1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015, 2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 */ 6 7 /* Lightweight memory registration using Fast Registration Work 8 * Requests (FRWR). 9 * 10 * FRWR features ordered asynchronous registration and deregistration 11 * of arbitrarily sized memory regions. This is the fastest and safest 12 * but most complex memory registration mode. 13 */ 14 15 /* Normal operation 16 * 17 * A Memory Region is prepared for RDMA READ or WRITE using a FAST_REG 18 * Work Request (frwr_map). When the RDMA operation is finished, this 19 * Memory Region is invalidated using a LOCAL_INV Work Request 20 * (frwr_unmap_sync). 21 * 22 * Typically these Work Requests are not signaled, and neither are RDMA 23 * SEND Work Requests (with the exception of signaling occasionally to 24 * prevent provider work queue overflows). This greatly reduces HCA 25 * interrupt workload. 26 * 27 * As an optimization, frwr_unmap marks MRs INVALID before the 28 * LOCAL_INV WR is posted. If posting succeeds, the MR is placed on 29 * rb_mrs immediately so that no work (like managing a linked list 30 * under a spinlock) is needed in the completion upcall. 31 * 32 * But this means that frwr_map() can occasionally encounter an MR 33 * that is INVALID but the LOCAL_INV WR has not completed. Work Queue 34 * ordering prevents a subsequent FAST_REG WR from executing against 35 * that MR while it is still being invalidated. 36 */ 37 38 /* Transport recovery 39 * 40 * ->op_map and the transport connect worker cannot run at the same 41 * time, but ->op_unmap can fire while the transport connect worker 42 * is running. Thus MR recovery is handled in ->op_map, to guarantee 43 * that recovered MRs are owned by a sending RPC, and not one where 44 * ->op_unmap could fire at the same time transport reconnect is 45 * being done. 46 * 47 * When the underlying transport disconnects, MRs are left in one of 48 * four states: 49 * 50 * INVALID: The MR was not in use before the QP entered ERROR state. 51 * 52 * VALID: The MR was registered before the QP entered ERROR state. 53 * 54 * FLUSHED_FR: The MR was being registered when the QP entered ERROR 55 * state, and the pending WR was flushed. 56 * 57 * FLUSHED_LI: The MR was being invalidated when the QP entered ERROR 58 * state, and the pending WR was flushed. 59 * 60 * When frwr_map encounters FLUSHED and VALID MRs, they are recovered 61 * with ib_dereg_mr and then are re-initialized. Because MR recovery 62 * allocates fresh resources, it is deferred to a workqueue, and the 63 * recovered MRs are placed back on the rb_mrs list when recovery is 64 * complete. frwr_map allocates another MR for the current RPC while 65 * the broken MR is reset. 66 * 67 * To ensure that frwr_map doesn't encounter an MR that is marked 68 * INVALID but that is about to be flushed due to a previous transport 69 * disconnect, the transport connect worker attempts to drain all 70 * pending send queue WRs before the transport is reconnected. 71 */ 72 73 #include <linux/sunrpc/rpc_rdma.h> 74 #include <linux/sunrpc/svc_rdma.h> 75 76 #include "xprt_rdma.h" 77 #include <trace/events/rpcrdma.h> 78 79 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 80 # define RPCDBG_FACILITY RPCDBG_TRANS 81 #endif 82 83 /** 84 * frwr_is_supported - Check if device supports FRWR 85 * @ia: interface adapter to check 86 * 87 * Returns true if device supports FRWR, otherwise false 88 */ 89 bool frwr_is_supported(struct rpcrdma_ia *ia) 90 { 91 struct ib_device_attr *attrs = &ia->ri_device->attrs; 92 93 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) 94 goto out_not_supported; 95 if (attrs->max_fast_reg_page_list_len == 0) 96 goto out_not_supported; 97 return true; 98 99 out_not_supported: 100 pr_info("rpcrdma: 'frwr' mode is not supported by device %s\n", 101 ia->ri_device->name); 102 return false; 103 } 104 105 /** 106 * frwr_release_mr - Destroy one MR 107 * @mr: MR allocated by frwr_init_mr 108 * 109 */ 110 void frwr_release_mr(struct rpcrdma_mr *mr) 111 { 112 int rc; 113 114 rc = ib_dereg_mr(mr->frwr.fr_mr); 115 if (rc) 116 trace_xprtrdma_frwr_dereg(mr, rc); 117 kfree(mr->mr_sg); 118 kfree(mr); 119 } 120 121 /* MRs are dynamically allocated, so simply clean up and release the MR. 122 * A replacement MR will subsequently be allocated on demand. 123 */ 124 static void 125 frwr_mr_recycle_worker(struct work_struct *work) 126 { 127 struct rpcrdma_mr *mr = container_of(work, struct rpcrdma_mr, mr_recycle); 128 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 129 130 trace_xprtrdma_mr_recycle(mr); 131 132 if (mr->mr_dir != DMA_NONE) { 133 trace_xprtrdma_mr_unmap(mr); 134 ib_dma_unmap_sg(r_xprt->rx_ia.ri_device, 135 mr->mr_sg, mr->mr_nents, mr->mr_dir); 136 mr->mr_dir = DMA_NONE; 137 } 138 139 spin_lock(&r_xprt->rx_buf.rb_mrlock); 140 list_del(&mr->mr_all); 141 r_xprt->rx_stats.mrs_recycled++; 142 spin_unlock(&r_xprt->rx_buf.rb_mrlock); 143 144 frwr_release_mr(mr); 145 } 146 147 /** 148 * frwr_init_mr - Initialize one MR 149 * @ia: interface adapter 150 * @mr: generic MR to prepare for FRWR 151 * 152 * Returns zero if successful. Otherwise a negative errno 153 * is returned. 154 */ 155 int frwr_init_mr(struct rpcrdma_ia *ia, struct rpcrdma_mr *mr) 156 { 157 unsigned int depth = ia->ri_max_frwr_depth; 158 struct scatterlist *sg; 159 struct ib_mr *frmr; 160 int rc; 161 162 frmr = ib_alloc_mr(ia->ri_pd, ia->ri_mrtype, depth); 163 if (IS_ERR(frmr)) 164 goto out_mr_err; 165 166 sg = kcalloc(depth, sizeof(*sg), GFP_KERNEL); 167 if (!sg) 168 goto out_list_err; 169 170 mr->frwr.fr_mr = frmr; 171 mr->frwr.fr_state = FRWR_IS_INVALID; 172 mr->mr_dir = DMA_NONE; 173 INIT_LIST_HEAD(&mr->mr_list); 174 INIT_WORK(&mr->mr_recycle, frwr_mr_recycle_worker); 175 init_completion(&mr->frwr.fr_linv_done); 176 177 sg_init_table(sg, depth); 178 mr->mr_sg = sg; 179 return 0; 180 181 out_mr_err: 182 rc = PTR_ERR(frmr); 183 trace_xprtrdma_frwr_alloc(mr, rc); 184 return rc; 185 186 out_list_err: 187 dprintk("RPC: %s: sg allocation failure\n", 188 __func__); 189 ib_dereg_mr(frmr); 190 return -ENOMEM; 191 } 192 193 /** 194 * frwr_open - Prepare an endpoint for use with FRWR 195 * @ia: interface adapter this endpoint will use 196 * @ep: endpoint to prepare 197 * @cdata: transport parameters 198 * 199 * On success, sets: 200 * ep->rep_attr.cap.max_send_wr 201 * ep->rep_attr.cap.max_recv_wr 202 * cdata->max_requests 203 * ia->ri_max_segs 204 * 205 * And these FRWR-related fields: 206 * ia->ri_max_frwr_depth 207 * ia->ri_mrtype 208 * 209 * On failure, a negative errno is returned. 210 */ 211 int frwr_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep, 212 struct rpcrdma_create_data_internal *cdata) 213 { 214 struct ib_device_attr *attrs = &ia->ri_device->attrs; 215 int max_qp_wr, depth, delta; 216 217 ia->ri_mrtype = IB_MR_TYPE_MEM_REG; 218 if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG) 219 ia->ri_mrtype = IB_MR_TYPE_SG_GAPS; 220 221 /* Quirk: Some devices advertise a large max_fast_reg_page_list_len 222 * capability, but perform optimally when the MRs are not larger 223 * than a page. 224 */ 225 if (attrs->max_sge_rd > 1) 226 ia->ri_max_frwr_depth = attrs->max_sge_rd; 227 else 228 ia->ri_max_frwr_depth = attrs->max_fast_reg_page_list_len; 229 if (ia->ri_max_frwr_depth > RPCRDMA_MAX_DATA_SEGS) 230 ia->ri_max_frwr_depth = RPCRDMA_MAX_DATA_SEGS; 231 dprintk("RPC: %s: max FR page list depth = %u\n", 232 __func__, ia->ri_max_frwr_depth); 233 234 /* Add room for frwr register and invalidate WRs. 235 * 1. FRWR reg WR for head 236 * 2. FRWR invalidate WR for head 237 * 3. N FRWR reg WRs for pagelist 238 * 4. N FRWR invalidate WRs for pagelist 239 * 5. FRWR reg WR for tail 240 * 6. FRWR invalidate WR for tail 241 * 7. The RDMA_SEND WR 242 */ 243 depth = 7; 244 245 /* Calculate N if the device max FRWR depth is smaller than 246 * RPCRDMA_MAX_DATA_SEGS. 247 */ 248 if (ia->ri_max_frwr_depth < RPCRDMA_MAX_DATA_SEGS) { 249 delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frwr_depth; 250 do { 251 depth += 2; /* FRWR reg + invalidate */ 252 delta -= ia->ri_max_frwr_depth; 253 } while (delta > 0); 254 } 255 256 max_qp_wr = ia->ri_device->attrs.max_qp_wr; 257 max_qp_wr -= RPCRDMA_BACKWARD_WRS; 258 max_qp_wr -= 1; 259 if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE) 260 return -ENOMEM; 261 if (cdata->max_requests > max_qp_wr) 262 cdata->max_requests = max_qp_wr; 263 ep->rep_attr.cap.max_send_wr = cdata->max_requests * depth; 264 if (ep->rep_attr.cap.max_send_wr > max_qp_wr) { 265 cdata->max_requests = max_qp_wr / depth; 266 if (!cdata->max_requests) 267 return -EINVAL; 268 ep->rep_attr.cap.max_send_wr = cdata->max_requests * 269 depth; 270 } 271 ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS; 272 ep->rep_attr.cap.max_send_wr += 1; /* for ib_drain_sq */ 273 ep->rep_attr.cap.max_recv_wr = cdata->max_requests; 274 ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS; 275 ep->rep_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */ 276 277 ia->ri_max_segs = max_t(unsigned int, 1, RPCRDMA_MAX_DATA_SEGS / 278 ia->ri_max_frwr_depth); 279 /* Reply chunks require segments for head and tail buffers */ 280 ia->ri_max_segs += 2; 281 if (ia->ri_max_segs > RPCRDMA_MAX_HDR_SEGS) 282 ia->ri_max_segs = RPCRDMA_MAX_HDR_SEGS; 283 return 0; 284 } 285 286 /** 287 * frwr_maxpages - Compute size of largest payload 288 * @r_xprt: transport 289 * 290 * Returns maximum size of an RPC message, in pages. 291 * 292 * FRWR mode conveys a list of pages per chunk segment. The 293 * maximum length of that list is the FRWR page list depth. 294 */ 295 size_t frwr_maxpages(struct rpcrdma_xprt *r_xprt) 296 { 297 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 298 299 return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS, 300 (ia->ri_max_segs - 2) * ia->ri_max_frwr_depth); 301 } 302 303 static void 304 __frwr_sendcompletion_flush(struct ib_wc *wc, const char *wr) 305 { 306 if (wc->status != IB_WC_WR_FLUSH_ERR) 307 pr_err("rpcrdma: %s: %s (%u/0x%x)\n", 308 wr, ib_wc_status_msg(wc->status), 309 wc->status, wc->vendor_err); 310 } 311 312 /** 313 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC 314 * @cq: completion queue (ignored) 315 * @wc: completed WR 316 * 317 */ 318 static void 319 frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc) 320 { 321 struct ib_cqe *cqe = wc->wr_cqe; 322 struct rpcrdma_frwr *frwr = 323 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 324 325 /* WARNING: Only wr_cqe and status are reliable at this point */ 326 if (wc->status != IB_WC_SUCCESS) { 327 frwr->fr_state = FRWR_FLUSHED_FR; 328 __frwr_sendcompletion_flush(wc, "fastreg"); 329 } 330 trace_xprtrdma_wc_fastreg(wc, frwr); 331 } 332 333 /** 334 * frwr_wc_localinv - Invoked by RDMA provider for a flushed LocalInv WC 335 * @cq: completion queue (ignored) 336 * @wc: completed WR 337 * 338 */ 339 static void 340 frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc) 341 { 342 struct ib_cqe *cqe = wc->wr_cqe; 343 struct rpcrdma_frwr *frwr = container_of(cqe, struct rpcrdma_frwr, 344 fr_cqe); 345 346 /* WARNING: Only wr_cqe and status are reliable at this point */ 347 if (wc->status != IB_WC_SUCCESS) { 348 frwr->fr_state = FRWR_FLUSHED_LI; 349 __frwr_sendcompletion_flush(wc, "localinv"); 350 } 351 trace_xprtrdma_wc_li(wc, frwr); 352 } 353 354 /** 355 * frwr_wc_localinv_wake - Invoked by RDMA provider for a signaled LocalInv WC 356 * @cq: completion queue (ignored) 357 * @wc: completed WR 358 * 359 * Awaken anyone waiting for an MR to finish being fenced. 360 */ 361 static void 362 frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc) 363 { 364 struct ib_cqe *cqe = wc->wr_cqe; 365 struct rpcrdma_frwr *frwr = container_of(cqe, struct rpcrdma_frwr, 366 fr_cqe); 367 368 /* WARNING: Only wr_cqe and status are reliable at this point */ 369 if (wc->status != IB_WC_SUCCESS) { 370 frwr->fr_state = FRWR_FLUSHED_LI; 371 __frwr_sendcompletion_flush(wc, "localinv"); 372 } 373 complete(&frwr->fr_linv_done); 374 trace_xprtrdma_wc_li_wake(wc, frwr); 375 } 376 377 /** 378 * frwr_map - Register a memory region 379 * @r_xprt: controlling transport 380 * @seg: memory region co-ordinates 381 * @nsegs: number of segments remaining 382 * @writing: true when RDMA Write will be used 383 * @xid: XID of RPC using the registered memory 384 * @out: initialized MR 385 * 386 * Prepare a REG_MR Work Request to register a memory region 387 * for remote access via RDMA READ or RDMA WRITE. 388 * 389 * Returns the next segment or a negative errno pointer. 390 * On success, the prepared MR is planted in @out. 391 */ 392 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt, 393 struct rpcrdma_mr_seg *seg, 394 int nsegs, bool writing, u32 xid, 395 struct rpcrdma_mr **out) 396 { 397 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 398 bool holes_ok = ia->ri_mrtype == IB_MR_TYPE_SG_GAPS; 399 struct rpcrdma_frwr *frwr; 400 struct rpcrdma_mr *mr; 401 struct ib_mr *ibmr; 402 struct ib_reg_wr *reg_wr; 403 int i, n; 404 u8 key; 405 406 mr = NULL; 407 do { 408 if (mr) 409 rpcrdma_mr_recycle(mr); 410 mr = rpcrdma_mr_get(r_xprt); 411 if (!mr) 412 return ERR_PTR(-EAGAIN); 413 } while (mr->frwr.fr_state != FRWR_IS_INVALID); 414 frwr = &mr->frwr; 415 frwr->fr_state = FRWR_IS_VALID; 416 417 if (nsegs > ia->ri_max_frwr_depth) 418 nsegs = ia->ri_max_frwr_depth; 419 for (i = 0; i < nsegs;) { 420 if (seg->mr_page) 421 sg_set_page(&mr->mr_sg[i], 422 seg->mr_page, 423 seg->mr_len, 424 offset_in_page(seg->mr_offset)); 425 else 426 sg_set_buf(&mr->mr_sg[i], seg->mr_offset, 427 seg->mr_len); 428 429 ++seg; 430 ++i; 431 if (holes_ok) 432 continue; 433 if ((i < nsegs && offset_in_page(seg->mr_offset)) || 434 offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) 435 break; 436 } 437 mr->mr_dir = rpcrdma_data_dir(writing); 438 439 mr->mr_nents = ib_dma_map_sg(ia->ri_device, mr->mr_sg, i, mr->mr_dir); 440 if (!mr->mr_nents) 441 goto out_dmamap_err; 442 443 ibmr = frwr->fr_mr; 444 n = ib_map_mr_sg(ibmr, mr->mr_sg, mr->mr_nents, NULL, PAGE_SIZE); 445 if (unlikely(n != mr->mr_nents)) 446 goto out_mapmr_err; 447 448 ibmr->iova &= 0x00000000ffffffff; 449 ibmr->iova |= ((u64)cpu_to_be32(xid)) << 32; 450 key = (u8)(ibmr->rkey & 0x000000FF); 451 ib_update_fast_reg_key(ibmr, ++key); 452 453 reg_wr = &frwr->fr_regwr; 454 reg_wr->mr = ibmr; 455 reg_wr->key = ibmr->rkey; 456 reg_wr->access = writing ? 457 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 458 IB_ACCESS_REMOTE_READ; 459 460 mr->mr_handle = ibmr->rkey; 461 mr->mr_length = ibmr->length; 462 mr->mr_offset = ibmr->iova; 463 trace_xprtrdma_mr_map(mr); 464 465 *out = mr; 466 return seg; 467 468 out_dmamap_err: 469 frwr->fr_state = FRWR_IS_INVALID; 470 trace_xprtrdma_frwr_sgerr(mr, i); 471 rpcrdma_mr_put(mr); 472 return ERR_PTR(-EIO); 473 474 out_mapmr_err: 475 trace_xprtrdma_frwr_maperr(mr, n); 476 rpcrdma_mr_recycle(mr); 477 return ERR_PTR(-EIO); 478 } 479 480 /** 481 * frwr_send - post Send WR containing the RPC Call message 482 * @ia: interface adapter 483 * @req: Prepared RPC Call 484 * 485 * For FRWR, chain any FastReg WRs to the Send WR. Only a 486 * single ib_post_send call is needed to register memory 487 * and then post the Send WR. 488 * 489 * Returns the result of ib_post_send. 490 */ 491 int frwr_send(struct rpcrdma_ia *ia, struct rpcrdma_req *req) 492 { 493 struct ib_send_wr *post_wr; 494 struct rpcrdma_mr *mr; 495 496 post_wr = &req->rl_sendctx->sc_wr; 497 list_for_each_entry(mr, &req->rl_registered, mr_list) { 498 struct rpcrdma_frwr *frwr; 499 500 frwr = &mr->frwr; 501 502 frwr->fr_cqe.done = frwr_wc_fastreg; 503 frwr->fr_regwr.wr.next = post_wr; 504 frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe; 505 frwr->fr_regwr.wr.num_sge = 0; 506 frwr->fr_regwr.wr.opcode = IB_WR_REG_MR; 507 frwr->fr_regwr.wr.send_flags = 0; 508 509 post_wr = &frwr->fr_regwr.wr; 510 } 511 512 /* If ib_post_send fails, the next ->send_request for 513 * @req will queue these MRs for recovery. 514 */ 515 return ib_post_send(ia->ri_id->qp, post_wr, NULL); 516 } 517 518 /** 519 * frwr_reminv - handle a remotely invalidated mr on the @mrs list 520 * @rep: Received reply 521 * @mrs: list of MRs to check 522 * 523 */ 524 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs) 525 { 526 struct rpcrdma_mr *mr; 527 528 list_for_each_entry(mr, mrs, mr_list) 529 if (mr->mr_handle == rep->rr_inv_rkey) { 530 list_del_init(&mr->mr_list); 531 trace_xprtrdma_mr_remoteinv(mr); 532 mr->frwr.fr_state = FRWR_IS_INVALID; 533 rpcrdma_mr_unmap_and_put(mr); 534 break; /* only one invalidated MR per RPC */ 535 } 536 } 537 538 /** 539 * frwr_unmap_sync - invalidate memory regions that were registered for @req 540 * @r_xprt: controlling transport 541 * @mrs: list of MRs to process 542 * 543 * Sleeps until it is safe for the host CPU to access the 544 * previously mapped memory regions. 545 * 546 * Caller ensures that @mrs is not empty before the call. This 547 * function empties the list. 548 */ 549 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct list_head *mrs) 550 { 551 struct ib_send_wr *first, **prev, *last; 552 const struct ib_send_wr *bad_wr; 553 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 554 struct rpcrdma_frwr *frwr; 555 struct rpcrdma_mr *mr; 556 int count, rc; 557 558 /* ORDER: Invalidate all of the MRs first 559 * 560 * Chain the LOCAL_INV Work Requests and post them with 561 * a single ib_post_send() call. 562 */ 563 frwr = NULL; 564 count = 0; 565 prev = &first; 566 list_for_each_entry(mr, mrs, mr_list) { 567 mr->frwr.fr_state = FRWR_IS_INVALID; 568 569 frwr = &mr->frwr; 570 trace_xprtrdma_mr_localinv(mr); 571 572 frwr->fr_cqe.done = frwr_wc_localinv; 573 last = &frwr->fr_invwr; 574 memset(last, 0, sizeof(*last)); 575 last->wr_cqe = &frwr->fr_cqe; 576 last->opcode = IB_WR_LOCAL_INV; 577 last->ex.invalidate_rkey = mr->mr_handle; 578 count++; 579 580 *prev = last; 581 prev = &last->next; 582 } 583 if (!frwr) 584 goto unmap; 585 586 /* Strong send queue ordering guarantees that when the 587 * last WR in the chain completes, all WRs in the chain 588 * are complete. 589 */ 590 last->send_flags = IB_SEND_SIGNALED; 591 frwr->fr_cqe.done = frwr_wc_localinv_wake; 592 reinit_completion(&frwr->fr_linv_done); 593 594 /* Transport disconnect drains the receive CQ before it 595 * replaces the QP. The RPC reply handler won't call us 596 * unless ri_id->qp is a valid pointer. 597 */ 598 r_xprt->rx_stats.local_inv_needed++; 599 bad_wr = NULL; 600 rc = ib_post_send(ia->ri_id->qp, first, &bad_wr); 601 if (bad_wr != first) 602 wait_for_completion(&frwr->fr_linv_done); 603 if (rc) 604 goto out_release; 605 606 /* ORDER: Now DMA unmap all of the MRs, and return 607 * them to the free MR list. 608 */ 609 unmap: 610 while (!list_empty(mrs)) { 611 mr = rpcrdma_mr_pop(mrs); 612 rpcrdma_mr_unmap_and_put(mr); 613 } 614 return; 615 616 out_release: 617 pr_err("rpcrdma: FRWR invalidate ib_post_send returned %i\n", rc); 618 619 /* Unmap and release the MRs in the LOCAL_INV WRs that did not 620 * get posted. 621 */ 622 while (bad_wr) { 623 frwr = container_of(bad_wr, struct rpcrdma_frwr, 624 fr_invwr); 625 mr = container_of(frwr, struct rpcrdma_mr, frwr); 626 bad_wr = bad_wr->next; 627 628 list_del_init(&mr->mr_list); 629 rpcrdma_mr_recycle(mr); 630 } 631 } 632