xref: /linux/net/sunrpc/xprtrdma/frwr_ops.c (revision 8b83369ddcb3fb9cab5c1088987ce477565bb630)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  */
6 
7 /* Lightweight memory registration using Fast Registration Work
8  * Requests (FRWR).
9  *
10  * FRWR features ordered asynchronous registration and invalidation
11  * of arbitrarily-sized memory regions. This is the fastest and safest
12  * but most complex memory registration mode.
13  */
14 
15 /* Normal operation
16  *
17  * A Memory Region is prepared for RDMA Read or Write using a FAST_REG
18  * Work Request (frwr_map). When the RDMA operation is finished, this
19  * Memory Region is invalidated using a LOCAL_INV Work Request
20  * (frwr_unmap_async and frwr_unmap_sync).
21  *
22  * Typically FAST_REG Work Requests are not signaled, and neither are
23  * RDMA Send Work Requests (with the exception of signaling occasionally
24  * to prevent provider work queue overflows). This greatly reduces HCA
25  * interrupt workload.
26  */
27 
28 /* Transport recovery
29  *
30  * frwr_map and frwr_unmap_* cannot run at the same time the transport
31  * connect worker is running. The connect worker holds the transport
32  * send lock, just as ->send_request does. This prevents frwr_map and
33  * the connect worker from running concurrently. When a connection is
34  * closed, the Receive completion queue is drained before the allowing
35  * the connect worker to get control. This prevents frwr_unmap and the
36  * connect worker from running concurrently.
37  *
38  * When the underlying transport disconnects, MRs that are in flight
39  * are flushed and are likely unusable. Thus all MRs are destroyed.
40  * New MRs are created on demand.
41  */
42 
43 #include <linux/sunrpc/svc_rdma.h>
44 
45 #include "xprt_rdma.h"
46 #include <trace/events/rpcrdma.h>
47 
48 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
49 # define RPCDBG_FACILITY	RPCDBG_TRANS
50 #endif
51 
52 /**
53  * frwr_release_mr - Destroy one MR
54  * @mr: MR allocated by frwr_mr_init
55  *
56  */
57 void frwr_release_mr(struct rpcrdma_mr *mr)
58 {
59 	int rc;
60 
61 	rc = ib_dereg_mr(mr->frwr.fr_mr);
62 	if (rc)
63 		trace_xprtrdma_frwr_dereg(mr, rc);
64 	kfree(mr->mr_sg);
65 	kfree(mr);
66 }
67 
68 static void frwr_mr_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
69 {
70 	if (mr->mr_device) {
71 		trace_xprtrdma_mr_unmap(mr);
72 		ib_dma_unmap_sg(mr->mr_device, mr->mr_sg, mr->mr_nents,
73 				mr->mr_dir);
74 		mr->mr_device = NULL;
75 	}
76 }
77 
78 static void frwr_mr_recycle(struct rpcrdma_mr *mr)
79 {
80 	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
81 
82 	trace_xprtrdma_mr_recycle(mr);
83 
84 	frwr_mr_unmap(r_xprt, mr);
85 
86 	spin_lock(&r_xprt->rx_buf.rb_lock);
87 	list_del(&mr->mr_all);
88 	r_xprt->rx_stats.mrs_recycled++;
89 	spin_unlock(&r_xprt->rx_buf.rb_lock);
90 
91 	frwr_release_mr(mr);
92 }
93 
94 static void frwr_mr_put(struct rpcrdma_mr *mr)
95 {
96 	frwr_mr_unmap(mr->mr_xprt, mr);
97 
98 	/* The MR is returned to the req's MR free list instead
99 	 * of to the xprt's MR free list. No spinlock is needed.
100 	 */
101 	rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
102 }
103 
104 /* frwr_reset - Place MRs back on the free list
105  * @req: request to reset
106  *
107  * Used after a failed marshal. For FRWR, this means the MRs
108  * don't have to be fully released and recreated.
109  *
110  * NB: This is safe only as long as none of @req's MRs are
111  * involved with an ongoing asynchronous FAST_REG or LOCAL_INV
112  * Work Request.
113  */
114 void frwr_reset(struct rpcrdma_req *req)
115 {
116 	struct rpcrdma_mr *mr;
117 
118 	while ((mr = rpcrdma_mr_pop(&req->rl_registered)))
119 		frwr_mr_put(mr);
120 }
121 
122 /**
123  * frwr_mr_init - Initialize one MR
124  * @r_xprt: controlling transport instance
125  * @mr: generic MR to prepare for FRWR
126  *
127  * Returns zero if successful. Otherwise a negative errno
128  * is returned.
129  */
130 int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
131 {
132 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
133 	unsigned int depth = ep->re_max_fr_depth;
134 	struct scatterlist *sg;
135 	struct ib_mr *frmr;
136 	int rc;
137 
138 	frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth);
139 	if (IS_ERR(frmr))
140 		goto out_mr_err;
141 
142 	sg = kmalloc_array(depth, sizeof(*sg), GFP_NOFS);
143 	if (!sg)
144 		goto out_list_err;
145 
146 	mr->mr_xprt = r_xprt;
147 	mr->frwr.fr_mr = frmr;
148 	mr->mr_device = NULL;
149 	INIT_LIST_HEAD(&mr->mr_list);
150 	init_completion(&mr->frwr.fr_linv_done);
151 
152 	sg_init_table(sg, depth);
153 	mr->mr_sg = sg;
154 	return 0;
155 
156 out_mr_err:
157 	rc = PTR_ERR(frmr);
158 	trace_xprtrdma_frwr_alloc(mr, rc);
159 	return rc;
160 
161 out_list_err:
162 	ib_dereg_mr(frmr);
163 	return -ENOMEM;
164 }
165 
166 /**
167  * frwr_query_device - Prepare a transport for use with FRWR
168  * @ep: endpoint to fill in
169  * @device: RDMA device to query
170  *
171  * On success, sets:
172  *	ep->re_attr
173  *	ep->re_max_requests
174  *	ep->re_max_rdma_segs
175  *	ep->re_max_fr_depth
176  *	ep->re_mrtype
177  *
178  * Return values:
179  *   On success, returns zero.
180  *   %-EINVAL - the device does not support FRWR memory registration
181  *   %-ENOMEM - the device is not sufficiently capable for NFS/RDMA
182  */
183 int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device)
184 {
185 	const struct ib_device_attr *attrs = &device->attrs;
186 	int max_qp_wr, depth, delta;
187 	unsigned int max_sge;
188 
189 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) ||
190 	    attrs->max_fast_reg_page_list_len == 0) {
191 		pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n",
192 		       device->name);
193 		return -EINVAL;
194 	}
195 
196 	max_sge = min_t(unsigned int, attrs->max_send_sge,
197 			RPCRDMA_MAX_SEND_SGES);
198 	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
199 		pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge);
200 		return -ENOMEM;
201 	}
202 	ep->re_attr.cap.max_send_sge = max_sge;
203 	ep->re_attr.cap.max_recv_sge = 1;
204 
205 	ep->re_mrtype = IB_MR_TYPE_MEM_REG;
206 	if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG)
207 		ep->re_mrtype = IB_MR_TYPE_SG_GAPS;
208 
209 	/* Quirk: Some devices advertise a large max_fast_reg_page_list_len
210 	 * capability, but perform optimally when the MRs are not larger
211 	 * than a page.
212 	 */
213 	if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS)
214 		ep->re_max_fr_depth = attrs->max_sge_rd;
215 	else
216 		ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len;
217 	if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS)
218 		ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS;
219 
220 	/* Add room for frwr register and invalidate WRs.
221 	 * 1. FRWR reg WR for head
222 	 * 2. FRWR invalidate WR for head
223 	 * 3. N FRWR reg WRs for pagelist
224 	 * 4. N FRWR invalidate WRs for pagelist
225 	 * 5. FRWR reg WR for tail
226 	 * 6. FRWR invalidate WR for tail
227 	 * 7. The RDMA_SEND WR
228 	 */
229 	depth = 7;
230 
231 	/* Calculate N if the device max FRWR depth is smaller than
232 	 * RPCRDMA_MAX_DATA_SEGS.
233 	 */
234 	if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) {
235 		delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth;
236 		do {
237 			depth += 2; /* FRWR reg + invalidate */
238 			delta -= ep->re_max_fr_depth;
239 		} while (delta > 0);
240 	}
241 
242 	max_qp_wr = attrs->max_qp_wr;
243 	max_qp_wr -= RPCRDMA_BACKWARD_WRS;
244 	max_qp_wr -= 1;
245 	if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
246 		return -ENOMEM;
247 	if (ep->re_max_requests > max_qp_wr)
248 		ep->re_max_requests = max_qp_wr;
249 	ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
250 	if (ep->re_attr.cap.max_send_wr > max_qp_wr) {
251 		ep->re_max_requests = max_qp_wr / depth;
252 		if (!ep->re_max_requests)
253 			return -ENOMEM;
254 		ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
255 	}
256 	ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
257 	ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
258 	ep->re_attr.cap.max_recv_wr = ep->re_max_requests;
259 	ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
260 	ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
261 
262 	ep->re_max_rdma_segs =
263 		DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth);
264 	/* Reply chunks require segments for head and tail buffers */
265 	ep->re_max_rdma_segs += 2;
266 	if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS)
267 		ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS;
268 
269 	/* Ensure the underlying device is capable of conveying the
270 	 * largest r/wsize NFS will ask for. This guarantees that
271 	 * failing over from one RDMA device to another will not
272 	 * break NFS I/O.
273 	 */
274 	if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS)
275 		return -ENOMEM;
276 
277 	return 0;
278 }
279 
280 /**
281  * frwr_map - Register a memory region
282  * @r_xprt: controlling transport
283  * @seg: memory region co-ordinates
284  * @nsegs: number of segments remaining
285  * @writing: true when RDMA Write will be used
286  * @xid: XID of RPC using the registered memory
287  * @mr: MR to fill in
288  *
289  * Prepare a REG_MR Work Request to register a memory region
290  * for remote access via RDMA READ or RDMA WRITE.
291  *
292  * Returns the next segment or a negative errno pointer.
293  * On success, @mr is filled in.
294  */
295 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
296 				struct rpcrdma_mr_seg *seg,
297 				int nsegs, bool writing, __be32 xid,
298 				struct rpcrdma_mr *mr)
299 {
300 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
301 	struct ib_reg_wr *reg_wr;
302 	int i, n, dma_nents;
303 	struct ib_mr *ibmr;
304 	u8 key;
305 
306 	if (nsegs > ep->re_max_fr_depth)
307 		nsegs = ep->re_max_fr_depth;
308 	for (i = 0; i < nsegs;) {
309 		sg_set_page(&mr->mr_sg[i], seg->mr_page,
310 			    seg->mr_len, seg->mr_offset);
311 
312 		++seg;
313 		++i;
314 		if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS)
315 			continue;
316 		if ((i < nsegs && seg->mr_offset) ||
317 		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
318 			break;
319 	}
320 	mr->mr_dir = rpcrdma_data_dir(writing);
321 	mr->mr_nents = i;
322 
323 	dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents,
324 				  mr->mr_dir);
325 	if (!dma_nents)
326 		goto out_dmamap_err;
327 	mr->mr_device = ep->re_id->device;
328 
329 	ibmr = mr->frwr.fr_mr;
330 	n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE);
331 	if (n != dma_nents)
332 		goto out_mapmr_err;
333 
334 	ibmr->iova &= 0x00000000ffffffff;
335 	ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
336 	key = (u8)(ibmr->rkey & 0x000000FF);
337 	ib_update_fast_reg_key(ibmr, ++key);
338 
339 	reg_wr = &mr->frwr.fr_regwr;
340 	reg_wr->mr = ibmr;
341 	reg_wr->key = ibmr->rkey;
342 	reg_wr->access = writing ?
343 			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
344 			 IB_ACCESS_REMOTE_READ;
345 
346 	mr->mr_handle = ibmr->rkey;
347 	mr->mr_length = ibmr->length;
348 	mr->mr_offset = ibmr->iova;
349 	trace_xprtrdma_mr_map(mr);
350 
351 	return seg;
352 
353 out_dmamap_err:
354 	trace_xprtrdma_frwr_sgerr(mr, i);
355 	return ERR_PTR(-EIO);
356 
357 out_mapmr_err:
358 	trace_xprtrdma_frwr_maperr(mr, n);
359 	return ERR_PTR(-EIO);
360 }
361 
362 /**
363  * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
364  * @cq: completion queue
365  * @wc: WCE for a completed FastReg WR
366  *
367  */
368 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
369 {
370 	struct ib_cqe *cqe = wc->wr_cqe;
371 	struct rpcrdma_frwr *frwr =
372 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
373 
374 	/* WARNING: Only wr_cqe and status are reliable at this point */
375 	trace_xprtrdma_wc_fastreg(wc, &frwr->fr_cid);
376 	/* The MR will get recycled when the associated req is retransmitted */
377 
378 	rpcrdma_flush_disconnect(cq->cq_context, wc);
379 }
380 
381 static void frwr_cid_init(struct rpcrdma_ep *ep,
382 			  struct rpcrdma_frwr *frwr)
383 {
384 	struct rpc_rdma_cid *cid = &frwr->fr_cid;
385 
386 	cid->ci_queue_id = ep->re_attr.send_cq->res.id;
387 	cid->ci_completion_id = frwr->fr_mr->res.id;
388 }
389 
390 /**
391  * frwr_send - post Send WRs containing the RPC Call message
392  * @r_xprt: controlling transport instance
393  * @req: prepared RPC Call
394  *
395  * For FRWR, chain any FastReg WRs to the Send WR. Only a
396  * single ib_post_send call is needed to register memory
397  * and then post the Send WR.
398  *
399  * Returns the return code from ib_post_send.
400  *
401  * Caller must hold the transport send lock to ensure that the
402  * pointers to the transport's rdma_cm_id and QP are stable.
403  */
404 int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
405 {
406 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
407 	struct ib_send_wr *post_wr;
408 	struct rpcrdma_mr *mr;
409 
410 	post_wr = &req->rl_wr;
411 	list_for_each_entry(mr, &req->rl_registered, mr_list) {
412 		struct rpcrdma_frwr *frwr;
413 
414 		frwr = &mr->frwr;
415 
416 		frwr->fr_cqe.done = frwr_wc_fastreg;
417 		frwr_cid_init(ep, frwr);
418 		frwr->fr_regwr.wr.next = post_wr;
419 		frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe;
420 		frwr->fr_regwr.wr.num_sge = 0;
421 		frwr->fr_regwr.wr.opcode = IB_WR_REG_MR;
422 		frwr->fr_regwr.wr.send_flags = 0;
423 
424 		post_wr = &frwr->fr_regwr.wr;
425 	}
426 
427 	return ib_post_send(ep->re_id->qp, post_wr, NULL);
428 }
429 
430 /**
431  * frwr_reminv - handle a remotely invalidated mr on the @mrs list
432  * @rep: Received reply
433  * @mrs: list of MRs to check
434  *
435  */
436 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
437 {
438 	struct rpcrdma_mr *mr;
439 
440 	list_for_each_entry(mr, mrs, mr_list)
441 		if (mr->mr_handle == rep->rr_inv_rkey) {
442 			list_del_init(&mr->mr_list);
443 			frwr_mr_put(mr);
444 			break;	/* only one invalidated MR per RPC */
445 		}
446 }
447 
448 static void frwr_mr_done(struct ib_wc *wc, struct rpcrdma_mr *mr)
449 {
450 	if (wc->status != IB_WC_SUCCESS)
451 		frwr_mr_recycle(mr);
452 	else
453 		frwr_mr_put(mr);
454 }
455 
456 /**
457  * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC
458  * @cq: completion queue
459  * @wc: WCE for a completed LocalInv WR
460  *
461  */
462 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
463 {
464 	struct ib_cqe *cqe = wc->wr_cqe;
465 	struct rpcrdma_frwr *frwr =
466 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
467 	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
468 
469 	/* WARNING: Only wr_cqe and status are reliable at this point */
470 	trace_xprtrdma_wc_li(wc, &frwr->fr_cid);
471 	frwr_mr_done(wc, mr);
472 
473 	rpcrdma_flush_disconnect(cq->cq_context, wc);
474 }
475 
476 /**
477  * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC
478  * @cq: completion queue
479  * @wc: WCE for a completed LocalInv WR
480  *
481  * Awaken anyone waiting for an MR to finish being fenced.
482  */
483 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
484 {
485 	struct ib_cqe *cqe = wc->wr_cqe;
486 	struct rpcrdma_frwr *frwr =
487 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
488 	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
489 
490 	/* WARNING: Only wr_cqe and status are reliable at this point */
491 	trace_xprtrdma_wc_li_wake(wc, &frwr->fr_cid);
492 	frwr_mr_done(wc, mr);
493 	complete(&frwr->fr_linv_done);
494 
495 	rpcrdma_flush_disconnect(cq->cq_context, wc);
496 }
497 
498 /**
499  * frwr_unmap_sync - invalidate memory regions that were registered for @req
500  * @r_xprt: controlling transport instance
501  * @req: rpcrdma_req with a non-empty list of MRs to process
502  *
503  * Sleeps until it is safe for the host CPU to access the previously mapped
504  * memory regions. This guarantees that registered MRs are properly fenced
505  * from the server before the RPC consumer accesses the data in them. It
506  * also ensures proper Send flow control: waking the next RPC waits until
507  * this RPC has relinquished all its Send Queue entries.
508  */
509 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
510 {
511 	struct ib_send_wr *first, **prev, *last;
512 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
513 	const struct ib_send_wr *bad_wr;
514 	struct rpcrdma_frwr *frwr;
515 	struct rpcrdma_mr *mr;
516 	int rc;
517 
518 	/* ORDER: Invalidate all of the MRs first
519 	 *
520 	 * Chain the LOCAL_INV Work Requests and post them with
521 	 * a single ib_post_send() call.
522 	 */
523 	frwr = NULL;
524 	prev = &first;
525 	while ((mr = rpcrdma_mr_pop(&req->rl_registered))) {
526 
527 		trace_xprtrdma_mr_localinv(mr);
528 		r_xprt->rx_stats.local_inv_needed++;
529 
530 		frwr = &mr->frwr;
531 		frwr->fr_cqe.done = frwr_wc_localinv;
532 		frwr_cid_init(ep, frwr);
533 		last = &frwr->fr_invwr;
534 		last->next = NULL;
535 		last->wr_cqe = &frwr->fr_cqe;
536 		last->sg_list = NULL;
537 		last->num_sge = 0;
538 		last->opcode = IB_WR_LOCAL_INV;
539 		last->send_flags = IB_SEND_SIGNALED;
540 		last->ex.invalidate_rkey = mr->mr_handle;
541 
542 		*prev = last;
543 		prev = &last->next;
544 	}
545 
546 	/* Strong send queue ordering guarantees that when the
547 	 * last WR in the chain completes, all WRs in the chain
548 	 * are complete.
549 	 */
550 	frwr->fr_cqe.done = frwr_wc_localinv_wake;
551 	reinit_completion(&frwr->fr_linv_done);
552 
553 	/* Transport disconnect drains the receive CQ before it
554 	 * replaces the QP. The RPC reply handler won't call us
555 	 * unless re_id->qp is a valid pointer.
556 	 */
557 	bad_wr = NULL;
558 	rc = ib_post_send(ep->re_id->qp, first, &bad_wr);
559 
560 	/* The final LOCAL_INV WR in the chain is supposed to
561 	 * do the wake. If it was never posted, the wake will
562 	 * not happen, so don't wait in that case.
563 	 */
564 	if (bad_wr != first)
565 		wait_for_completion(&frwr->fr_linv_done);
566 	if (!rc)
567 		return;
568 
569 	/* Recycle MRs in the LOCAL_INV chain that did not get posted.
570 	 */
571 	trace_xprtrdma_post_linv_err(req, rc);
572 	while (bad_wr) {
573 		frwr = container_of(bad_wr, struct rpcrdma_frwr,
574 				    fr_invwr);
575 		mr = container_of(frwr, struct rpcrdma_mr, frwr);
576 		bad_wr = bad_wr->next;
577 
578 		list_del_init(&mr->mr_list);
579 		frwr_mr_recycle(mr);
580 	}
581 }
582 
583 /**
584  * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC
585  * @cq:	completion queue
586  * @wc:	WCE for a completed LocalInv WR
587  *
588  */
589 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc)
590 {
591 	struct ib_cqe *cqe = wc->wr_cqe;
592 	struct rpcrdma_frwr *frwr =
593 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
594 	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
595 	struct rpcrdma_rep *rep = mr->mr_req->rl_reply;
596 
597 	/* WARNING: Only wr_cqe and status are reliable at this point */
598 	trace_xprtrdma_wc_li_done(wc, &frwr->fr_cid);
599 	frwr_mr_done(wc, mr);
600 
601 	/* Ensure @rep is generated before frwr_mr_done */
602 	smp_rmb();
603 	rpcrdma_complete_rqst(rep);
604 
605 	rpcrdma_flush_disconnect(cq->cq_context, wc);
606 }
607 
608 /**
609  * frwr_unmap_async - invalidate memory regions that were registered for @req
610  * @r_xprt: controlling transport instance
611  * @req: rpcrdma_req with a non-empty list of MRs to process
612  *
613  * This guarantees that registered MRs are properly fenced from the
614  * server before the RPC consumer accesses the data in them. It also
615  * ensures proper Send flow control: waking the next RPC waits until
616  * this RPC has relinquished all its Send Queue entries.
617  */
618 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
619 {
620 	struct ib_send_wr *first, *last, **prev;
621 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
622 	const struct ib_send_wr *bad_wr;
623 	struct rpcrdma_frwr *frwr;
624 	struct rpcrdma_mr *mr;
625 	int rc;
626 
627 	/* Chain the LOCAL_INV Work Requests and post them with
628 	 * a single ib_post_send() call.
629 	 */
630 	frwr = NULL;
631 	prev = &first;
632 	while ((mr = rpcrdma_mr_pop(&req->rl_registered))) {
633 
634 		trace_xprtrdma_mr_localinv(mr);
635 		r_xprt->rx_stats.local_inv_needed++;
636 
637 		frwr = &mr->frwr;
638 		frwr->fr_cqe.done = frwr_wc_localinv;
639 		frwr_cid_init(ep, frwr);
640 		last = &frwr->fr_invwr;
641 		last->next = NULL;
642 		last->wr_cqe = &frwr->fr_cqe;
643 		last->sg_list = NULL;
644 		last->num_sge = 0;
645 		last->opcode = IB_WR_LOCAL_INV;
646 		last->send_flags = IB_SEND_SIGNALED;
647 		last->ex.invalidate_rkey = mr->mr_handle;
648 
649 		*prev = last;
650 		prev = &last->next;
651 	}
652 
653 	/* Strong send queue ordering guarantees that when the
654 	 * last WR in the chain completes, all WRs in the chain
655 	 * are complete. The last completion will wake up the
656 	 * RPC waiter.
657 	 */
658 	frwr->fr_cqe.done = frwr_wc_localinv_done;
659 
660 	/* Transport disconnect drains the receive CQ before it
661 	 * replaces the QP. The RPC reply handler won't call us
662 	 * unless re_id->qp is a valid pointer.
663 	 */
664 	bad_wr = NULL;
665 	rc = ib_post_send(ep->re_id->qp, first, &bad_wr);
666 	if (!rc)
667 		return;
668 
669 	/* Recycle MRs in the LOCAL_INV chain that did not get posted.
670 	 */
671 	trace_xprtrdma_post_linv_err(req, rc);
672 	while (bad_wr) {
673 		frwr = container_of(bad_wr, struct rpcrdma_frwr, fr_invwr);
674 		mr = container_of(frwr, struct rpcrdma_mr, frwr);
675 		bad_wr = bad_wr->next;
676 
677 		frwr_mr_recycle(mr);
678 	}
679 
680 	/* The final LOCAL_INV WR in the chain is supposed to
681 	 * do the wake. If it was never posted, the wake will
682 	 * not happen, so wake here in that case.
683 	 */
684 	rpcrdma_complete_rqst(req->rl_reply);
685 }
686