1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015, 2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 */ 6 7 /* Lightweight memory registration using Fast Registration Work 8 * Requests (FRWR). 9 * 10 * FRWR features ordered asynchronous registration and invalidation 11 * of arbitrarily-sized memory regions. This is the fastest and safest 12 * but most complex memory registration mode. 13 */ 14 15 /* Normal operation 16 * 17 * A Memory Region is prepared for RDMA Read or Write using a FAST_REG 18 * Work Request (frwr_map). When the RDMA operation is finished, this 19 * Memory Region is invalidated using a LOCAL_INV Work Request 20 * (frwr_unmap_async and frwr_unmap_sync). 21 * 22 * Typically FAST_REG Work Requests are not signaled, and neither are 23 * RDMA Send Work Requests (with the exception of signaling occasionally 24 * to prevent provider work queue overflows). This greatly reduces HCA 25 * interrupt workload. 26 */ 27 28 /* Transport recovery 29 * 30 * frwr_map and frwr_unmap_* cannot run at the same time the transport 31 * connect worker is running. The connect worker holds the transport 32 * send lock, just as ->send_request does. This prevents frwr_map and 33 * the connect worker from running concurrently. When a connection is 34 * closed, the Receive completion queue is drained before the allowing 35 * the connect worker to get control. This prevents frwr_unmap and the 36 * connect worker from running concurrently. 37 * 38 * When the underlying transport disconnects, MRs that are in flight 39 * are flushed and are likely unusable. Thus all MRs are destroyed. 40 * New MRs are created on demand. 41 */ 42 43 #include <linux/sunrpc/rpc_rdma.h> 44 #include <linux/sunrpc/svc_rdma.h> 45 46 #include "xprt_rdma.h" 47 #include <trace/events/rpcrdma.h> 48 49 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 50 # define RPCDBG_FACILITY RPCDBG_TRANS 51 #endif 52 53 /** 54 * frwr_is_supported - Check if device supports FRWR 55 * @device: interface adapter to check 56 * 57 * Returns true if device supports FRWR, otherwise false 58 */ 59 bool frwr_is_supported(struct ib_device *device) 60 { 61 struct ib_device_attr *attrs = &device->attrs; 62 63 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) 64 goto out_not_supported; 65 if (attrs->max_fast_reg_page_list_len == 0) 66 goto out_not_supported; 67 return true; 68 69 out_not_supported: 70 pr_info("rpcrdma: 'frwr' mode is not supported by device %s\n", 71 device->name); 72 return false; 73 } 74 75 /** 76 * frwr_release_mr - Destroy one MR 77 * @mr: MR allocated by frwr_init_mr 78 * 79 */ 80 void frwr_release_mr(struct rpcrdma_mr *mr) 81 { 82 int rc; 83 84 rc = ib_dereg_mr(mr->frwr.fr_mr); 85 if (rc) 86 trace_xprtrdma_frwr_dereg(mr, rc); 87 kfree(mr->mr_sg); 88 kfree(mr); 89 } 90 91 static void frwr_mr_recycle(struct rpcrdma_mr *mr) 92 { 93 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 94 95 trace_xprtrdma_mr_recycle(mr); 96 97 if (mr->mr_dir != DMA_NONE) { 98 trace_xprtrdma_mr_unmap(mr); 99 ib_dma_unmap_sg(r_xprt->rx_ia.ri_id->device, 100 mr->mr_sg, mr->mr_nents, mr->mr_dir); 101 mr->mr_dir = DMA_NONE; 102 } 103 104 spin_lock(&r_xprt->rx_buf.rb_lock); 105 list_del(&mr->mr_all); 106 r_xprt->rx_stats.mrs_recycled++; 107 spin_unlock(&r_xprt->rx_buf.rb_lock); 108 109 frwr_release_mr(mr); 110 } 111 112 /* frwr_reset - Place MRs back on the free list 113 * @req: request to reset 114 * 115 * Used after a failed marshal. For FRWR, this means the MRs 116 * don't have to be fully released and recreated. 117 * 118 * NB: This is safe only as long as none of @req's MRs are 119 * involved with an ongoing asynchronous FAST_REG or LOCAL_INV 120 * Work Request. 121 */ 122 void frwr_reset(struct rpcrdma_req *req) 123 { 124 struct rpcrdma_mr *mr; 125 126 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) 127 rpcrdma_mr_put(mr); 128 } 129 130 /** 131 * frwr_init_mr - Initialize one MR 132 * @ia: interface adapter 133 * @mr: generic MR to prepare for FRWR 134 * 135 * Returns zero if successful. Otherwise a negative errno 136 * is returned. 137 */ 138 int frwr_init_mr(struct rpcrdma_ia *ia, struct rpcrdma_mr *mr) 139 { 140 unsigned int depth = ia->ri_max_frwr_depth; 141 struct scatterlist *sg; 142 struct ib_mr *frmr; 143 int rc; 144 145 frmr = ib_alloc_mr(ia->ri_pd, ia->ri_mrtype, depth); 146 if (IS_ERR(frmr)) 147 goto out_mr_err; 148 149 sg = kcalloc(depth, sizeof(*sg), GFP_NOFS); 150 if (!sg) 151 goto out_list_err; 152 153 mr->frwr.fr_mr = frmr; 154 mr->mr_dir = DMA_NONE; 155 INIT_LIST_HEAD(&mr->mr_list); 156 init_completion(&mr->frwr.fr_linv_done); 157 158 sg_init_table(sg, depth); 159 mr->mr_sg = sg; 160 return 0; 161 162 out_mr_err: 163 rc = PTR_ERR(frmr); 164 trace_xprtrdma_frwr_alloc(mr, rc); 165 return rc; 166 167 out_list_err: 168 ib_dereg_mr(frmr); 169 return -ENOMEM; 170 } 171 172 /** 173 * frwr_open - Prepare an endpoint for use with FRWR 174 * @ia: interface adapter this endpoint will use 175 * @ep: endpoint to prepare 176 * 177 * On success, sets: 178 * ep->rep_attr.cap.max_send_wr 179 * ep->rep_attr.cap.max_recv_wr 180 * ep->rep_max_requests 181 * ia->ri_max_segs 182 * 183 * And these FRWR-related fields: 184 * ia->ri_max_frwr_depth 185 * ia->ri_mrtype 186 * 187 * On failure, a negative errno is returned. 188 */ 189 int frwr_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep) 190 { 191 struct ib_device_attr *attrs = &ia->ri_id->device->attrs; 192 int max_qp_wr, depth, delta; 193 194 ia->ri_mrtype = IB_MR_TYPE_MEM_REG; 195 if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG) 196 ia->ri_mrtype = IB_MR_TYPE_SG_GAPS; 197 198 /* Quirk: Some devices advertise a large max_fast_reg_page_list_len 199 * capability, but perform optimally when the MRs are not larger 200 * than a page. 201 */ 202 if (attrs->max_sge_rd > 1) 203 ia->ri_max_frwr_depth = attrs->max_sge_rd; 204 else 205 ia->ri_max_frwr_depth = attrs->max_fast_reg_page_list_len; 206 if (ia->ri_max_frwr_depth > RPCRDMA_MAX_DATA_SEGS) 207 ia->ri_max_frwr_depth = RPCRDMA_MAX_DATA_SEGS; 208 dprintk("RPC: %s: max FR page list depth = %u\n", 209 __func__, ia->ri_max_frwr_depth); 210 211 /* Add room for frwr register and invalidate WRs. 212 * 1. FRWR reg WR for head 213 * 2. FRWR invalidate WR for head 214 * 3. N FRWR reg WRs for pagelist 215 * 4. N FRWR invalidate WRs for pagelist 216 * 5. FRWR reg WR for tail 217 * 6. FRWR invalidate WR for tail 218 * 7. The RDMA_SEND WR 219 */ 220 depth = 7; 221 222 /* Calculate N if the device max FRWR depth is smaller than 223 * RPCRDMA_MAX_DATA_SEGS. 224 */ 225 if (ia->ri_max_frwr_depth < RPCRDMA_MAX_DATA_SEGS) { 226 delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frwr_depth; 227 do { 228 depth += 2; /* FRWR reg + invalidate */ 229 delta -= ia->ri_max_frwr_depth; 230 } while (delta > 0); 231 } 232 233 max_qp_wr = ia->ri_id->device->attrs.max_qp_wr; 234 max_qp_wr -= RPCRDMA_BACKWARD_WRS; 235 max_qp_wr -= 1; 236 if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE) 237 return -ENOMEM; 238 if (ep->rep_max_requests > max_qp_wr) 239 ep->rep_max_requests = max_qp_wr; 240 ep->rep_attr.cap.max_send_wr = ep->rep_max_requests * depth; 241 if (ep->rep_attr.cap.max_send_wr > max_qp_wr) { 242 ep->rep_max_requests = max_qp_wr / depth; 243 if (!ep->rep_max_requests) 244 return -EINVAL; 245 ep->rep_attr.cap.max_send_wr = ep->rep_max_requests * depth; 246 } 247 ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS; 248 ep->rep_attr.cap.max_send_wr += 1; /* for ib_drain_sq */ 249 ep->rep_attr.cap.max_recv_wr = ep->rep_max_requests; 250 ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS; 251 ep->rep_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */ 252 253 ia->ri_max_segs = 254 DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ia->ri_max_frwr_depth); 255 /* Reply chunks require segments for head and tail buffers */ 256 ia->ri_max_segs += 2; 257 if (ia->ri_max_segs > RPCRDMA_MAX_HDR_SEGS) 258 ia->ri_max_segs = RPCRDMA_MAX_HDR_SEGS; 259 return 0; 260 } 261 262 /** 263 * frwr_maxpages - Compute size of largest payload 264 * @r_xprt: transport 265 * 266 * Returns maximum size of an RPC message, in pages. 267 * 268 * FRWR mode conveys a list of pages per chunk segment. The 269 * maximum length of that list is the FRWR page list depth. 270 */ 271 size_t frwr_maxpages(struct rpcrdma_xprt *r_xprt) 272 { 273 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 274 275 return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS, 276 (ia->ri_max_segs - 2) * ia->ri_max_frwr_depth); 277 } 278 279 /** 280 * frwr_map - Register a memory region 281 * @r_xprt: controlling transport 282 * @seg: memory region co-ordinates 283 * @nsegs: number of segments remaining 284 * @writing: true when RDMA Write will be used 285 * @xid: XID of RPC using the registered memory 286 * @mr: MR to fill in 287 * 288 * Prepare a REG_MR Work Request to register a memory region 289 * for remote access via RDMA READ or RDMA WRITE. 290 * 291 * Returns the next segment or a negative errno pointer. 292 * On success, @mr is filled in. 293 */ 294 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt, 295 struct rpcrdma_mr_seg *seg, 296 int nsegs, bool writing, __be32 xid, 297 struct rpcrdma_mr *mr) 298 { 299 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 300 struct ib_reg_wr *reg_wr; 301 struct ib_mr *ibmr; 302 int i, n; 303 u8 key; 304 305 if (nsegs > ia->ri_max_frwr_depth) 306 nsegs = ia->ri_max_frwr_depth; 307 for (i = 0; i < nsegs;) { 308 if (seg->mr_page) 309 sg_set_page(&mr->mr_sg[i], 310 seg->mr_page, 311 seg->mr_len, 312 offset_in_page(seg->mr_offset)); 313 else 314 sg_set_buf(&mr->mr_sg[i], seg->mr_offset, 315 seg->mr_len); 316 317 ++seg; 318 ++i; 319 if (ia->ri_mrtype == IB_MR_TYPE_SG_GAPS) 320 continue; 321 if ((i < nsegs && offset_in_page(seg->mr_offset)) || 322 offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) 323 break; 324 } 325 mr->mr_dir = rpcrdma_data_dir(writing); 326 327 mr->mr_nents = 328 ib_dma_map_sg(ia->ri_id->device, mr->mr_sg, i, mr->mr_dir); 329 if (!mr->mr_nents) 330 goto out_dmamap_err; 331 332 ibmr = mr->frwr.fr_mr; 333 n = ib_map_mr_sg(ibmr, mr->mr_sg, mr->mr_nents, NULL, PAGE_SIZE); 334 if (unlikely(n != mr->mr_nents)) 335 goto out_mapmr_err; 336 337 ibmr->iova &= 0x00000000ffffffff; 338 ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32; 339 key = (u8)(ibmr->rkey & 0x000000FF); 340 ib_update_fast_reg_key(ibmr, ++key); 341 342 reg_wr = &mr->frwr.fr_regwr; 343 reg_wr->mr = ibmr; 344 reg_wr->key = ibmr->rkey; 345 reg_wr->access = writing ? 346 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 347 IB_ACCESS_REMOTE_READ; 348 349 mr->mr_handle = ibmr->rkey; 350 mr->mr_length = ibmr->length; 351 mr->mr_offset = ibmr->iova; 352 trace_xprtrdma_mr_map(mr); 353 354 return seg; 355 356 out_dmamap_err: 357 mr->mr_dir = DMA_NONE; 358 trace_xprtrdma_frwr_sgerr(mr, i); 359 return ERR_PTR(-EIO); 360 361 out_mapmr_err: 362 trace_xprtrdma_frwr_maperr(mr, n); 363 return ERR_PTR(-EIO); 364 } 365 366 /** 367 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC 368 * @cq: completion queue (ignored) 369 * @wc: completed WR 370 * 371 */ 372 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc) 373 { 374 struct ib_cqe *cqe = wc->wr_cqe; 375 struct rpcrdma_frwr *frwr = 376 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 377 378 /* WARNING: Only wr_cqe and status are reliable at this point */ 379 trace_xprtrdma_wc_fastreg(wc, frwr); 380 /* The MR will get recycled when the associated req is retransmitted */ 381 } 382 383 /** 384 * frwr_send - post Send WR containing the RPC Call message 385 * @ia: interface adapter 386 * @req: Prepared RPC Call 387 * 388 * For FRWR, chain any FastReg WRs to the Send WR. Only a 389 * single ib_post_send call is needed to register memory 390 * and then post the Send WR. 391 * 392 * Returns the result of ib_post_send. 393 */ 394 int frwr_send(struct rpcrdma_ia *ia, struct rpcrdma_req *req) 395 { 396 struct ib_send_wr *post_wr; 397 struct rpcrdma_mr *mr; 398 399 post_wr = &req->rl_wr; 400 list_for_each_entry(mr, &req->rl_registered, mr_list) { 401 struct rpcrdma_frwr *frwr; 402 403 frwr = &mr->frwr; 404 405 frwr->fr_cqe.done = frwr_wc_fastreg; 406 frwr->fr_regwr.wr.next = post_wr; 407 frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe; 408 frwr->fr_regwr.wr.num_sge = 0; 409 frwr->fr_regwr.wr.opcode = IB_WR_REG_MR; 410 frwr->fr_regwr.wr.send_flags = 0; 411 412 post_wr = &frwr->fr_regwr.wr; 413 } 414 415 return ib_post_send(ia->ri_id->qp, post_wr, NULL); 416 } 417 418 /** 419 * frwr_reminv - handle a remotely invalidated mr on the @mrs list 420 * @rep: Received reply 421 * @mrs: list of MRs to check 422 * 423 */ 424 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs) 425 { 426 struct rpcrdma_mr *mr; 427 428 list_for_each_entry(mr, mrs, mr_list) 429 if (mr->mr_handle == rep->rr_inv_rkey) { 430 list_del_init(&mr->mr_list); 431 trace_xprtrdma_mr_remoteinv(mr); 432 rpcrdma_mr_put(mr); 433 break; /* only one invalidated MR per RPC */ 434 } 435 } 436 437 static void __frwr_release_mr(struct ib_wc *wc, struct rpcrdma_mr *mr) 438 { 439 if (wc->status != IB_WC_SUCCESS) 440 frwr_mr_recycle(mr); 441 else 442 rpcrdma_mr_put(mr); 443 } 444 445 /** 446 * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC 447 * @cq: completion queue (ignored) 448 * @wc: completed WR 449 * 450 */ 451 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc) 452 { 453 struct ib_cqe *cqe = wc->wr_cqe; 454 struct rpcrdma_frwr *frwr = 455 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 456 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 457 458 /* WARNING: Only wr_cqe and status are reliable at this point */ 459 trace_xprtrdma_wc_li(wc, frwr); 460 __frwr_release_mr(wc, mr); 461 } 462 463 /** 464 * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC 465 * @cq: completion queue (ignored) 466 * @wc: completed WR 467 * 468 * Awaken anyone waiting for an MR to finish being fenced. 469 */ 470 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc) 471 { 472 struct ib_cqe *cqe = wc->wr_cqe; 473 struct rpcrdma_frwr *frwr = 474 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 475 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 476 477 /* WARNING: Only wr_cqe and status are reliable at this point */ 478 trace_xprtrdma_wc_li_wake(wc, frwr); 479 __frwr_release_mr(wc, mr); 480 complete(&frwr->fr_linv_done); 481 } 482 483 /** 484 * frwr_unmap_sync - invalidate memory regions that were registered for @req 485 * @r_xprt: controlling transport instance 486 * @req: rpcrdma_req with a non-empty list of MRs to process 487 * 488 * Sleeps until it is safe for the host CPU to access the previously mapped 489 * memory regions. This guarantees that registered MRs are properly fenced 490 * from the server before the RPC consumer accesses the data in them. It 491 * also ensures proper Send flow control: waking the next RPC waits until 492 * this RPC has relinquished all its Send Queue entries. 493 */ 494 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 495 { 496 struct ib_send_wr *first, **prev, *last; 497 const struct ib_send_wr *bad_wr; 498 struct rpcrdma_frwr *frwr; 499 struct rpcrdma_mr *mr; 500 int rc; 501 502 /* ORDER: Invalidate all of the MRs first 503 * 504 * Chain the LOCAL_INV Work Requests and post them with 505 * a single ib_post_send() call. 506 */ 507 frwr = NULL; 508 prev = &first; 509 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) { 510 511 trace_xprtrdma_mr_localinv(mr); 512 r_xprt->rx_stats.local_inv_needed++; 513 514 frwr = &mr->frwr; 515 frwr->fr_cqe.done = frwr_wc_localinv; 516 last = &frwr->fr_invwr; 517 last->next = NULL; 518 last->wr_cqe = &frwr->fr_cqe; 519 last->sg_list = NULL; 520 last->num_sge = 0; 521 last->opcode = IB_WR_LOCAL_INV; 522 last->send_flags = IB_SEND_SIGNALED; 523 last->ex.invalidate_rkey = mr->mr_handle; 524 525 *prev = last; 526 prev = &last->next; 527 } 528 529 /* Strong send queue ordering guarantees that when the 530 * last WR in the chain completes, all WRs in the chain 531 * are complete. 532 */ 533 frwr->fr_cqe.done = frwr_wc_localinv_wake; 534 reinit_completion(&frwr->fr_linv_done); 535 536 /* Transport disconnect drains the receive CQ before it 537 * replaces the QP. The RPC reply handler won't call us 538 * unless ri_id->qp is a valid pointer. 539 */ 540 bad_wr = NULL; 541 rc = ib_post_send(r_xprt->rx_ia.ri_id->qp, first, &bad_wr); 542 543 /* The final LOCAL_INV WR in the chain is supposed to 544 * do the wake. If it was never posted, the wake will 545 * not happen, so don't wait in that case. 546 */ 547 if (bad_wr != first) 548 wait_for_completion(&frwr->fr_linv_done); 549 if (!rc) 550 return; 551 552 /* Recycle MRs in the LOCAL_INV chain that did not get posted. 553 */ 554 trace_xprtrdma_post_linv(req, rc); 555 while (bad_wr) { 556 frwr = container_of(bad_wr, struct rpcrdma_frwr, 557 fr_invwr); 558 mr = container_of(frwr, struct rpcrdma_mr, frwr); 559 bad_wr = bad_wr->next; 560 561 list_del_init(&mr->mr_list); 562 frwr_mr_recycle(mr); 563 } 564 } 565 566 /** 567 * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC 568 * @cq: completion queue (ignored) 569 * @wc: completed WR 570 * 571 */ 572 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc) 573 { 574 struct ib_cqe *cqe = wc->wr_cqe; 575 struct rpcrdma_frwr *frwr = 576 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 577 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 578 struct rpcrdma_rep *rep = mr->mr_req->rl_reply; 579 580 /* WARNING: Only wr_cqe and status are reliable at this point */ 581 trace_xprtrdma_wc_li_done(wc, frwr); 582 __frwr_release_mr(wc, mr); 583 584 /* Ensure @rep is generated before __frwr_release_mr */ 585 smp_rmb(); 586 rpcrdma_complete_rqst(rep); 587 } 588 589 /** 590 * frwr_unmap_async - invalidate memory regions that were registered for @req 591 * @r_xprt: controlling transport instance 592 * @req: rpcrdma_req with a non-empty list of MRs to process 593 * 594 * This guarantees that registered MRs are properly fenced from the 595 * server before the RPC consumer accesses the data in them. It also 596 * ensures proper Send flow control: waking the next RPC waits until 597 * this RPC has relinquished all its Send Queue entries. 598 */ 599 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 600 { 601 struct ib_send_wr *first, *last, **prev; 602 const struct ib_send_wr *bad_wr; 603 struct rpcrdma_frwr *frwr; 604 struct rpcrdma_mr *mr; 605 int rc; 606 607 /* Chain the LOCAL_INV Work Requests and post them with 608 * a single ib_post_send() call. 609 */ 610 frwr = NULL; 611 prev = &first; 612 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) { 613 614 trace_xprtrdma_mr_localinv(mr); 615 r_xprt->rx_stats.local_inv_needed++; 616 617 frwr = &mr->frwr; 618 frwr->fr_cqe.done = frwr_wc_localinv; 619 last = &frwr->fr_invwr; 620 last->next = NULL; 621 last->wr_cqe = &frwr->fr_cqe; 622 last->sg_list = NULL; 623 last->num_sge = 0; 624 last->opcode = IB_WR_LOCAL_INV; 625 last->send_flags = IB_SEND_SIGNALED; 626 last->ex.invalidate_rkey = mr->mr_handle; 627 628 *prev = last; 629 prev = &last->next; 630 } 631 632 /* Strong send queue ordering guarantees that when the 633 * last WR in the chain completes, all WRs in the chain 634 * are complete. The last completion will wake up the 635 * RPC waiter. 636 */ 637 frwr->fr_cqe.done = frwr_wc_localinv_done; 638 639 /* Transport disconnect drains the receive CQ before it 640 * replaces the QP. The RPC reply handler won't call us 641 * unless ri_id->qp is a valid pointer. 642 */ 643 bad_wr = NULL; 644 rc = ib_post_send(r_xprt->rx_ia.ri_id->qp, first, &bad_wr); 645 if (!rc) 646 return; 647 648 /* Recycle MRs in the LOCAL_INV chain that did not get posted. 649 */ 650 trace_xprtrdma_post_linv(req, rc); 651 while (bad_wr) { 652 frwr = container_of(bad_wr, struct rpcrdma_frwr, fr_invwr); 653 mr = container_of(frwr, struct rpcrdma_mr, frwr); 654 bad_wr = bad_wr->next; 655 656 frwr_mr_recycle(mr); 657 } 658 659 /* The final LOCAL_INV WR in the chain is supposed to 660 * do the wake. If it was never posted, the wake will 661 * not happen, so wake here in that case. 662 */ 663 rpcrdma_complete_rqst(req->rl_reply); 664 } 665