xref: /linux/net/sunrpc/xprtrdma/frwr_ops.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  */
6 
7 /* Lightweight memory registration using Fast Registration Work
8  * Requests (FRWR).
9  *
10  * FRWR features ordered asynchronous registration and invalidation
11  * of arbitrarily-sized memory regions. This is the fastest and safest
12  * but most complex memory registration mode.
13  */
14 
15 /* Normal operation
16  *
17  * A Memory Region is prepared for RDMA Read or Write using a FAST_REG
18  * Work Request (frwr_map). When the RDMA operation is finished, this
19  * Memory Region is invalidated using a LOCAL_INV Work Request
20  * (frwr_unmap_async and frwr_unmap_sync).
21  *
22  * Typically FAST_REG Work Requests are not signaled, and neither are
23  * RDMA Send Work Requests (with the exception of signaling occasionally
24  * to prevent provider work queue overflows). This greatly reduces HCA
25  * interrupt workload.
26  */
27 
28 /* Transport recovery
29  *
30  * frwr_map and frwr_unmap_* cannot run at the same time the transport
31  * connect worker is running. The connect worker holds the transport
32  * send lock, just as ->send_request does. This prevents frwr_map and
33  * the connect worker from running concurrently. When a connection is
34  * closed, the Receive completion queue is drained before the allowing
35  * the connect worker to get control. This prevents frwr_unmap and the
36  * connect worker from running concurrently.
37  *
38  * When the underlying transport disconnects, MRs that are in flight
39  * are flushed and are likely unusable. Thus all MRs are destroyed.
40  * New MRs are created on demand.
41  */
42 
43 #include <linux/sunrpc/svc_rdma.h>
44 
45 #include "xprt_rdma.h"
46 #include <trace/events/rpcrdma.h>
47 
48 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
49 # define RPCDBG_FACILITY	RPCDBG_TRANS
50 #endif
51 
52 /**
53  * frwr_release_mr - Destroy one MR
54  * @mr: MR allocated by frwr_mr_init
55  *
56  */
57 void frwr_release_mr(struct rpcrdma_mr *mr)
58 {
59 	int rc;
60 
61 	rc = ib_dereg_mr(mr->frwr.fr_mr);
62 	if (rc)
63 		trace_xprtrdma_frwr_dereg(mr, rc);
64 	kfree(mr->mr_sg);
65 	kfree(mr);
66 }
67 
68 static void frwr_mr_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
69 {
70 	if (mr->mr_device) {
71 		trace_xprtrdma_mr_unmap(mr);
72 		ib_dma_unmap_sg(mr->mr_device, mr->mr_sg, mr->mr_nents,
73 				mr->mr_dir);
74 		mr->mr_device = NULL;
75 	}
76 }
77 
78 static void frwr_mr_recycle(struct rpcrdma_mr *mr)
79 {
80 	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
81 
82 	trace_xprtrdma_mr_recycle(mr);
83 
84 	frwr_mr_unmap(r_xprt, mr);
85 
86 	spin_lock(&r_xprt->rx_buf.rb_lock);
87 	list_del(&mr->mr_all);
88 	r_xprt->rx_stats.mrs_recycled++;
89 	spin_unlock(&r_xprt->rx_buf.rb_lock);
90 
91 	frwr_release_mr(mr);
92 }
93 
94 static void frwr_mr_put(struct rpcrdma_mr *mr)
95 {
96 	frwr_mr_unmap(mr->mr_xprt, mr);
97 
98 	/* The MR is returned to the req's MR free list instead
99 	 * of to the xprt's MR free list. No spinlock is needed.
100 	 */
101 	rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
102 }
103 
104 /* frwr_reset - Place MRs back on the free list
105  * @req: request to reset
106  *
107  * Used after a failed marshal. For FRWR, this means the MRs
108  * don't have to be fully released and recreated.
109  *
110  * NB: This is safe only as long as none of @req's MRs are
111  * involved with an ongoing asynchronous FAST_REG or LOCAL_INV
112  * Work Request.
113  */
114 void frwr_reset(struct rpcrdma_req *req)
115 {
116 	struct rpcrdma_mr *mr;
117 
118 	while ((mr = rpcrdma_mr_pop(&req->rl_registered)))
119 		frwr_mr_put(mr);
120 }
121 
122 /**
123  * frwr_mr_init - Initialize one MR
124  * @r_xprt: controlling transport instance
125  * @mr: generic MR to prepare for FRWR
126  *
127  * Returns zero if successful. Otherwise a negative errno
128  * is returned.
129  */
130 int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
131 {
132 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
133 	unsigned int depth = ep->re_max_fr_depth;
134 	struct scatterlist *sg;
135 	struct ib_mr *frmr;
136 	int rc;
137 
138 	frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth);
139 	if (IS_ERR(frmr))
140 		goto out_mr_err;
141 
142 	sg = kmalloc_array(depth, sizeof(*sg), GFP_NOFS);
143 	if (!sg)
144 		goto out_list_err;
145 
146 	mr->mr_xprt = r_xprt;
147 	mr->frwr.fr_mr = frmr;
148 	mr->mr_device = NULL;
149 	INIT_LIST_HEAD(&mr->mr_list);
150 	init_completion(&mr->frwr.fr_linv_done);
151 
152 	sg_init_table(sg, depth);
153 	mr->mr_sg = sg;
154 	return 0;
155 
156 out_mr_err:
157 	rc = PTR_ERR(frmr);
158 	trace_xprtrdma_frwr_alloc(mr, rc);
159 	return rc;
160 
161 out_list_err:
162 	ib_dereg_mr(frmr);
163 	return -ENOMEM;
164 }
165 
166 /**
167  * frwr_query_device - Prepare a transport for use with FRWR
168  * @ep: endpoint to fill in
169  * @device: RDMA device to query
170  *
171  * On success, sets:
172  *	ep->re_attr
173  *	ep->re_max_requests
174  *	ep->re_max_rdma_segs
175  *	ep->re_max_fr_depth
176  *	ep->re_mrtype
177  *
178  * Return values:
179  *   On success, returns zero.
180  *   %-EINVAL - the device does not support FRWR memory registration
181  *   %-ENOMEM - the device is not sufficiently capable for NFS/RDMA
182  */
183 int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device)
184 {
185 	const struct ib_device_attr *attrs = &device->attrs;
186 	int max_qp_wr, depth, delta;
187 	unsigned int max_sge;
188 
189 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) ||
190 	    attrs->max_fast_reg_page_list_len == 0) {
191 		pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n",
192 		       device->name);
193 		return -EINVAL;
194 	}
195 
196 	max_sge = min_t(unsigned int, attrs->max_send_sge,
197 			RPCRDMA_MAX_SEND_SGES);
198 	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
199 		pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge);
200 		return -ENOMEM;
201 	}
202 	ep->re_attr.cap.max_send_sge = max_sge;
203 	ep->re_attr.cap.max_recv_sge = 1;
204 
205 	ep->re_mrtype = IB_MR_TYPE_MEM_REG;
206 	if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG)
207 		ep->re_mrtype = IB_MR_TYPE_SG_GAPS;
208 
209 	/* Quirk: Some devices advertise a large max_fast_reg_page_list_len
210 	 * capability, but perform optimally when the MRs are not larger
211 	 * than a page.
212 	 */
213 	if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS)
214 		ep->re_max_fr_depth = attrs->max_sge_rd;
215 	else
216 		ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len;
217 	if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS)
218 		ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS;
219 
220 	/* Add room for frwr register and invalidate WRs.
221 	 * 1. FRWR reg WR for head
222 	 * 2. FRWR invalidate WR for head
223 	 * 3. N FRWR reg WRs for pagelist
224 	 * 4. N FRWR invalidate WRs for pagelist
225 	 * 5. FRWR reg WR for tail
226 	 * 6. FRWR invalidate WR for tail
227 	 * 7. The RDMA_SEND WR
228 	 */
229 	depth = 7;
230 
231 	/* Calculate N if the device max FRWR depth is smaller than
232 	 * RPCRDMA_MAX_DATA_SEGS.
233 	 */
234 	if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) {
235 		delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth;
236 		do {
237 			depth += 2; /* FRWR reg + invalidate */
238 			delta -= ep->re_max_fr_depth;
239 		} while (delta > 0);
240 	}
241 
242 	max_qp_wr = attrs->max_qp_wr;
243 	max_qp_wr -= RPCRDMA_BACKWARD_WRS;
244 	max_qp_wr -= 1;
245 	if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
246 		return -ENOMEM;
247 	if (ep->re_max_requests > max_qp_wr)
248 		ep->re_max_requests = max_qp_wr;
249 	ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
250 	if (ep->re_attr.cap.max_send_wr > max_qp_wr) {
251 		ep->re_max_requests = max_qp_wr / depth;
252 		if (!ep->re_max_requests)
253 			return -ENOMEM;
254 		ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
255 	}
256 	ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
257 	ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
258 	ep->re_attr.cap.max_recv_wr = ep->re_max_requests;
259 	ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
260 	ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
261 
262 	ep->re_max_rdma_segs =
263 		DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth);
264 	/* Reply chunks require segments for head and tail buffers */
265 	ep->re_max_rdma_segs += 2;
266 	if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS)
267 		ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS;
268 
269 	/* Ensure the underlying device is capable of conveying the
270 	 * largest r/wsize NFS will ask for. This guarantees that
271 	 * failing over from one RDMA device to another will not
272 	 * break NFS I/O.
273 	 */
274 	if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS)
275 		return -ENOMEM;
276 
277 	return 0;
278 }
279 
280 /**
281  * frwr_map - Register a memory region
282  * @r_xprt: controlling transport
283  * @seg: memory region co-ordinates
284  * @nsegs: number of segments remaining
285  * @writing: true when RDMA Write will be used
286  * @xid: XID of RPC using the registered memory
287  * @mr: MR to fill in
288  *
289  * Prepare a REG_MR Work Request to register a memory region
290  * for remote access via RDMA READ or RDMA WRITE.
291  *
292  * Returns the next segment or a negative errno pointer.
293  * On success, @mr is filled in.
294  */
295 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
296 				struct rpcrdma_mr_seg *seg,
297 				int nsegs, bool writing, __be32 xid,
298 				struct rpcrdma_mr *mr)
299 {
300 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
301 	struct ib_reg_wr *reg_wr;
302 	int i, n, dma_nents;
303 	struct ib_mr *ibmr;
304 	u8 key;
305 
306 	if (nsegs > ep->re_max_fr_depth)
307 		nsegs = ep->re_max_fr_depth;
308 	for (i = 0; i < nsegs;) {
309 		if (seg->mr_page)
310 			sg_set_page(&mr->mr_sg[i],
311 				    seg->mr_page,
312 				    seg->mr_len,
313 				    offset_in_page(seg->mr_offset));
314 		else
315 			sg_set_buf(&mr->mr_sg[i], seg->mr_offset,
316 				   seg->mr_len);
317 
318 		++seg;
319 		++i;
320 		if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS)
321 			continue;
322 		if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
323 		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
324 			break;
325 	}
326 	mr->mr_dir = rpcrdma_data_dir(writing);
327 	mr->mr_nents = i;
328 
329 	dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents,
330 				  mr->mr_dir);
331 	if (!dma_nents)
332 		goto out_dmamap_err;
333 	mr->mr_device = ep->re_id->device;
334 
335 	ibmr = mr->frwr.fr_mr;
336 	n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE);
337 	if (n != dma_nents)
338 		goto out_mapmr_err;
339 
340 	ibmr->iova &= 0x00000000ffffffff;
341 	ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
342 	key = (u8)(ibmr->rkey & 0x000000FF);
343 	ib_update_fast_reg_key(ibmr, ++key);
344 
345 	reg_wr = &mr->frwr.fr_regwr;
346 	reg_wr->mr = ibmr;
347 	reg_wr->key = ibmr->rkey;
348 	reg_wr->access = writing ?
349 			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
350 			 IB_ACCESS_REMOTE_READ;
351 
352 	mr->mr_handle = ibmr->rkey;
353 	mr->mr_length = ibmr->length;
354 	mr->mr_offset = ibmr->iova;
355 	trace_xprtrdma_mr_map(mr);
356 
357 	return seg;
358 
359 out_dmamap_err:
360 	trace_xprtrdma_frwr_sgerr(mr, i);
361 	return ERR_PTR(-EIO);
362 
363 out_mapmr_err:
364 	trace_xprtrdma_frwr_maperr(mr, n);
365 	return ERR_PTR(-EIO);
366 }
367 
368 /**
369  * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
370  * @cq: completion queue
371  * @wc: WCE for a completed FastReg WR
372  *
373  */
374 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
375 {
376 	struct ib_cqe *cqe = wc->wr_cqe;
377 	struct rpcrdma_frwr *frwr =
378 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
379 
380 	/* WARNING: Only wr_cqe and status are reliable at this point */
381 	trace_xprtrdma_wc_fastreg(wc, &frwr->fr_cid);
382 	/* The MR will get recycled when the associated req is retransmitted */
383 
384 	rpcrdma_flush_disconnect(cq->cq_context, wc);
385 }
386 
387 static void frwr_cid_init(struct rpcrdma_ep *ep,
388 			  struct rpcrdma_frwr *frwr)
389 {
390 	struct rpc_rdma_cid *cid = &frwr->fr_cid;
391 
392 	cid->ci_queue_id = ep->re_attr.send_cq->res.id;
393 	cid->ci_completion_id = frwr->fr_mr->res.id;
394 }
395 
396 /**
397  * frwr_send - post Send WRs containing the RPC Call message
398  * @r_xprt: controlling transport instance
399  * @req: prepared RPC Call
400  *
401  * For FRWR, chain any FastReg WRs to the Send WR. Only a
402  * single ib_post_send call is needed to register memory
403  * and then post the Send WR.
404  *
405  * Returns the return code from ib_post_send.
406  *
407  * Caller must hold the transport send lock to ensure that the
408  * pointers to the transport's rdma_cm_id and QP are stable.
409  */
410 int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
411 {
412 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
413 	struct ib_send_wr *post_wr;
414 	struct rpcrdma_mr *mr;
415 
416 	post_wr = &req->rl_wr;
417 	list_for_each_entry(mr, &req->rl_registered, mr_list) {
418 		struct rpcrdma_frwr *frwr;
419 
420 		frwr = &mr->frwr;
421 
422 		frwr->fr_cqe.done = frwr_wc_fastreg;
423 		frwr_cid_init(ep, frwr);
424 		frwr->fr_regwr.wr.next = post_wr;
425 		frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe;
426 		frwr->fr_regwr.wr.num_sge = 0;
427 		frwr->fr_regwr.wr.opcode = IB_WR_REG_MR;
428 		frwr->fr_regwr.wr.send_flags = 0;
429 
430 		post_wr = &frwr->fr_regwr.wr;
431 	}
432 
433 	return ib_post_send(ep->re_id->qp, post_wr, NULL);
434 }
435 
436 /**
437  * frwr_reminv - handle a remotely invalidated mr on the @mrs list
438  * @rep: Received reply
439  * @mrs: list of MRs to check
440  *
441  */
442 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
443 {
444 	struct rpcrdma_mr *mr;
445 
446 	list_for_each_entry(mr, mrs, mr_list)
447 		if (mr->mr_handle == rep->rr_inv_rkey) {
448 			list_del_init(&mr->mr_list);
449 			frwr_mr_put(mr);
450 			break;	/* only one invalidated MR per RPC */
451 		}
452 }
453 
454 static void frwr_mr_done(struct ib_wc *wc, struct rpcrdma_mr *mr)
455 {
456 	if (wc->status != IB_WC_SUCCESS)
457 		frwr_mr_recycle(mr);
458 	else
459 		frwr_mr_put(mr);
460 }
461 
462 /**
463  * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC
464  * @cq: completion queue
465  * @wc: WCE for a completed LocalInv WR
466  *
467  */
468 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
469 {
470 	struct ib_cqe *cqe = wc->wr_cqe;
471 	struct rpcrdma_frwr *frwr =
472 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
473 	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
474 
475 	/* WARNING: Only wr_cqe and status are reliable at this point */
476 	trace_xprtrdma_wc_li(wc, &frwr->fr_cid);
477 	frwr_mr_done(wc, mr);
478 
479 	rpcrdma_flush_disconnect(cq->cq_context, wc);
480 }
481 
482 /**
483  * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC
484  * @cq: completion queue
485  * @wc: WCE for a completed LocalInv WR
486  *
487  * Awaken anyone waiting for an MR to finish being fenced.
488  */
489 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
490 {
491 	struct ib_cqe *cqe = wc->wr_cqe;
492 	struct rpcrdma_frwr *frwr =
493 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
494 	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
495 
496 	/* WARNING: Only wr_cqe and status are reliable at this point */
497 	trace_xprtrdma_wc_li_wake(wc, &frwr->fr_cid);
498 	frwr_mr_done(wc, mr);
499 	complete(&frwr->fr_linv_done);
500 
501 	rpcrdma_flush_disconnect(cq->cq_context, wc);
502 }
503 
504 /**
505  * frwr_unmap_sync - invalidate memory regions that were registered for @req
506  * @r_xprt: controlling transport instance
507  * @req: rpcrdma_req with a non-empty list of MRs to process
508  *
509  * Sleeps until it is safe for the host CPU to access the previously mapped
510  * memory regions. This guarantees that registered MRs are properly fenced
511  * from the server before the RPC consumer accesses the data in them. It
512  * also ensures proper Send flow control: waking the next RPC waits until
513  * this RPC has relinquished all its Send Queue entries.
514  */
515 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
516 {
517 	struct ib_send_wr *first, **prev, *last;
518 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
519 	const struct ib_send_wr *bad_wr;
520 	struct rpcrdma_frwr *frwr;
521 	struct rpcrdma_mr *mr;
522 	int rc;
523 
524 	/* ORDER: Invalidate all of the MRs first
525 	 *
526 	 * Chain the LOCAL_INV Work Requests and post them with
527 	 * a single ib_post_send() call.
528 	 */
529 	frwr = NULL;
530 	prev = &first;
531 	while ((mr = rpcrdma_mr_pop(&req->rl_registered))) {
532 
533 		trace_xprtrdma_mr_localinv(mr);
534 		r_xprt->rx_stats.local_inv_needed++;
535 
536 		frwr = &mr->frwr;
537 		frwr->fr_cqe.done = frwr_wc_localinv;
538 		frwr_cid_init(ep, frwr);
539 		last = &frwr->fr_invwr;
540 		last->next = NULL;
541 		last->wr_cqe = &frwr->fr_cqe;
542 		last->sg_list = NULL;
543 		last->num_sge = 0;
544 		last->opcode = IB_WR_LOCAL_INV;
545 		last->send_flags = IB_SEND_SIGNALED;
546 		last->ex.invalidate_rkey = mr->mr_handle;
547 
548 		*prev = last;
549 		prev = &last->next;
550 	}
551 
552 	/* Strong send queue ordering guarantees that when the
553 	 * last WR in the chain completes, all WRs in the chain
554 	 * are complete.
555 	 */
556 	frwr->fr_cqe.done = frwr_wc_localinv_wake;
557 	reinit_completion(&frwr->fr_linv_done);
558 
559 	/* Transport disconnect drains the receive CQ before it
560 	 * replaces the QP. The RPC reply handler won't call us
561 	 * unless re_id->qp is a valid pointer.
562 	 */
563 	bad_wr = NULL;
564 	rc = ib_post_send(ep->re_id->qp, first, &bad_wr);
565 
566 	/* The final LOCAL_INV WR in the chain is supposed to
567 	 * do the wake. If it was never posted, the wake will
568 	 * not happen, so don't wait in that case.
569 	 */
570 	if (bad_wr != first)
571 		wait_for_completion(&frwr->fr_linv_done);
572 	if (!rc)
573 		return;
574 
575 	/* Recycle MRs in the LOCAL_INV chain that did not get posted.
576 	 */
577 	trace_xprtrdma_post_linv_err(req, rc);
578 	while (bad_wr) {
579 		frwr = container_of(bad_wr, struct rpcrdma_frwr,
580 				    fr_invwr);
581 		mr = container_of(frwr, struct rpcrdma_mr, frwr);
582 		bad_wr = bad_wr->next;
583 
584 		list_del_init(&mr->mr_list);
585 		frwr_mr_recycle(mr);
586 	}
587 }
588 
589 /**
590  * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC
591  * @cq:	completion queue
592  * @wc:	WCE for a completed LocalInv WR
593  *
594  */
595 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc)
596 {
597 	struct ib_cqe *cqe = wc->wr_cqe;
598 	struct rpcrdma_frwr *frwr =
599 		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
600 	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
601 	struct rpcrdma_rep *rep = mr->mr_req->rl_reply;
602 
603 	/* WARNING: Only wr_cqe and status are reliable at this point */
604 	trace_xprtrdma_wc_li_done(wc, &frwr->fr_cid);
605 	frwr_mr_done(wc, mr);
606 
607 	/* Ensure @rep is generated before frwr_mr_done */
608 	smp_rmb();
609 	rpcrdma_complete_rqst(rep);
610 
611 	rpcrdma_flush_disconnect(cq->cq_context, wc);
612 }
613 
614 /**
615  * frwr_unmap_async - invalidate memory regions that were registered for @req
616  * @r_xprt: controlling transport instance
617  * @req: rpcrdma_req with a non-empty list of MRs to process
618  *
619  * This guarantees that registered MRs are properly fenced from the
620  * server before the RPC consumer accesses the data in them. It also
621  * ensures proper Send flow control: waking the next RPC waits until
622  * this RPC has relinquished all its Send Queue entries.
623  */
624 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
625 {
626 	struct ib_send_wr *first, *last, **prev;
627 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
628 	const struct ib_send_wr *bad_wr;
629 	struct rpcrdma_frwr *frwr;
630 	struct rpcrdma_mr *mr;
631 	int rc;
632 
633 	/* Chain the LOCAL_INV Work Requests and post them with
634 	 * a single ib_post_send() call.
635 	 */
636 	frwr = NULL;
637 	prev = &first;
638 	while ((mr = rpcrdma_mr_pop(&req->rl_registered))) {
639 
640 		trace_xprtrdma_mr_localinv(mr);
641 		r_xprt->rx_stats.local_inv_needed++;
642 
643 		frwr = &mr->frwr;
644 		frwr->fr_cqe.done = frwr_wc_localinv;
645 		frwr_cid_init(ep, frwr);
646 		last = &frwr->fr_invwr;
647 		last->next = NULL;
648 		last->wr_cqe = &frwr->fr_cqe;
649 		last->sg_list = NULL;
650 		last->num_sge = 0;
651 		last->opcode = IB_WR_LOCAL_INV;
652 		last->send_flags = IB_SEND_SIGNALED;
653 		last->ex.invalidate_rkey = mr->mr_handle;
654 
655 		*prev = last;
656 		prev = &last->next;
657 	}
658 
659 	/* Strong send queue ordering guarantees that when the
660 	 * last WR in the chain completes, all WRs in the chain
661 	 * are complete. The last completion will wake up the
662 	 * RPC waiter.
663 	 */
664 	frwr->fr_cqe.done = frwr_wc_localinv_done;
665 
666 	/* Transport disconnect drains the receive CQ before it
667 	 * replaces the QP. The RPC reply handler won't call us
668 	 * unless re_id->qp is a valid pointer.
669 	 */
670 	bad_wr = NULL;
671 	rc = ib_post_send(ep->re_id->qp, first, &bad_wr);
672 	if (!rc)
673 		return;
674 
675 	/* Recycle MRs in the LOCAL_INV chain that did not get posted.
676 	 */
677 	trace_xprtrdma_post_linv_err(req, rc);
678 	while (bad_wr) {
679 		frwr = container_of(bad_wr, struct rpcrdma_frwr, fr_invwr);
680 		mr = container_of(frwr, struct rpcrdma_mr, frwr);
681 		bad_wr = bad_wr->next;
682 
683 		frwr_mr_recycle(mr);
684 	}
685 
686 	/* The final LOCAL_INV WR in the chain is supposed to
687 	 * do the wake. If it was never posted, the wake will
688 	 * not happen, so wake here in that case.
689 	 */
690 	rpcrdma_complete_rqst(req->rl_reply);
691 }
692