1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015, 2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 */ 6 7 /* Lightweight memory registration using Fast Registration Work 8 * Requests (FRWR). 9 * 10 * FRWR features ordered asynchronous registration and invalidation 11 * of arbitrarily-sized memory regions. This is the fastest and safest 12 * but most complex memory registration mode. 13 */ 14 15 /* Normal operation 16 * 17 * A Memory Region is prepared for RDMA Read or Write using a FAST_REG 18 * Work Request (frwr_map). When the RDMA operation is finished, this 19 * Memory Region is invalidated using a LOCAL_INV Work Request 20 * (frwr_unmap_async and frwr_unmap_sync). 21 * 22 * Typically FAST_REG Work Requests are not signaled, and neither are 23 * RDMA Send Work Requests (with the exception of signaling occasionally 24 * to prevent provider work queue overflows). This greatly reduces HCA 25 * interrupt workload. 26 */ 27 28 /* Transport recovery 29 * 30 * frwr_map and frwr_unmap_* cannot run at the same time the transport 31 * connect worker is running. The connect worker holds the transport 32 * send lock, just as ->send_request does. This prevents frwr_map and 33 * the connect worker from running concurrently. When a connection is 34 * closed, the Receive completion queue is drained before the allowing 35 * the connect worker to get control. This prevents frwr_unmap and the 36 * connect worker from running concurrently. 37 * 38 * When the underlying transport disconnects, MRs that are in flight 39 * are flushed and are likely unusable. Thus all MRs are destroyed. 40 * New MRs are created on demand. 41 */ 42 43 #include <linux/sunrpc/rpc_rdma.h> 44 #include <linux/sunrpc/svc_rdma.h> 45 46 #include "xprt_rdma.h" 47 #include <trace/events/rpcrdma.h> 48 49 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 50 # define RPCDBG_FACILITY RPCDBG_TRANS 51 #endif 52 53 /** 54 * frwr_release_mr - Destroy one MR 55 * @mr: MR allocated by frwr_init_mr 56 * 57 */ 58 void frwr_release_mr(struct rpcrdma_mr *mr) 59 { 60 int rc; 61 62 rc = ib_dereg_mr(mr->frwr.fr_mr); 63 if (rc) 64 trace_xprtrdma_frwr_dereg(mr, rc); 65 kfree(mr->mr_sg); 66 kfree(mr); 67 } 68 69 static void frwr_mr_recycle(struct rpcrdma_mr *mr) 70 { 71 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 72 73 trace_xprtrdma_mr_recycle(mr); 74 75 if (mr->mr_dir != DMA_NONE) { 76 trace_xprtrdma_mr_unmap(mr); 77 ib_dma_unmap_sg(r_xprt->rx_ia.ri_id->device, 78 mr->mr_sg, mr->mr_nents, mr->mr_dir); 79 mr->mr_dir = DMA_NONE; 80 } 81 82 spin_lock(&r_xprt->rx_buf.rb_lock); 83 list_del(&mr->mr_all); 84 r_xprt->rx_stats.mrs_recycled++; 85 spin_unlock(&r_xprt->rx_buf.rb_lock); 86 87 frwr_release_mr(mr); 88 } 89 90 /* frwr_reset - Place MRs back on the free list 91 * @req: request to reset 92 * 93 * Used after a failed marshal. For FRWR, this means the MRs 94 * don't have to be fully released and recreated. 95 * 96 * NB: This is safe only as long as none of @req's MRs are 97 * involved with an ongoing asynchronous FAST_REG or LOCAL_INV 98 * Work Request. 99 */ 100 void frwr_reset(struct rpcrdma_req *req) 101 { 102 struct rpcrdma_mr *mr; 103 104 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) 105 rpcrdma_mr_put(mr); 106 } 107 108 /** 109 * frwr_init_mr - Initialize one MR 110 * @ia: interface adapter 111 * @mr: generic MR to prepare for FRWR 112 * 113 * Returns zero if successful. Otherwise a negative errno 114 * is returned. 115 */ 116 int frwr_init_mr(struct rpcrdma_ia *ia, struct rpcrdma_mr *mr) 117 { 118 unsigned int depth = ia->ri_max_frwr_depth; 119 struct scatterlist *sg; 120 struct ib_mr *frmr; 121 int rc; 122 123 frmr = ib_alloc_mr(ia->ri_pd, ia->ri_mrtype, depth); 124 if (IS_ERR(frmr)) 125 goto out_mr_err; 126 127 sg = kcalloc(depth, sizeof(*sg), GFP_NOFS); 128 if (!sg) 129 goto out_list_err; 130 131 mr->frwr.fr_mr = frmr; 132 mr->mr_dir = DMA_NONE; 133 INIT_LIST_HEAD(&mr->mr_list); 134 init_completion(&mr->frwr.fr_linv_done); 135 136 sg_init_table(sg, depth); 137 mr->mr_sg = sg; 138 return 0; 139 140 out_mr_err: 141 rc = PTR_ERR(frmr); 142 trace_xprtrdma_frwr_alloc(mr, rc); 143 return rc; 144 145 out_list_err: 146 ib_dereg_mr(frmr); 147 return -ENOMEM; 148 } 149 150 /** 151 * frwr_query_device - Prepare a transport for use with FRWR 152 * @r_xprt: controlling transport instance 153 * @device: RDMA device to query 154 * 155 * On success, sets: 156 * ep->rep_attr 157 * ep->rep_max_requests 158 * ia->ri_max_rdma_segs 159 * 160 * And these FRWR-related fields: 161 * ia->ri_max_frwr_depth 162 * ia->ri_mrtype 163 * 164 * Return values: 165 * On success, returns zero. 166 * %-EINVAL - the device does not support FRWR memory registration 167 * %-ENOMEM - the device is not sufficiently capable for NFS/RDMA 168 */ 169 int frwr_query_device(struct rpcrdma_xprt *r_xprt, 170 const struct ib_device *device) 171 { 172 const struct ib_device_attr *attrs = &device->attrs; 173 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 174 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 175 int max_qp_wr, depth, delta; 176 unsigned int max_sge; 177 178 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) || 179 attrs->max_fast_reg_page_list_len == 0) { 180 pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n", 181 device->name); 182 return -EINVAL; 183 } 184 185 max_sge = min_t(unsigned int, attrs->max_send_sge, 186 RPCRDMA_MAX_SEND_SGES); 187 if (max_sge < RPCRDMA_MIN_SEND_SGES) { 188 pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge); 189 return -ENOMEM; 190 } 191 ep->rep_attr.cap.max_send_sge = max_sge; 192 ep->rep_attr.cap.max_recv_sge = 1; 193 194 ia->ri_mrtype = IB_MR_TYPE_MEM_REG; 195 if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG) 196 ia->ri_mrtype = IB_MR_TYPE_SG_GAPS; 197 198 /* Quirk: Some devices advertise a large max_fast_reg_page_list_len 199 * capability, but perform optimally when the MRs are not larger 200 * than a page. 201 */ 202 if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS) 203 ia->ri_max_frwr_depth = attrs->max_sge_rd; 204 else 205 ia->ri_max_frwr_depth = attrs->max_fast_reg_page_list_len; 206 if (ia->ri_max_frwr_depth > RPCRDMA_MAX_DATA_SEGS) 207 ia->ri_max_frwr_depth = RPCRDMA_MAX_DATA_SEGS; 208 209 /* Add room for frwr register and invalidate WRs. 210 * 1. FRWR reg WR for head 211 * 2. FRWR invalidate WR for head 212 * 3. N FRWR reg WRs for pagelist 213 * 4. N FRWR invalidate WRs for pagelist 214 * 5. FRWR reg WR for tail 215 * 6. FRWR invalidate WR for tail 216 * 7. The RDMA_SEND WR 217 */ 218 depth = 7; 219 220 /* Calculate N if the device max FRWR depth is smaller than 221 * RPCRDMA_MAX_DATA_SEGS. 222 */ 223 if (ia->ri_max_frwr_depth < RPCRDMA_MAX_DATA_SEGS) { 224 delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frwr_depth; 225 do { 226 depth += 2; /* FRWR reg + invalidate */ 227 delta -= ia->ri_max_frwr_depth; 228 } while (delta > 0); 229 } 230 231 max_qp_wr = attrs->max_qp_wr; 232 max_qp_wr -= RPCRDMA_BACKWARD_WRS; 233 max_qp_wr -= 1; 234 if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE) 235 return -ENOMEM; 236 if (ep->rep_max_requests > max_qp_wr) 237 ep->rep_max_requests = max_qp_wr; 238 ep->rep_attr.cap.max_send_wr = ep->rep_max_requests * depth; 239 if (ep->rep_attr.cap.max_send_wr > max_qp_wr) { 240 ep->rep_max_requests = max_qp_wr / depth; 241 if (!ep->rep_max_requests) 242 return -ENOMEM; 243 ep->rep_attr.cap.max_send_wr = ep->rep_max_requests * depth; 244 } 245 ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS; 246 ep->rep_attr.cap.max_send_wr += 1; /* for ib_drain_sq */ 247 ep->rep_attr.cap.max_recv_wr = ep->rep_max_requests; 248 ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS; 249 ep->rep_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */ 250 251 ia->ri_max_rdma_segs = 252 DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ia->ri_max_frwr_depth); 253 /* Reply chunks require segments for head and tail buffers */ 254 ia->ri_max_rdma_segs += 2; 255 if (ia->ri_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS) 256 ia->ri_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS; 257 258 /* Ensure the underlying device is capable of conveying the 259 * largest r/wsize NFS will ask for. This guarantees that 260 * failing over from one RDMA device to another will not 261 * break NFS I/O. 262 */ 263 if ((ia->ri_max_rdma_segs * ia->ri_max_frwr_depth) < RPCRDMA_MAX_SEGS) 264 return -ENOMEM; 265 266 return 0; 267 } 268 269 /** 270 * frwr_map - Register a memory region 271 * @r_xprt: controlling transport 272 * @seg: memory region co-ordinates 273 * @nsegs: number of segments remaining 274 * @writing: true when RDMA Write will be used 275 * @xid: XID of RPC using the registered memory 276 * @mr: MR to fill in 277 * 278 * Prepare a REG_MR Work Request to register a memory region 279 * for remote access via RDMA READ or RDMA WRITE. 280 * 281 * Returns the next segment or a negative errno pointer. 282 * On success, @mr is filled in. 283 */ 284 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt, 285 struct rpcrdma_mr_seg *seg, 286 int nsegs, bool writing, __be32 xid, 287 struct rpcrdma_mr *mr) 288 { 289 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 290 struct ib_reg_wr *reg_wr; 291 int i, n, dma_nents; 292 struct ib_mr *ibmr; 293 u8 key; 294 295 if (nsegs > ia->ri_max_frwr_depth) 296 nsegs = ia->ri_max_frwr_depth; 297 for (i = 0; i < nsegs;) { 298 if (seg->mr_page) 299 sg_set_page(&mr->mr_sg[i], 300 seg->mr_page, 301 seg->mr_len, 302 offset_in_page(seg->mr_offset)); 303 else 304 sg_set_buf(&mr->mr_sg[i], seg->mr_offset, 305 seg->mr_len); 306 307 ++seg; 308 ++i; 309 if (ia->ri_mrtype == IB_MR_TYPE_SG_GAPS) 310 continue; 311 if ((i < nsegs && offset_in_page(seg->mr_offset)) || 312 offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) 313 break; 314 } 315 mr->mr_dir = rpcrdma_data_dir(writing); 316 mr->mr_nents = i; 317 318 dma_nents = ib_dma_map_sg(ia->ri_id->device, mr->mr_sg, mr->mr_nents, 319 mr->mr_dir); 320 if (!dma_nents) 321 goto out_dmamap_err; 322 323 ibmr = mr->frwr.fr_mr; 324 n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE); 325 if (n != dma_nents) 326 goto out_mapmr_err; 327 328 ibmr->iova &= 0x00000000ffffffff; 329 ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32; 330 key = (u8)(ibmr->rkey & 0x000000FF); 331 ib_update_fast_reg_key(ibmr, ++key); 332 333 reg_wr = &mr->frwr.fr_regwr; 334 reg_wr->mr = ibmr; 335 reg_wr->key = ibmr->rkey; 336 reg_wr->access = writing ? 337 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 338 IB_ACCESS_REMOTE_READ; 339 340 mr->mr_handle = ibmr->rkey; 341 mr->mr_length = ibmr->length; 342 mr->mr_offset = ibmr->iova; 343 trace_xprtrdma_mr_map(mr); 344 345 return seg; 346 347 out_dmamap_err: 348 mr->mr_dir = DMA_NONE; 349 trace_xprtrdma_frwr_sgerr(mr, i); 350 return ERR_PTR(-EIO); 351 352 out_mapmr_err: 353 trace_xprtrdma_frwr_maperr(mr, n); 354 return ERR_PTR(-EIO); 355 } 356 357 /** 358 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC 359 * @cq: completion queue (ignored) 360 * @wc: completed WR 361 * 362 */ 363 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc) 364 { 365 struct ib_cqe *cqe = wc->wr_cqe; 366 struct rpcrdma_frwr *frwr = 367 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 368 369 /* WARNING: Only wr_cqe and status are reliable at this point */ 370 trace_xprtrdma_wc_fastreg(wc, frwr); 371 /* The MR will get recycled when the associated req is retransmitted */ 372 } 373 374 /** 375 * frwr_send - post Send WR containing the RPC Call message 376 * @ia: interface adapter 377 * @req: Prepared RPC Call 378 * 379 * For FRWR, chain any FastReg WRs to the Send WR. Only a 380 * single ib_post_send call is needed to register memory 381 * and then post the Send WR. 382 * 383 * Returns the result of ib_post_send. 384 */ 385 int frwr_send(struct rpcrdma_ia *ia, struct rpcrdma_req *req) 386 { 387 struct ib_send_wr *post_wr; 388 struct rpcrdma_mr *mr; 389 390 post_wr = &req->rl_wr; 391 list_for_each_entry(mr, &req->rl_registered, mr_list) { 392 struct rpcrdma_frwr *frwr; 393 394 frwr = &mr->frwr; 395 396 frwr->fr_cqe.done = frwr_wc_fastreg; 397 frwr->fr_regwr.wr.next = post_wr; 398 frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe; 399 frwr->fr_regwr.wr.num_sge = 0; 400 frwr->fr_regwr.wr.opcode = IB_WR_REG_MR; 401 frwr->fr_regwr.wr.send_flags = 0; 402 403 post_wr = &frwr->fr_regwr.wr; 404 } 405 406 return ib_post_send(ia->ri_id->qp, post_wr, NULL); 407 } 408 409 /** 410 * frwr_reminv - handle a remotely invalidated mr on the @mrs list 411 * @rep: Received reply 412 * @mrs: list of MRs to check 413 * 414 */ 415 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs) 416 { 417 struct rpcrdma_mr *mr; 418 419 list_for_each_entry(mr, mrs, mr_list) 420 if (mr->mr_handle == rep->rr_inv_rkey) { 421 list_del_init(&mr->mr_list); 422 trace_xprtrdma_mr_remoteinv(mr); 423 rpcrdma_mr_put(mr); 424 break; /* only one invalidated MR per RPC */ 425 } 426 } 427 428 static void __frwr_release_mr(struct ib_wc *wc, struct rpcrdma_mr *mr) 429 { 430 if (wc->status != IB_WC_SUCCESS) 431 frwr_mr_recycle(mr); 432 else 433 rpcrdma_mr_put(mr); 434 } 435 436 /** 437 * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC 438 * @cq: completion queue (ignored) 439 * @wc: completed WR 440 * 441 */ 442 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc) 443 { 444 struct ib_cqe *cqe = wc->wr_cqe; 445 struct rpcrdma_frwr *frwr = 446 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 447 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 448 449 /* WARNING: Only wr_cqe and status are reliable at this point */ 450 trace_xprtrdma_wc_li(wc, frwr); 451 __frwr_release_mr(wc, mr); 452 } 453 454 /** 455 * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC 456 * @cq: completion queue (ignored) 457 * @wc: completed WR 458 * 459 * Awaken anyone waiting for an MR to finish being fenced. 460 */ 461 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc) 462 { 463 struct ib_cqe *cqe = wc->wr_cqe; 464 struct rpcrdma_frwr *frwr = 465 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 466 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 467 468 /* WARNING: Only wr_cqe and status are reliable at this point */ 469 trace_xprtrdma_wc_li_wake(wc, frwr); 470 __frwr_release_mr(wc, mr); 471 complete(&frwr->fr_linv_done); 472 } 473 474 /** 475 * frwr_unmap_sync - invalidate memory regions that were registered for @req 476 * @r_xprt: controlling transport instance 477 * @req: rpcrdma_req with a non-empty list of MRs to process 478 * 479 * Sleeps until it is safe for the host CPU to access the previously mapped 480 * memory regions. This guarantees that registered MRs are properly fenced 481 * from the server before the RPC consumer accesses the data in them. It 482 * also ensures proper Send flow control: waking the next RPC waits until 483 * this RPC has relinquished all its Send Queue entries. 484 */ 485 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 486 { 487 struct ib_send_wr *first, **prev, *last; 488 const struct ib_send_wr *bad_wr; 489 struct rpcrdma_frwr *frwr; 490 struct rpcrdma_mr *mr; 491 int rc; 492 493 /* ORDER: Invalidate all of the MRs first 494 * 495 * Chain the LOCAL_INV Work Requests and post them with 496 * a single ib_post_send() call. 497 */ 498 frwr = NULL; 499 prev = &first; 500 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) { 501 502 trace_xprtrdma_mr_localinv(mr); 503 r_xprt->rx_stats.local_inv_needed++; 504 505 frwr = &mr->frwr; 506 frwr->fr_cqe.done = frwr_wc_localinv; 507 last = &frwr->fr_invwr; 508 last->next = NULL; 509 last->wr_cqe = &frwr->fr_cqe; 510 last->sg_list = NULL; 511 last->num_sge = 0; 512 last->opcode = IB_WR_LOCAL_INV; 513 last->send_flags = IB_SEND_SIGNALED; 514 last->ex.invalidate_rkey = mr->mr_handle; 515 516 *prev = last; 517 prev = &last->next; 518 } 519 520 /* Strong send queue ordering guarantees that when the 521 * last WR in the chain completes, all WRs in the chain 522 * are complete. 523 */ 524 frwr->fr_cqe.done = frwr_wc_localinv_wake; 525 reinit_completion(&frwr->fr_linv_done); 526 527 /* Transport disconnect drains the receive CQ before it 528 * replaces the QP. The RPC reply handler won't call us 529 * unless ri_id->qp is a valid pointer. 530 */ 531 bad_wr = NULL; 532 rc = ib_post_send(r_xprt->rx_ia.ri_id->qp, first, &bad_wr); 533 534 /* The final LOCAL_INV WR in the chain is supposed to 535 * do the wake. If it was never posted, the wake will 536 * not happen, so don't wait in that case. 537 */ 538 if (bad_wr != first) 539 wait_for_completion(&frwr->fr_linv_done); 540 if (!rc) 541 return; 542 543 /* Recycle MRs in the LOCAL_INV chain that did not get posted. 544 */ 545 trace_xprtrdma_post_linv(req, rc); 546 while (bad_wr) { 547 frwr = container_of(bad_wr, struct rpcrdma_frwr, 548 fr_invwr); 549 mr = container_of(frwr, struct rpcrdma_mr, frwr); 550 bad_wr = bad_wr->next; 551 552 list_del_init(&mr->mr_list); 553 frwr_mr_recycle(mr); 554 } 555 } 556 557 /** 558 * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC 559 * @cq: completion queue (ignored) 560 * @wc: completed WR 561 * 562 */ 563 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc) 564 { 565 struct ib_cqe *cqe = wc->wr_cqe; 566 struct rpcrdma_frwr *frwr = 567 container_of(cqe, struct rpcrdma_frwr, fr_cqe); 568 struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr); 569 struct rpcrdma_rep *rep = mr->mr_req->rl_reply; 570 571 /* WARNING: Only wr_cqe and status are reliable at this point */ 572 trace_xprtrdma_wc_li_done(wc, frwr); 573 __frwr_release_mr(wc, mr); 574 575 /* Ensure @rep is generated before __frwr_release_mr */ 576 smp_rmb(); 577 rpcrdma_complete_rqst(rep); 578 } 579 580 /** 581 * frwr_unmap_async - invalidate memory regions that were registered for @req 582 * @r_xprt: controlling transport instance 583 * @req: rpcrdma_req with a non-empty list of MRs to process 584 * 585 * This guarantees that registered MRs are properly fenced from the 586 * server before the RPC consumer accesses the data in them. It also 587 * ensures proper Send flow control: waking the next RPC waits until 588 * this RPC has relinquished all its Send Queue entries. 589 */ 590 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 591 { 592 struct ib_send_wr *first, *last, **prev; 593 const struct ib_send_wr *bad_wr; 594 struct rpcrdma_frwr *frwr; 595 struct rpcrdma_mr *mr; 596 int rc; 597 598 /* Chain the LOCAL_INV Work Requests and post them with 599 * a single ib_post_send() call. 600 */ 601 frwr = NULL; 602 prev = &first; 603 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) { 604 605 trace_xprtrdma_mr_localinv(mr); 606 r_xprt->rx_stats.local_inv_needed++; 607 608 frwr = &mr->frwr; 609 frwr->fr_cqe.done = frwr_wc_localinv; 610 last = &frwr->fr_invwr; 611 last->next = NULL; 612 last->wr_cqe = &frwr->fr_cqe; 613 last->sg_list = NULL; 614 last->num_sge = 0; 615 last->opcode = IB_WR_LOCAL_INV; 616 last->send_flags = IB_SEND_SIGNALED; 617 last->ex.invalidate_rkey = mr->mr_handle; 618 619 *prev = last; 620 prev = &last->next; 621 } 622 623 /* Strong send queue ordering guarantees that when the 624 * last WR in the chain completes, all WRs in the chain 625 * are complete. The last completion will wake up the 626 * RPC waiter. 627 */ 628 frwr->fr_cqe.done = frwr_wc_localinv_done; 629 630 /* Transport disconnect drains the receive CQ before it 631 * replaces the QP. The RPC reply handler won't call us 632 * unless ri_id->qp is a valid pointer. 633 */ 634 bad_wr = NULL; 635 rc = ib_post_send(r_xprt->rx_ia.ri_id->qp, first, &bad_wr); 636 if (!rc) 637 return; 638 639 /* Recycle MRs in the LOCAL_INV chain that did not get posted. 640 */ 641 trace_xprtrdma_post_linv(req, rc); 642 while (bad_wr) { 643 frwr = container_of(bad_wr, struct rpcrdma_frwr, fr_invwr); 644 mr = container_of(frwr, struct rpcrdma_mr, frwr); 645 bad_wr = bad_wr->next; 646 647 frwr_mr_recycle(mr); 648 } 649 650 /* The final LOCAL_INV WR in the chain is supposed to 651 * do the wake. If it was never posted, the wake will 652 * not happen, so wake here in that case. 653 */ 654 rpcrdma_complete_rqst(req->rl_reply); 655 } 656