count = 0; 158 return map; 159 } 160 161 void svc_rdma_put_req_map(struct svc_rdma_req_map *map) 162 { 163 kmem_cache_free(svc_rdma_map_cachep, map); 164 } 165 166 /* ib_cq event handler */ 167 static void cq_event_handler(struct ib_event *event, void *context) 168 { 169 struct svc_xprt *xprt = context; 170 dprintk("svcrdma: received CQ event %s (%d), context=%p\n", 171 ib_event_msg(event->event), event->event, context); 172 set_bit(XPT_CLOSE, &xprt->xpt_flags); 173 } 174 175 /* QP event handler */ 176 static void qp_event_handler(struct ib_event *event, void *context) 177 { 178 struct svc_xprt *xprt = context; 179 180 switch (event->event) { 181 /* These are considered benign events */ 182 case IB_EVENT_PATH_MIG: 183 case IB_EVENT_COMM_EST: 184 case IB_EVENT_SQ_DRAINED: 185 case IB_EVENT_QP_LAST_WQE_REACHED: 186 dprintk("svcrdma: QP event %s (%d) received for QP=%p\n", 187 ib_event_msg(event->event), event->event, 188 event->element.qp); 189 break; 190 /* These are considered fatal events */ 191 case IB_EVENT_PATH_MIG_ERR: 192 case IB_EVENT_QP_FATAL: 193 case IB_EVENT_QP_REQ_ERR: 194 case IB_EVENT_QP_ACCESS_ERR: 195 case IB_EVENT_DEVICE_FATAL: 196 default: 197 dprintk("svcrdma: QP ERROR event %s (%d) received for QP=%p, " 198 "closing transport\n", 199 ib_event_msg(event->event), event->event, 200 event->element.qp); 201 set_bit(XPT_CLOSE, &xprt->xpt_flags); 202 break; 203 } 204 } 205 206 /* 207 * Data Transfer Operation Tasklet 208 * 209 * Walks a list of transports with I/O pending, removing entries as 210 * they are added to the server's I/O pending list. Two bits indicate 211 * if SQ, RQ, or both have I/O pending. The dto_lock is an irqsave 212 * spinlock that serializes access to the transport list with the RQ 213 * and SQ interrupt handlers. 214 */ 215 static void dto_tasklet_func(unsigned long data) 216 { 217 struct svcxprt_rdma *xprt; 218 unsigned long flags; 219 220 spin_lock_irqsave(&dto_lock, flags); 221 while (!list_empty(&dto_xprt_q)) { 222 xprt = list_entry(dto_xprt_q.next, 223 struct svcxprt_rdma, sc_dto_q); 224 list_del_init(&xprt->sc_dto_q); 225 spin_unlock_irqrestore(&dto_lock, flags); 226 227 rq_cq_reap(xprt); 228 sq_cq_reap(xprt); 229 230 svc_xprt_put(&xprt->sc_xprt); 231 spin_lock_irqsave(&dto_lock, flags); 232 } 233 spin_unlock_irqrestore(&dto_lock, flags); 234 } 235 236 /* 237 * Receive Queue Completion Handler 238 * 239 * Since an RQ completion handler is called on interrupt context, we 240 * need to defer the handling of the I/O to a tasklet 241 */ 242 static void rq_comp_handler(struct ib_cq *cq, void *cq_context) 243 { 244 struct svcxprt_rdma *xprt = cq_context; 245 unsigned long flags; 246 247 /* Guard against unconditional flush call for destroyed QP */ 248 if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0) 249 return; 250 251 /* 252 * Set the bit regardless of whether or not it's on the list 253 * because it may be on the list already due to an SQ 254 * completion. 255 */ 256 set_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags); 257 258 /* 259 * If this transport is not already on the DTO transport queue, 260 * add it 261 */ 262 spin_lock_irqsave(&dto_lock, flags); 263 if (list_empty(&xprt->sc_dto_q)) { 264 svc_xprt_get(&xprt->sc_xprt); 265 list_add_tail(&xprt->sc_dto_q, &dto_xprt_q); 266 } 267 spin_unlock_irqrestore(&dto_lock, flags); 268 269 /* Tasklet does all the work to avoid irqsave locks. */ 270 tasklet_schedule(&dto_tasklet); 271 } 272 273 /* 274 * rq_cq_reap - Process the RQ CQ. 275 * 276 * Take all completing WC off the CQE and enqueue the associated DTO 277 * context on the dto_q for the transport. 278 * 279 * Note that caller must hold a transport reference. 280 */ 281 static void rq_cq_reap(struct svcxprt_rdma *xprt) 282 { 283 int ret; 284 struct ib_wc wc; 285 struct svc_rdma_op_ctxt *ctxt = NULL; 286 287 if (!test_and_clear_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags)) 288 return; 289 290 ib_req_notify_cq(xprt->sc_rq_cq, IB_CQ_NEXT_COMP); 291 atomic_inc(&rdma_stat_rq_poll); 292 293 while ((ret = ib_poll_cq(xprt->sc_rq_cq, 1, &wc)) > 0) { 294 ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id; 295 ctxt->wc_status = wc.status; 296 ctxt->byte_len = wc.byte_len; 297 svc_rdma_unmap_dma(ctxt); 298 if (wc.status != IB_WC_SUCCESS) { 299 /* Close the transport */ 300 dprintk("svcrdma: transport closing putting ctxt %p\n", ctxt); 301 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 302 svc_rdma_put_context(ctxt, 1); 303 svc_xprt_put(&xprt->sc_xprt); 304 continue; 305 } 306 spin_lock_bh(&xprt->sc_rq_dto_lock); 307 list_add_tail(&ctxt->dto_q, &xprt->sc_rq_dto_q); 308 spin_unlock_bh(&xprt->sc_rq_dto_lock); 309 svc_xprt_put(&xprt->sc_xprt); 310 } 311 312 if (ctxt) 313 atomic_inc(&rdma_stat_rq_prod); 314 315 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags); 316 /* 317 * If data arrived before established event, 318 * don't enqueue. This defers RPC I/O until the 319 * RDMA connection is complete. 320 */ 321 if (!test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags)) 322 svc_xprt_enqueue(&xprt->sc_xprt); 323 } 324 325 /* 326 * Process a completion context 327 */ 328 static void process_context(struct svcxprt_rdma *xprt, 329 struct svc_rdma_op_ctxt *ctxt) 330 { 331 svc_rdma_unmap_dma(ctxt); 332 333 switch (ctxt->wr_op) { 334 case IB_WR_SEND: 335 if (ctxt->frmr) 336 pr_err("svcrdma: SEND: ctxt->frmr != NULL\n"); 337 svc_rdma_put_context(ctxt, 1); 338 break; 339 340 case IB_WR_RDMA_WRITE: 341 if (ctxt->frmr) 342 pr_err("svcrdma: WRITE: ctxt->frmr != NULL\n"); 343 svc_rdma_put_context(ctxt, 0); 344 break; 345 346 case IB_WR_RDMA_READ: 347 case IB_WR_RDMA_READ_WITH_INV: 348 svc_rdma_put_frmr(xprt, ctxt->frmr); 349 if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) { 350 struct svc_rdma_op_ctxt *read_hdr = ctxt->read_hdr; 351 if (read_hdr) { 352 spin_lock_bh(&xprt->sc_rq_dto_lock); 353 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags); 354 list_add_tail(&read_hdr->dto_q, 355 &xprt->sc_read_complete_q); 356 spin_unlock_bh(&xprt->sc_rq_dto_lock); 357 } else { 358 pr_err("svcrdma: ctxt->read_hdr == NULL\n"); 359 } 360 svc_xprt_enqueue(&xprt->sc_xprt); 361 } 362 svc_rdma_put_context(ctxt, 0); 363 break; 364 365 default: 366 printk(KERN_ERR "svcrdma: unexpected completion type, " 367 "opcode=%d\n", 368 ctxt->wr_op); 369 break; 370 } 371 } 372 373 /* 374 * Send Queue Completion Handler - potentially called on interrupt context. 375 * 376 * Note that caller must hold a transport reference. 377 */ 378 static void sq_cq_reap(struct svcxprt_rdma *xprt) 379 { 380 struct svc_rdma_op_ctxt *ctxt = NULL; 381 struct ib_wc wc_a[6]; 382 struct ib_wc *wc; 383 struct ib_cq *cq = xprt->sc_sq_cq; 384 int ret; 385 386 memset(wc_a, 0, sizeof(wc_a)); 387 388 if (!test_and_clear_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags)) 389 return; 390 391 ib_req_notify_cq(xprt->sc_sq_cq, IB_CQ_NEXT_COMP); 392 atomic_inc(&rdma_stat_sq_poll); 393 while ((ret = ib_poll_cq(cq, ARRAY_SIZE(wc_a), wc_a)) > 0) { 394 int i; 395 396 for (i = 0; i < ret; i++) { 397 wc = &wc_a[i]; 398 if (wc->status != IB_WC_SUCCESS) { 399 dprintk("svcrdma: sq wc err status %s (%d)\n", 400 ib_wc_status_msg(wc->status), 401 wc->status); 402 403 /* Close the transport */ 404 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 405 } 406 407 /* Decrement used SQ WR count */ 408 atomic_dec(&xprt->sc_sq_count); 409 wake_up(&xprt->sc_send_wait); 410 411 ctxt = (struct svc_rdma_op_ctxt *) 412 (unsigned long)wc->wr_id; 413 if (ctxt) 414 process_context(xprt, ctxt); 415 416 svc_xprt_put(&xprt->sc_xprt); 417 } 418 } 419 420 if (ctxt) 421 atomic_inc(&rdma_stat_sq_prod); 422 } 423 424 static void sq_comp_handler(struct ib_cq *cq, void *cq_context) 425 { 426 struct svcxprt_rdma *xprt = cq_context; 427 unsigned long flags; 428 429 /* Guard against unconditional flush call for destroyed QP */ 430 if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0) 431 return; 432 433 /* 434 * Set the bit regardless of whether or not it's on the list 435 * because it may be on the list already due to an RQ 436 * completion. 437 */ 438 set_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags); 439 440 /* 441 * If this transport is not already on the DTO transport queue, 442 * add it 443 */ 444 spin_lock_irqsave(&dto_lock, flags); 445 if (list_empty(&xprt->sc_dto_q)) { 446 svc_xprt_get(&xprt->sc_xprt); 447 list_add_tail(&xprt->sc_dto_q, &dto_xprt_q); 448 } 449 spin_unlock_irqrestore(&dto_lock, flags); 450 451 /* Tasklet does all the work to avoid irqsave locks. */ 452 tasklet_schedule(&dto_tasklet); 453 } 454 455 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv, 456 int listener) 457 { 458 struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL); 459 460 if (!cma_xprt) 461 return NULL; 462 svc_xprt_init(&init_net, &svc_rdma_class, &cma_xprt->sc_xprt, serv); 463 INIT_LIST_HEAD(&cma_xprt->sc_accept_q); 464 INIT_LIST_HEAD(&cma_xprt->sc_dto_q); 465 INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q); 466 INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q); 467 INIT_LIST_HEAD(&cma_xprt->sc_frmr_q); 468 init_waitqueue_head(&cma_xprt->sc_send_wait); 469 470 spin_lock_init(&cma_xprt->sc_lock); 471 spin_lock_init(&cma_xprt->sc_rq_dto_lock); 472 spin_lock_init(&cma_xprt->sc_frmr_q_lock); 473 474 cma_xprt->sc_ord = svcrdma_ord; 475 476 cma_xprt->sc_max_req_size = svcrdma_max_req_size; 477 cma_xprt->sc_max_requests = svcrdma_max_requests; 478 cma_xprt->sc_sq_depth = svcrdma_max_requests * RPCRDMA_SQ_DEPTH_MULT; 479 atomic_set(&cma_xprt->sc_sq_count, 0); 480 atomic_set(&cma_xprt->sc_ctxt_used, 0); 481 482 if (listener) 483 set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags); 484 485 return cma_xprt; 486 } 487 488 int svc_rdma_post_recv(struct svcxprt_rdma *xprt) 489 { 490 struct ib_recv_wr recv_wr, *bad_recv_wr; 491 struct svc_rdma_op_ctxt *ctxt; 492 struct page *page; 493 dma_addr_t pa; 494 int sge_no; 495 int buflen; 496 int ret; 497 498 ctxt = svc_rdma_get_context(xprt); 499 buflen = 0; 500 ctxt->direction = DMA_FROM_DEVICE; 501 for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) { 502 if (sge_no >= xprt->sc_max_sge) { 503 pr_err("svcrdma: Too many sges (%d)\n", sge_no); 504 goto err_put_ctxt; 505 } 506 page = alloc_page(GFP_KERNEL | __GFP_NOFAIL); 507 ctxt->pages[sge_no] = page; 508 pa = ib_dma_map_page(xprt->sc_cm_id->device, 509 page, 0, PAGE_SIZE, 510 DMA_FROM_DEVICE); 511 if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa)) 512 goto err_put_ctxt; 513 atomic_inc(&xprt->sc_dma_used); 514 ctxt->sge[sge_no].addr = pa; 515 ctxt->sge[sge_no].length = PAGE_SIZE; 516 ctxt->sge[sge_no].lkey = xprt->sc_dma_lkey; 517 ctxt->count = sge_no + 1; 518 buflen += PAGE_SIZE; 519 } 520 recv_wr.next = NULL; 521 recv_wr.sg_list = &ctxt->sge[0]; 522 recv_wr.num_sge = ctxt->count; 523 recv_wr.wr_id = (u64)(unsigned long)ctxt; 524 525 svc_xprt_get(&xprt->sc_xprt); 526 ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr); 527 if (ret) { 528 svc_rdma_unmap_dma(ctxt); 529 svc_rdma_put_context(ctxt, 1); 530 svc_xprt_put(&xprt->sc_xprt); 531 } 532 return ret; 533 534 err_put_ctxt: 535 svc_rdma_unmap_dma(ctxt); 536 svc_rdma_put_context(ctxt, 1); 537 return -ENOMEM; 538 } 539 540 /* 541 * This function handles the CONNECT_REQUEST event on a listening 542 * endpoint. It is passed the cma_id for the _new_ connection. The context in 543 * this cma_id is inherited from the listening cma_id and is the svc_xprt 544 * structure for the listening endpoint. 545 * 546 * This function creates a new xprt for the new connection and enqueues it on 547 * the accept queue for the listent xprt. When the listen thread is kicked, it 548 * will call the recvfrom method on the listen xprt which will accept the new 549 * connection. 550 */ 551 static void handle_connect_req(struct rdma_cm_id *new_cma_id, size_t client_ird) 552 { 553 struct svcxprt_rdma *listen_xprt = new_cma_id->context; 554 struct svcxprt_rdma *newxprt; 555 struct sockaddr *sa; 556 557 /* Create a new transport */ 558 newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0); 559 if (!newxprt) { 560 dprintk("svcrdma: failed to create new transport\n"); 561 return; 562 } 563 newxprt->sc_cm_id = new_cma_id; 564 new_cma_id->context = newxprt; 565 dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n", 566 newxprt, newxprt->sc_cm_id, listen_xprt); 567 568 /* Save client advertised inbound read limit for use later in accept. */ 569 newxprt->sc_ord = client_ird; 570 571 /* Set the local and remote addresses in the transport */ 572 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr; 573 svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa)); 574 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr; 575 svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa)); 576 577 /* 578 * Enqueue the new transport on the accept queue of the listening 579 * transport 580 */ 581 spin_lock_bh(&listen_xprt->sc_lock); 582 list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q); 583 spin_unlock_bh(&listen_xprt->sc_lock); 584 585 set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags); 586 svc_xprt_enqueue(&listen_xprt->sc_xprt); 587 } 588 589 /* 590 * Handles events generated on the listening endpoint. These events will be 591 * either be incoming connect requests or adapter removal events. 592 */ 593 static int rdma_listen_handler(struct rdma_cm_id *cma_id, 594 struct rdma_cm_event *event) 595 { 596 struct svcxprt_rdma *xprt = cma_id->context; 597 int ret = 0; 598 599 switch (event->event) { 600 case RDMA_CM_EVENT_CONNECT_REQUEST: 601 dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, " 602 "event = %s (%d)\n", cma_id, cma_id->context, 603 rdma_event_msg(event->event), event->event); 604 handle_connect_req(cma_id, 605 event->param.conn.initiator_depth); 606 break; 607 608 case RDMA_CM_EVENT_ESTABLISHED: 609 /* Accept complete */ 610 dprintk("svcrdma: Connection completed on LISTEN xprt=%p, " 611 "cm_id=%p\n", xprt, cma_id); 612 break; 613 614 case RDMA_CM_EVENT_DEVICE_REMOVAL: 615 dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n", 616 xprt, cma_id); 617 if (xprt) 618 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 619 break; 620 621 default: 622 dprintk("svcrdma: Unexpected event on listening endpoint %p, " 623 "event = %s (%d)\n", cma_id, 624 rdma_event_msg(event->event), event->event); 625 break; 626 } 627 628 return ret; 629 } 630 631 static int rdma_cma_handler(struct rdma_cm_id *cma_id, 632 struct rdma_cm_event *event) 633 { 634 struct svc_xprt *xprt = cma_id->context; 635 struct svcxprt_rdma *rdma = 636 container_of(xprt, struct svcxprt_rdma, sc_xprt); 637 switch (event->event) { 638 case RDMA_CM_EVENT_ESTABLISHED: 639 /* Accept complete */ 640 svc_xprt_get(xprt); 641 dprintk("svcrdma: Connection completed on DTO xprt=%p, " 642 "cm_id=%p\n", xprt, cma_id); 643 clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags); 644 svc_xprt_enqueue(xprt); 645 break; 646 case RDMA_CM_EVENT_DISCONNECTED: 647 dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n", 648 xprt, cma_id); 649 if (xprt) { 650 set_bit(XPT_CLOSE, &xprt->xpt_flags); 651 svc_xprt_enqueue(xprt); 652 svc_xprt_put(xprt); 653 } 654 break; 655 case RDMA_CM_EVENT_DEVICE_REMOVAL: 656 dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, " 657 "event = %s (%d)\n", cma_id, xprt, 658 rdma_event_msg(event->event), event->event); 659 if (xprt) { 660 set_bit(XPT_CLOSE, &xprt->xpt_flags); 661 svc_xprt_enqueue(xprt); 662 } 663 break; 664 default: 665 dprintk("svcrdma: Unexpected event on DTO endpoint %p, " 666 "event = %s (%d)\n", cma_id, 667 rdma_event_msg(event->event), event->event); 668 break; 669 } 670 return 0; 671 } 672 673 /* 674 * Create a listening RDMA service endpoint. 675 */ 676 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv, 677 struct net *net, 678 struct sockaddr *sa, int salen, 679 int flags) 680 { 681 struct rdma_cm_id *listen_id; 682 struct svcxprt_rdma *cma_xprt; 683 int ret; 684 685 dprintk("svcrdma: Creating RDMA socket\n"); 686 if (sa->sa_family != AF_INET) { 687 dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family); 688 return ERR_PTR(-EAFNOSUPPORT); 689 } 690 cma_xprt = rdma_create_xprt(serv, 1); 691 if (!cma_xprt) 692 return ERR_PTR(-ENOMEM); 693 694 listen_id = rdma_create_id(rdma_listen_handler, cma_xprt, RDMA_PS_TCP, 695 IB_QPT_RC); 696 if (IS_ERR(listen_id)) { 697 ret = PTR_ERR(listen_id); 698 dprintk("svcrdma: rdma_create_id failed = %d\n", ret); 699 goto err0; 700 } 701 702 ret = rdma_bind_addr(listen_id, sa); 703 if (ret) { 704 dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret); 705 goto err1; 706 } 707 cma_xprt->sc_cm_id = listen_id; 708 709 ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG); 710 if (ret) { 711 dprintk("svcrdma: rdma_listen failed = %d\n", ret); 712 goto err1; 713 } 714 715 /* 716 * We need to use the address from the cm_id in case the 717 * caller specified 0 for the port number. 718 */ 719 sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr; 720 svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen); 721 722 return &cma_xprt->sc_xprt; 723 724 err1: 725 rdma_destroy_id(listen_id); 726 err0: 727 kfree(cma_xprt); 728 return ERR_PTR(ret); 729 } 730 731 static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt) 732 { 733 struct ib_mr *mr; 734 struct ib_fast_reg_page_list *pl; 735 struct svc_rdma_fastreg_mr *frmr; 736 737 frmr = kmalloc(sizeof(*frmr), GFP_KERNEL); 738 if (!frmr) 739 goto err; 740 741 mr = ib_alloc_fast_reg_mr(xprt->sc_pd, RPCSVC_MAXPAGES); 742 if (IS_ERR(mr)) 743 goto err_free_frmr; 744 745 pl = ib_alloc_fast_reg_page_list(xprt->sc_cm_id->device, 746 RPCSVC_MAXPAGES); 747 if (IS_ERR(pl)) 748 goto err_free_mr; 749 750 frmr->mr = mr; 751 frmr->page_list = pl; 752 INIT_LIST_HEAD(&frmr->frmr_list); 753 return frmr; 754 755 err_free_mr: 756 ib_dereg_mr(mr); 757 err_free_frmr: 758 kfree(frmr); 759 err: 760 return ERR_PTR(-ENOMEM); 761 } 762 763 static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt) 764 { 765 struct svc_rdma_fastreg_mr *frmr; 766 767 while (!list_empty(&xprt->sc_frmr_q)) { 768 frmr = list_entry(xprt->sc_frmr_q.next, 769 struct svc_rdma_fastreg_mr, frmr_list); 770 list_del_init(&frmr->frmr_list); 771 ib_dereg_mr(frmr->mr); 772 ib_free_fast_reg_page_list(frmr->page_list); 773 kfree(frmr); 774 } 775 } 776 777 struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma) 778 { 779 struct svc_rdma_fastreg_mr *frmr = NULL; 780 781 spin_lock_bh(&rdma->sc_frmr_q_lock); 782 if (!list_empty(&rdma->sc_frmr_q)) { 783 frmr = list_entry(rdma->sc_frmr_q.next, 784 struct svc_rdma_fastreg_mr, frmr_list); 785 list_del_init(&frmr->frmr_list); 786 frmr->map_len = 0; 787 frmr->page_list_len = 0; 788 } 789 spin_unlock_bh(&rdma->sc_frmr_q_lock); 790 if (frmr) 791 return frmr; 792 793 return rdma_alloc_frmr(rdma); 794 } 795 796 static void frmr_unmap_dma(struct svcxprt_rdma *xprt, 797 struct svc_rdma_fastreg_mr *frmr) 798 { 799 int page_no; 800 for (page_no = 0; page_no < frmr->page_list_len; page_no++) { 801 dma_addr_t addr = frmr->page_list->page_list[page_no]; 802 if (ib_dma_mapping_error(frmr->mr->device, addr)) 803 continue; 804 atomic_dec(&xprt->sc_dma_used); 805 ib_dma_unmap_page(frmr->mr->device, addr, PAGE_SIZE, 806 frmr->direction); 807 } 808 } 809 810 void svc_rdma_put_frmr(struct svcxprt_rdma *rdma, 811 struct svc_rdma_fastreg_mr *frmr) 812 { 813 if (frmr) { 814 frmr_unmap_dma(rdma, frmr); 815 spin_lock_bh(&rdma->sc_frmr_q_lock); 816 WARN_ON_ONCE(!list_empty(&frmr->frmr_list)); 817 list_add(&frmr->frmr_list, &rdma->sc_frmr_q); 818 spin_unlock_bh(&rdma->sc_frmr_q_lock); 819 } 820 } 821 822 /* 823 * This is the xpo_recvfrom function for listening endpoints. Its 824 * purpose is to accept incoming connections. The CMA callback handler 825 * has already created a new transport and attached it to the new CMA 826 * ID. 827 * 828 * There is a queue of pending connections hung on the listening 829 * transport. This queue contains the new svc_xprt structure. This 830 * function takes svc_xprt structures off the accept_q and completes 831 * the connection. 832 */ 833 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt) 834 { 835 struct svcxprt_rdma *listen_rdma; 836 struct svcxprt_rdma *newxprt = NULL; 837 struct rdma_conn_param conn_param; 838 struct ib_cq_init_attr cq_attr = {}; 839 struct ib_qp_init_attr qp_attr; 840 struct ib_device_attr devattr; 841 int uninitialized_var(dma_mr_acc); 842 int need_dma_mr = 0; 843 int ret; 844 int i; 845 846 listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt); 847 clear_bit(XPT_CONN, &xprt->xpt_flags); 848 /* Get the next entry off the accept list */ 849 spin_lock_bh(&listen_rdma->sc_lock); 850 if (!list_empty(&listen_rdma->sc_accept_q)) { 851 newxprt = list_entry(listen_rdma->sc_accept_q.next, 852 struct svcxprt_rdma, sc_accept_q); 853 list_del_init(&newxprt->sc_accept_q); 854 } 855 if (!list_empty(&listen_rdma->sc_accept_q)) 856 set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags); 857 spin_unlock_bh(&listen_rdma->sc_lock); 858 if (!newxprt) 859 return NULL; 860 861 dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n", 862 newxprt, newxprt->sc_cm_id); 863 864 ret = ib_query_device(newxprt->sc_cm_id->device, &devattr); 865 if (ret) { 866 dprintk("svcrdma: could not query device attributes on " 867 "device %p, rc=%d\n", newxprt->sc_cm_id->device, ret); 868 goto errout; 869 } 870 871 /* Qualify the transport resource defaults with the 872 * capabilities of this particular device */ 873 newxprt->sc_max_sge = min((size_t)devattr.max_sge, 874 (size_t)RPCSVC_MAXPAGES); 875 newxprt->sc_max_requests = min((size_t)devattr.max_qp_wr, 876 (size_t)svcrdma_max_requests); 877 newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_max_requests; 878 879 /* 880 * Limit ORD based on client limit, local device limit, and 881 * configured svcrdma limit. 882 */ 883 newxprt->sc_ord = min_t(size_t, devattr.max_qp_rd_atom, newxprt->sc_ord); 884 newxprt->sc_ord = min_t(size_t, svcrdma_ord, newxprt->sc_ord); 885 886 newxprt->sc_pd = ib_alloc_pd(newxprt->sc_cm_id->device); 887 if (IS_ERR(newxprt->sc_pd)) { 888 dprintk("svcrdma: error creating PD for connect request\n"); 889 goto errout; 890 } 891 cq_attr.cqe = newxprt->sc_sq_depth; 892 newxprt->sc_sq_cq = ib_create_cq(newxprt->sc_cm_id->device, 893 sq_comp_handler, 894 cq_event_handler, 895 newxprt, 896 &cq_attr); 897 if (IS_ERR(newxprt->sc_sq_cq)) { 898 dprintk("svcrdma: error creating SQ CQ for connect request\n"); 899 goto errout; 900 } 901 cq_attr.cqe = newxprt->sc_max_requests; 902 newxprt->sc_rq_cq = ib_create_cq(newxprt->sc_cm_id->device, 903 rq_comp_handler, 904 cq_event_handler, 905 newxprt, 906 &cq_attr); 907 if (IS_ERR(newxprt->sc_rq_cq)) { 908 dprintk("svcrdma: error creating RQ CQ for connect request\n"); 909 goto errout; 910 } 911 912 memset(&qp_attr, 0, sizeof qp_attr); 913 qp_attr.event_handler = qp_event_handler; 914 qp_attr.qp_context = &newxprt->sc_xprt; 915 qp_attr.cap.max_send_wr = newxprt->sc_sq_depth; 916 qp_attr.cap.max_recv_wr = newxprt->sc_max_requests; 917 qp_attr.cap.max_send_sge = newxprt->sc_max_sge; 918 qp_attr.cap.max_recv_sge = newxprt->sc_max_sge; 919 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 920 qp_attr.qp_type = IB_QPT_RC; 921 qp_attr.send_cq = newxprt->sc_sq_cq; 922 qp_attr.recv_cq = newxprt->sc_rq_cq; 923 dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n" 924 " cm_id->device=%p, sc_pd->device=%p\n" 925 " cap.max_send_wr = %d\n" 926 " cap.max_recv_wr = %d\n" 927 " cap.max_send_sge = %d\n" 928 " cap.max_recv_sge = %d\n", 929 newxprt->sc_cm_id, newxprt->sc_pd, 930 newxprt->sc_cm_id->device, newxprt->sc_pd->device, 931 qp_attr.cap.max_send_wr, 932 qp_attr.cap.max_recv_wr, 933 qp_attr.cap.max_send_sge, 934 qp_attr.cap.max_recv_sge); 935 936 ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr); 937 if (ret) { 938 dprintk("svcrdma: failed to create QP, ret=%d\n", ret); 939 goto errout; 940 } 941 newxprt->sc_qp = newxprt->sc_cm_id->qp; 942 943 /* 944 * Use the most secure set of MR resources based on the 945 * transport type and available memory management features in 946 * the device. Here's the table implemented below: 947 * 948 * Fast Global DMA Remote WR 949 * Reg LKEY MR Access 950 * Sup'd Sup'd Needed Needed 951 * 952 * IWARP N N Y Y 953 * N Y Y Y 954 * Y N Y N 955 * Y Y N - 956 * 957 * IB N N Y N 958 * N Y N - 959 * Y N Y N 960 * Y Y N - 961 * 962 * NB: iWARP requires remote write access for the data sink 963 * of an RDMA_READ. IB does not. 964 */ 965 newxprt->sc_reader = rdma_read_chunk_lcl; 966 if (devattr.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) { 967 newxprt->sc_frmr_pg_list_len = 968 devattr.max_fast_reg_page_list_len; 969 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG; 970 newxprt->sc_reader = rdma_read_chunk_frmr; 971 } 972 973 /* 974 * Determine if a DMA MR is required and if so, what privs are required 975 */ 976 if (!rdma_protocol_iwarp(newxprt->sc_cm_id->device, 977 newxprt->sc_cm_id->port_num) && 978 !rdma_ib_or_roce(newxprt->sc_cm_id->device, 979 newxprt->sc_cm_id->port_num)) 980 goto errout; 981 982 if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG) || 983 !(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) { 984 need_dma_mr = 1; 985 dma_mr_acc = IB_ACCESS_LOCAL_WRITE; 986 if (rdma_protocol_iwarp(newxprt->sc_cm_id->device, 987 newxprt->sc_cm_id->port_num) && 988 !(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG)) 989 dma_mr_acc |= IB_ACCESS_REMOTE_WRITE; 990 } 991 992 if (rdma_protocol_iwarp(newxprt->sc_cm_id->device, 993 newxprt->sc_cm_id->port_num)) 994 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV; 995 996 /* Create the DMA MR if needed, otherwise, use the DMA LKEY */ 997 if (need_dma_mr) { 998 /* Register all of physical memory */ 999 newxprt->sc_phys_mr = 1000 ib_get_dma_mr(newxprt->sc_pd, dma_mr_acc); 1001 if (IS_ERR(newxprt->sc_phys_mr)) { 1002 dprintk("svcrdma: Failed to create DMA MR ret=%d\n", 1003 ret); 1004 goto errout; 1005 } 1006 newxprt->sc_dma_lkey = newxprt->sc_phys_mr->lkey; 1007 } else 1008 newxprt->sc_dma_lkey = 1009 newxprt->sc_cm_id->device->local_dma_lkey; 1010 1011 /* Post receive buffers */ 1012 for (i = 0; i < newxprt->sc_max_requests; i++) { 1013 ret = svc_rdma_post_recv(newxprt); 1014 if (ret) { 1015 dprintk("svcrdma: failure posting receive buffers\n"); 1016 goto errout; 1017 } 1018 } 1019 1020 /* Swap out the handler */ 1021 newxprt->sc_cm_id->event_handler = rdma_cma_handler; 1022 1023 /* 1024 * Arm the CQs for the SQ and RQ before accepting so we can't 1025 * miss the first message 1026 */ 1027 ib_req_notify_cq(newxprt->sc_sq_cq, IB_CQ_NEXT_COMP); 1028 ib_req_notify_cq(newxprt->sc_rq_cq, IB_CQ_NEXT_COMP); 1029 1030 /* Accept Connection */ 1031 set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags); 1032 memset(&conn_param, 0, sizeof conn_param); 1033 conn_param.responder_resources = 0; 1034 conn_param.initiator_depth = newxprt->sc_ord; 1035 ret = rdma_accept(newxprt->sc_cm_id, &conn_param); 1036 if (ret) { 1037 dprintk("svcrdma: failed to accept new connection, ret=%d\n", 1038 ret); 1039 goto errout; 1040 } 1041 1042 dprintk("svcrdma: new connection %p accepted with the following " 1043 "attributes:\n" 1044 " local_ip : %pI4\n" 1045 " local_port : %d\n" 1046 " remote_ip : %pI4\n" 1047 " remote_port : %d\n" 1048 " max_sge : %d\n" 1049 " sq_depth : %d\n" 1050 " max_requests : %d\n" 1051 " ord : %d\n", 1052 newxprt, 1053 &((struct sockaddr_in *)&newxprt->sc_cm_id-> 1054 route.addr.src_addr)->sin_addr.s_addr, 1055 ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id-> 1056 route.addr.src_addr)->sin_port), 1057 &((struct sockaddr_in *)&newxprt->sc_cm_id-> 1058 route.addr.dst_addr)->sin_addr.s_addr, 1059 ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id-> 1060 route.addr.dst_addr)->sin_port), 1061 newxprt->sc_max_sge, 1062 newxprt->sc_sq_depth, 1063 newxprt->sc_max_requests, 1064 newxprt->sc_ord); 1065 1066 return &newxprt->sc_xprt; 1067 1068 errout: 1069 dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret); 1070 /* Take a reference in case the DTO handler runs */ 1071 svc_xprt_get(&newxprt->sc_xprt); 1072 if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp)) 1073 ib_destroy_qp(newxprt->sc_qp); 1074 rdma_destroy_id(newxprt->sc_cm_id); 1075 /* This call to put will destroy the transport */ 1076 svc_xprt_put(&newxprt->sc_xprt); 1077 return NULL; 1078 } 1079 1080 static void svc_rdma_release_rqst(struct svc_rqst *rqstp) 1081 { 1082 } 1083 1084 /* 1085 * When connected, an svc_xprt has at least two references: 1086 * 1087 * - A reference held by the cm_id between the ESTABLISHED and 1088 * DISCONNECTED events. If the remote peer disconnected first, this 1089 * reference could be gone. 1090 * 1091 * - A reference held by the svc_recv code that called this function 1092 * as part of close processing. 1093 * 1094 * At a minimum one references should still be held. 1095 */ 1096 static void svc_rdma_detach(struct svc_xprt *xprt) 1097 { 1098 struct svcxprt_rdma *rdma = 1099 container_of(xprt, struct svcxprt_rdma, sc_xprt); 1100 dprintk("svc: svc_rdma_detach(%p)\n", xprt); 1101 1102 /* Disconnect and flush posted WQE */ 1103 rdma_disconnect(rdma->sc_cm_id); 1104 } 1105 1106 static void __svc_rdma_free(struct work_struct *work) 1107 { 1108 struct svcxprt_rdma *rdma = 1109 container_of(work, struct svcxprt_rdma, sc_work); 1110 dprintk("svcrdma: svc_rdma_free(%p)\n", rdma); 1111 1112 /* We should only be called from kref_put */ 1113 if (atomic_read(&rdma->sc_xprt.xpt_ref.refcount) != 0) 1114 pr_err("svcrdma: sc_xprt still in use? (%d)\n", 1115 atomic_read(&rdma->sc_xprt.xpt_ref.refcount)); 1116 1117 /* 1118 * Destroy queued, but not processed read completions. Note 1119 * that this cleanup has to be done before destroying the 1120 * cm_id because the device ptr is needed to unmap the dma in 1121 * svc_rdma_put_context. 1122 */ 1123 while (!list_empty(&rdma->sc_read_complete_q)) { 1124 struct svc_rdma_op_ctxt *ctxt; 1125 ctxt = list_entry(rdma->sc_read_complete_q.next, 1126 struct svc_rdma_op_ctxt, 1127 dto_q); 1128 list_del_init(&ctxt->dto_q); 1129 svc_rdma_put_context(ctxt, 1); 1130 } 1131 1132 /* Destroy queued, but not processed recv completions */ 1133 while (!list_empty(&rdma->sc_rq_dto_q)) { 1134 struct svc_rdma_op_ctxt *ctxt; 1135 ctxt = list_entry(rdma->sc_rq_dto_q.next, 1136 struct svc_rdma_op_ctxt, 1137 dto_q); 1138 list_del_init(&ctxt->dto_q); 1139 svc_rdma_put_context(ctxt, 1); 1140 } 1141 1142 /* Warn if we leaked a resource or under-referenced */ 1143 if (atomic_read(&rdma->sc_ctxt_used) != 0) 1144 pr_err("svcrdma: ctxt still in use? (%d)\n", 1145 atomic_read(&rdma->sc_ctxt_used)); 1146 if (atomic_read(&rdma->sc_dma_used) != 0) 1147 pr_err("svcrdma: dma still in use? (%d)\n", 1148 atomic_read(&rdma->sc_dma_used)); 1149 1150 /* De-allocate fastreg mr */ 1151 rdma_dealloc_frmr_q(rdma); 1152 1153 /* Destroy the QP if present (not a listener) */ 1154 if (rdma->sc_qp && !IS_ERR(rdma->sc_qp)) 1155 ib_destroy_qp(rdma->sc_qp); 1156 1157 if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq)) 1158 ib_destroy_cq(rdma->sc_sq_cq); 1159 1160 if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq)) 1161 ib_destroy_cq(rdma->sc_rq_cq); 1162 1163 if (rdma->sc_phys_mr && !IS_ERR(rdma->sc_phys_mr)) 1164 ib_dereg_mr(rdma->sc_phys_mr); 1165 1166 if (rdma->sc_pd && !IS_ERR(rdma->sc_pd)) 1167 ib_dealloc_pd(rdma->sc_pd); 1168 1169 /* Destroy the CM ID */ 1170 rdma_destroy_id(rdma->sc_cm_id); 1171 1172 kfree(rdma); 1173 } 1174 1175 static void svc_rdma_free(struct svc_xprt *xprt) 1176 { 1177 struct svcxprt_rdma *rdma = 1178 container_of(xprt, struct svcxprt_rdma, sc_xprt); 1179 INIT_WORK(&rdma->sc_work, __svc_rdma_free); 1180 queue_work(svc_rdma_wq, &rdma->sc_work); 1181 } 1182 1183 static int svc_rdma_has_wspace(struct svc_xprt *xprt) 1184 { 1185 struct svcxprt_rdma *rdma = 1186 container_of(xprt, struct svcxprt_rdma, sc_xprt); 1187 1188 /* 1189 * If there are already waiters on the SQ, 1190 * return false. 1191 */ 1192 if (waitqueue_active(&rdma->sc_send_wait)) 1193 return 0; 1194 1195 /* Otherwise return true. */ 1196 return 1; 1197 } 1198 1199 static int svc_rdma_secure_port(struct svc_rqst *rqstp) 1200 { 1201 return 1; 1202 } 1203 1204 /* 1205 * Attempt to register the kvec representing the RPC memory with the 1206 * device. 1207 * 1208 * Returns: 1209 * NULL : The device does not support fastreg or there were no more 1210 * fastreg mr. 1211 * frmr : The kvec register request was successfully posted. 1212 * <0 : An error was encountered attempting to register the kvec. 1213 */ 1214 int svc_rdma_fastreg(struct svcxprt_rdma *xprt, 1215 struct svc_rdma_fastreg_mr *frmr) 1216 { 1217 struct ib_send_wr fastreg_wr; 1218 u8 key; 1219 1220 /* Bump the key */ 1221 key = (u8)(frmr->mr->lkey & 0x000000FF); 1222 ib_update_fast_reg_key(frmr->mr, ++key); 1223 1224 /* Prepare FASTREG WR */ 1225 memset(&fastreg_wr, 0, sizeof fastreg_wr); 1226 fastreg_wr.opcode = IB_WR_FAST_REG_MR; 1227 fastreg_wr.send_flags = IB_SEND_SIGNALED; 1228 fastreg_wr.wr.fast_reg.iova_start = (unsigned long)frmr->kva; 1229 fastreg_wr.wr.fast_reg.page_list = frmr->page_list; 1230 fastreg_wr.wr.fast_reg.page_list_len = frmr->page_list_len; 1231 fastreg_wr.wr.fast_reg.page_shift = PAGE_SHIFT; 1232 fastreg_wr.wr.fast_reg.length = frmr->map_len; 1233 fastreg_wr.wr.fast_reg.access_flags = frmr->access_flags; 1234 fastreg_wr.wr.fast_reg.rkey = frmr->mr->lkey; 1235 return svc_rdma_send(xprt, &fastreg_wr); 1236 } 1237 1238 int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr) 1239 { 1240 struct ib_send_wr *bad_wr, *n_wr; 1241 int wr_count; 1242 int i; 1243 int ret; 1244 1245 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags)) 1246 return -ENOTCONN; 1247 1248 wr_count = 1; 1249 for (n_wr = wr->next; n_wr; n_wr = n_wr->next) 1250 wr_count++; 1251 1252 /* If the SQ is full, wait until an SQ entry is available */ 1253 while (1) { 1254 spin_lock_bh(&xprt->sc_lock); 1255 if (xprt->sc_sq_depth < atomic_read(&xprt->sc_sq_count) + wr_count) { 1256 spin_unlock_bh(&xprt->sc_lock); 1257 atomic_inc(&rdma_stat_sq_starve); 1258 1259 /* See if we can opportunistically reap SQ WR to make room */ 1260 sq_cq_reap(xprt); 1261 1262 /* Wait until SQ WR available if SQ still full */ 1263 wait_event(xprt->sc_send_wait, 1264 atomic_read(&xprt->sc_sq_count) < 1265 xprt->sc_sq_depth); 1266 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags)) 1267 return -ENOTCONN; 1268 continue; 1269 } 1270 /* Take a transport ref for each WR posted */ 1271 for (i = 0; i < wr_count; i++) 1272 svc_xprt_get(&xprt->sc_xprt); 1273 1274 /* Bump used SQ WR count and post */ 1275 atomic_add(wr_count, &xprt->sc_sq_count); 1276 ret = ib_post_send(xprt->sc_qp, wr, &bad_wr); 1277 if (ret) { 1278 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 1279 atomic_sub(wr_count, &xprt->sc_sq_count); 1280 for (i = 0; i < wr_count; i ++) 1281 svc_xprt_put(&xprt->sc_xprt); 1282 dprintk("svcrdma: failed to post SQ WR rc=%d, " 1283 "sc_sq_count=%d, sc_sq_depth=%d\n", 1284 ret, atomic_read(&xprt->sc_sq_count), 1285 xprt->sc_sq_depth); 1286 } 1287 spin_unlock_bh(&xprt->sc_lock); 1288 if (ret) 1289 wake_up(&xprt->sc_send_wait); 1290 break; 1291 } 1292 return ret; 1293 } 1294 1295 void svc_rdma_send_error(struct svcxprt_rdma *xprt, struct rpcrdma_msg *rmsgp, 1296 enum rpcrdma_errcode err) 1297 { 1298 struct ib_send_wr err_wr; 1299 struct page *p; 1300 struct svc_rdma_op_ctxt *ctxt; 1301 __be32 *va; 1302 int length; 1303 int ret; 1304 1305 p = alloc_page(GFP_KERNEL | __GFP_NOFAIL); 1306 va = page_address(p); 1307 1308 /* XDR encode error */ 1309 length = svc_rdma_xdr_encode_error(xprt, rmsgp, err, va); 1310 1311 ctxt = svc_rdma_get_context(xprt); 1312 ctxt->direction = DMA_FROM_DEVICE; 1313 ctxt->count = 1; 1314 ctxt->pages[0] = p; 1315 1316 /* Prepare SGE for local address */ 1317 ctxt->sge[0].addr = ib_dma_map_page(xprt->sc_cm_id->device, 1318 p, 0, length, DMA_FROM_DEVICE); 1319 if (ib_dma_mapping_error(xprt->sc_cm_id->device, ctxt->sge[0].addr)) { 1320 put_page(p); 1321 svc_rdma_put_context(ctxt, 1); 1322 return; 1323 } 1324 atomic_inc(&xprt->sc_dma_used); 1325 ctxt->sge[0].lkey = xprt->sc_dma_lkey; 1326 ctxt->sge[0].length = length; 1327 1328 /* Prepare SEND WR */ 1329 memset(&err_wr, 0, sizeof err_wr); 1330 ctxt->wr_op = IB_WR_SEND; 1331 err_wr.wr_id = (unsigned long)ctxt; 1332 err_wr.sg_list = ctxt->sge; 1333 err_wr.num_sge = 1; 1334 err_wr.opcode = IB_WR_SEND; 1335 err_wr.send_flags = IB_SEND_SIGNALED; 1336 1337 /* Post It */ 1338 ret = svc_rdma_send(xprt, &err_wr); 1339 if (ret) { 1340 dprintk("svcrdma: Error %d posting send for protocol error\n", 1341 ret); 1342 svc_rdma_unmap_dma(ctxt); 1343 svc_rdma_put_context(ctxt, 1); 1344 } 1345 } 1346