1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015, 2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 */ 6 7 /* Lightweight memory registration using Fast Registration Work 8 * Requests (FRWR). 9 * 10 * FRWR features ordered asynchronous registration and invalidation 11 * of arbitrarily-sized memory regions. This is the fastest and safest 12 * but most complex memory registration mode. 13 */ 14 15 /* Normal operation 16 * 17 * A Memory Region is prepared for RDMA Read or Write using a FAST_REG 18 * Work Request (frwr_map). When the RDMA operation is finished, this 19 * Memory Region is invalidated using a LOCAL_INV Work Request 20 * (frwr_unmap_async and frwr_unmap_sync). 21 * 22 * Typically FAST_REG Work Requests are not signaled, and neither are 23 * RDMA Send Work Requests (with the exception of signaling occasionally 24 * to prevent provider work queue overflows). This greatly reduces HCA 25 * interrupt workload. 26 */ 27 28 /* Transport recovery 29 * 30 * frwr_map and frwr_unmap_* cannot run at the same time the transport 31 * connect worker is running. The connect worker holds the transport 32 * send lock, just as ->send_request does. This prevents frwr_map and 33 * the connect worker from running concurrently. When a connection is 34 * closed, the Receive completion queue is drained before the allowing 35 * the connect worker to get control. This prevents frwr_unmap and the 36 * connect worker from running concurrently. 37 * 38 * When the underlying transport disconnects, MRs that are in flight 39 * are flushed and are likely unusable. Thus all MRs are destroyed. 40 * New MRs are created on demand. 41 */ 42 43 #include <linux/sunrpc/svc_rdma.h> 44 45 #include "xprt_rdma.h" 46 #include <trace/events/rpcrdma.h> 47 48 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 49 # define RPCDBG_FACILITY RPCDBG_TRANS 50 #endif 51 52 static void frwr_cid_init(struct rpcrdma_ep *ep, 53 struct rpcrdma_mr *mr) 54 { 55 struct rpc_rdma_cid *cid = &mr->mr_cid; 56 57 cid->ci_queue_id = ep->re_attr.send_cq->res.id; 58 cid->ci_completion_id = mr->mr_ibmr->res.id; 59 } 60 61 static void frwr_mr_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr) 62 { 63 if (mr->mr_device) { 64 trace_xprtrdma_mr_unmap(mr); 65 ib_dma_unmap_sg(mr->mr_device, mr->mr_sg, mr->mr_nents, 66 mr->mr_dir); 67 mr->mr_device = NULL; 68 } 69 } 70 71 /** 72 * frwr_mr_release - Destroy one MR 73 * @mr: MR allocated by frwr_mr_init 74 * 75 */ 76 void frwr_mr_release(struct rpcrdma_mr *mr) 77 { 78 int rc; 79 80 frwr_mr_unmap(mr->mr_xprt, mr); 81 82 rc = ib_dereg_mr(mr->mr_ibmr); 83 if (rc) 84 trace_xprtrdma_frwr_dereg(mr, rc); 85 kfree(mr->mr_sg); 86 kfree(mr); 87 } 88 89 static void frwr_mr_put(struct rpcrdma_mr *mr) 90 { 91 frwr_mr_unmap(mr->mr_xprt, mr); 92 93 /* The MR is returned to the req's MR free list instead 94 * of to the xprt's MR free list. No spinlock is needed. 95 */ 96 rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs); 97 } 98 99 /* frwr_reset - Place MRs back on the free list 100 * @req: request to reset 101 * 102 * Used after a failed marshal. For FRWR, this means the MRs 103 * don't have to be fully released and recreated. 104 * 105 * NB: This is safe only as long as none of @req's MRs are 106 * involved with an ongoing asynchronous FAST_REG or LOCAL_INV 107 * Work Request. 108 */ 109 void frwr_reset(struct rpcrdma_req *req) 110 { 111 struct rpcrdma_mr *mr; 112 113 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) 114 frwr_mr_put(mr); 115 } 116 117 /** 118 * frwr_mr_init - Initialize one MR 119 * @r_xprt: controlling transport instance 120 * @mr: generic MR to prepare for FRWR 121 * 122 * Returns zero if successful. Otherwise a negative errno 123 * is returned. 124 */ 125 int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr) 126 { 127 struct rpcrdma_ep *ep = r_xprt->rx_ep; 128 unsigned int depth = ep->re_max_fr_depth; 129 struct scatterlist *sg; 130 struct ib_mr *frmr; 131 int rc; 132 133 frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth); 134 if (IS_ERR(frmr)) 135 goto out_mr_err; 136 137 sg = kmalloc_array(depth, sizeof(*sg), GFP_NOFS); 138 if (!sg) 139 goto out_list_err; 140 141 mr->mr_xprt = r_xprt; 142 mr->mr_ibmr = frmr; 143 mr->mr_device = NULL; 144 INIT_LIST_HEAD(&mr->mr_list); 145 init_completion(&mr->mr_linv_done); 146 frwr_cid_init(ep, mr); 147 148 sg_init_table(sg, depth); 149 mr->mr_sg = sg; 150 return 0; 151 152 out_mr_err: 153 rc = PTR_ERR(frmr); 154 trace_xprtrdma_frwr_alloc(mr, rc); 155 return rc; 156 157 out_list_err: 158 ib_dereg_mr(frmr); 159 return -ENOMEM; 160 } 161 162 /** 163 * frwr_query_device - Prepare a transport for use with FRWR 164 * @ep: endpoint to fill in 165 * @device: RDMA device to query 166 * 167 * On success, sets: 168 * ep->re_attr 169 * ep->re_max_requests 170 * ep->re_max_rdma_segs 171 * ep->re_max_fr_depth 172 * ep->re_mrtype 173 * 174 * Return values: 175 * On success, returns zero. 176 * %-EINVAL - the device does not support FRWR memory registration 177 * %-ENOMEM - the device is not sufficiently capable for NFS/RDMA 178 */ 179 int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device) 180 { 181 const struct ib_device_attr *attrs = &device->attrs; 182 int max_qp_wr, depth, delta; 183 unsigned int max_sge; 184 185 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) || 186 attrs->max_fast_reg_page_list_len == 0) { 187 pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n", 188 device->name); 189 return -EINVAL; 190 } 191 192 max_sge = min_t(unsigned int, attrs->max_send_sge, 193 RPCRDMA_MAX_SEND_SGES); 194 if (max_sge < RPCRDMA_MIN_SEND_SGES) { 195 pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge); 196 return -ENOMEM; 197 } 198 ep->re_attr.cap.max_send_sge = max_sge; 199 ep->re_attr.cap.max_recv_sge = 1; 200 201 ep->re_mrtype = IB_MR_TYPE_MEM_REG; 202 if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG) 203 ep->re_mrtype = IB_MR_TYPE_SG_GAPS; 204 205 /* Quirk: Some devices advertise a large max_fast_reg_page_list_len 206 * capability, but perform optimally when the MRs are not larger 207 * than a page. 208 */ 209 if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS) 210 ep->re_max_fr_depth = attrs->max_sge_rd; 211 else 212 ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len; 213 if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS) 214 ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS; 215 216 /* Add room for frwr register and invalidate WRs. 217 * 1. FRWR reg WR for head 218 * 2. FRWR invalidate WR for head 219 * 3. N FRWR reg WRs for pagelist 220 * 4. N FRWR invalidate WRs for pagelist 221 * 5. FRWR reg WR for tail 222 * 6. FRWR invalidate WR for tail 223 * 7. The RDMA_SEND WR 224 */ 225 depth = 7; 226 227 /* Calculate N if the device max FRWR depth is smaller than 228 * RPCRDMA_MAX_DATA_SEGS. 229 */ 230 if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) { 231 delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth; 232 do { 233 depth += 2; /* FRWR reg + invalidate */ 234 delta -= ep->re_max_fr_depth; 235 } while (delta > 0); 236 } 237 238 max_qp_wr = attrs->max_qp_wr; 239 max_qp_wr -= RPCRDMA_BACKWARD_WRS; 240 max_qp_wr -= 1; 241 if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE) 242 return -ENOMEM; 243 if (ep->re_max_requests > max_qp_wr) 244 ep->re_max_requests = max_qp_wr; 245 ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth; 246 if (ep->re_attr.cap.max_send_wr > max_qp_wr) { 247 ep->re_max_requests = max_qp_wr / depth; 248 if (!ep->re_max_requests) 249 return -ENOMEM; 250 ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth; 251 } 252 ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS; 253 ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */ 254 ep->re_attr.cap.max_recv_wr = ep->re_max_requests; 255 ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS; 256 ep->re_attr.cap.max_recv_wr += RPCRDMA_MAX_RECV_BATCH; 257 ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */ 258 259 ep->re_max_rdma_segs = 260 DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth); 261 /* Reply chunks require segments for head and tail buffers */ 262 ep->re_max_rdma_segs += 2; 263 if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS) 264 ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS; 265 266 /* Ensure the underlying device is capable of conveying the 267 * largest r/wsize NFS will ask for. This guarantees that 268 * failing over from one RDMA device to another will not 269 * break NFS I/O. 270 */ 271 if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS) 272 return -ENOMEM; 273 274 return 0; 275 } 276 277 /** 278 * frwr_map - Register a memory region 279 * @r_xprt: controlling transport 280 * @seg: memory region co-ordinates 281 * @nsegs: number of segments remaining 282 * @writing: true when RDMA Write will be used 283 * @xid: XID of RPC using the registered memory 284 * @mr: MR to fill in 285 * 286 * Prepare a REG_MR Work Request to register a memory region 287 * for remote access via RDMA READ or RDMA WRITE. 288 * 289 * Returns the next segment or a negative errno pointer. 290 * On success, @mr is filled in. 291 */ 292 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt, 293 struct rpcrdma_mr_seg *seg, 294 int nsegs, bool writing, __be32 xid, 295 struct rpcrdma_mr *mr) 296 { 297 struct rpcrdma_ep *ep = r_xprt->rx_ep; 298 struct ib_reg_wr *reg_wr; 299 int i, n, dma_nents; 300 struct ib_mr *ibmr; 301 u8 key; 302 303 if (nsegs > ep->re_max_fr_depth) 304 nsegs = ep->re_max_fr_depth; 305 for (i = 0; i < nsegs;) { 306 sg_set_page(&mr->mr_sg[i], seg->mr_page, 307 seg->mr_len, seg->mr_offset); 308 309 ++seg; 310 ++i; 311 if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS) 312 continue; 313 if ((i < nsegs && seg->mr_offset) || 314 offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) 315 break; 316 } 317 mr->mr_dir = rpcrdma_data_dir(writing); 318 mr->mr_nents = i; 319 320 dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents, 321 mr->mr_dir); 322 if (!dma_nents) 323 goto out_dmamap_err; 324 mr->mr_device = ep->re_id->device; 325 326 ibmr = mr->mr_ibmr; 327 n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE); 328 if (n != dma_nents) 329 goto out_mapmr_err; 330 331 ibmr->iova &= 0x00000000ffffffff; 332 ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32; 333 key = (u8)(ibmr->rkey & 0x000000FF); 334 ib_update_fast_reg_key(ibmr, ++key); 335 336 reg_wr = &mr->mr_regwr; 337 reg_wr->mr = ibmr; 338 reg_wr->key = ibmr->rkey; 339 reg_wr->access = writing ? 340 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 341 IB_ACCESS_REMOTE_READ; 342 343 mr->mr_handle = ibmr->rkey; 344 mr->mr_length = ibmr->length; 345 mr->mr_offset = ibmr->iova; 346 trace_xprtrdma_mr_map(mr); 347 348 return seg; 349 350 out_dmamap_err: 351 trace_xprtrdma_frwr_sgerr(mr, i); 352 return ERR_PTR(-EIO); 353 354 out_mapmr_err: 355 trace_xprtrdma_frwr_maperr(mr, n); 356 return ERR_PTR(-EIO); 357 } 358 359 /** 360 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC 361 * @cq: completion queue 362 * @wc: WCE for a completed FastReg WR 363 * 364 * Each flushed MR gets destroyed after the QP has drained. 365 */ 366 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc) 367 { 368 struct ib_cqe *cqe = wc->wr_cqe; 369 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); 370 371 /* WARNING: Only wr_cqe and status are reliable at this point */ 372 trace_xprtrdma_wc_fastreg(wc, &mr->mr_cid); 373 374 rpcrdma_flush_disconnect(cq->cq_context, wc); 375 } 376 377 /** 378 * frwr_send - post Send WRs containing the RPC Call message 379 * @r_xprt: controlling transport instance 380 * @req: prepared RPC Call 381 * 382 * For FRWR, chain any FastReg WRs to the Send WR. Only a 383 * single ib_post_send call is needed to register memory 384 * and then post the Send WR. 385 * 386 * Returns the return code from ib_post_send. 387 * 388 * Caller must hold the transport send lock to ensure that the 389 * pointers to the transport's rdma_cm_id and QP are stable. 390 */ 391 int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 392 { 393 struct ib_send_wr *post_wr, *send_wr = &req->rl_wr; 394 struct rpcrdma_ep *ep = r_xprt->rx_ep; 395 struct rpcrdma_mr *mr; 396 unsigned int num_wrs; 397 398 num_wrs = 1; 399 post_wr = send_wr; 400 list_for_each_entry(mr, &req->rl_registered, mr_list) { 401 trace_xprtrdma_mr_fastreg(mr); 402 403 mr->mr_cqe.done = frwr_wc_fastreg; 404 mr->mr_regwr.wr.next = post_wr; 405 mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe; 406 mr->mr_regwr.wr.num_sge = 0; 407 mr->mr_regwr.wr.opcode = IB_WR_REG_MR; 408 mr->mr_regwr.wr.send_flags = 0; 409 post_wr = &mr->mr_regwr.wr; 410 ++num_wrs; 411 } 412 413 if ((kref_read(&req->rl_kref) > 1) || num_wrs > ep->re_send_count) { 414 send_wr->send_flags |= IB_SEND_SIGNALED; 415 ep->re_send_count = min_t(unsigned int, ep->re_send_batch, 416 num_wrs - ep->re_send_count); 417 } else { 418 send_wr->send_flags &= ~IB_SEND_SIGNALED; 419 ep->re_send_count -= num_wrs; 420 } 421 422 trace_xprtrdma_post_send(req); 423 return ib_post_send(ep->re_id->qp, post_wr, NULL); 424 } 425 426 /** 427 * frwr_reminv - handle a remotely invalidated mr on the @mrs list 428 * @rep: Received reply 429 * @mrs: list of MRs to check 430 * 431 */ 432 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs) 433 { 434 struct rpcrdma_mr *mr; 435 436 list_for_each_entry(mr, mrs, mr_list) 437 if (mr->mr_handle == rep->rr_inv_rkey) { 438 list_del_init(&mr->mr_list); 439 trace_xprtrdma_mr_reminv(mr); 440 frwr_mr_put(mr); 441 break; /* only one invalidated MR per RPC */ 442 } 443 } 444 445 static void frwr_mr_done(struct ib_wc *wc, struct rpcrdma_mr *mr) 446 { 447 if (likely(wc->status == IB_WC_SUCCESS)) 448 frwr_mr_put(mr); 449 } 450 451 /** 452 * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC 453 * @cq: completion queue 454 * @wc: WCE for a completed LocalInv WR 455 * 456 */ 457 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc) 458 { 459 struct ib_cqe *cqe = wc->wr_cqe; 460 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); 461 462 /* WARNING: Only wr_cqe and status are reliable at this point */ 463 trace_xprtrdma_wc_li(wc, &mr->mr_cid); 464 frwr_mr_done(wc, mr); 465 466 rpcrdma_flush_disconnect(cq->cq_context, wc); 467 } 468 469 /** 470 * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC 471 * @cq: completion queue 472 * @wc: WCE for a completed LocalInv WR 473 * 474 * Awaken anyone waiting for an MR to finish being fenced. 475 */ 476 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc) 477 { 478 struct ib_cqe *cqe = wc->wr_cqe; 479 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); 480 481 /* WARNING: Only wr_cqe and status are reliable at this point */ 482 trace_xprtrdma_wc_li_wake(wc, &mr->mr_cid); 483 frwr_mr_done(wc, mr); 484 complete(&mr->mr_linv_done); 485 486 rpcrdma_flush_disconnect(cq->cq_context, wc); 487 } 488 489 /** 490 * frwr_unmap_sync - invalidate memory regions that were registered for @req 491 * @r_xprt: controlling transport instance 492 * @req: rpcrdma_req with a non-empty list of MRs to process 493 * 494 * Sleeps until it is safe for the host CPU to access the previously mapped 495 * memory regions. This guarantees that registered MRs are properly fenced 496 * from the server before the RPC consumer accesses the data in them. It 497 * also ensures proper Send flow control: waking the next RPC waits until 498 * this RPC has relinquished all its Send Queue entries. 499 */ 500 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 501 { 502 struct ib_send_wr *first, **prev, *last; 503 struct rpcrdma_ep *ep = r_xprt->rx_ep; 504 const struct ib_send_wr *bad_wr; 505 struct rpcrdma_mr *mr; 506 int rc; 507 508 /* ORDER: Invalidate all of the MRs first 509 * 510 * Chain the LOCAL_INV Work Requests and post them with 511 * a single ib_post_send() call. 512 */ 513 prev = &first; 514 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) { 515 516 trace_xprtrdma_mr_localinv(mr); 517 r_xprt->rx_stats.local_inv_needed++; 518 519 last = &mr->mr_invwr; 520 last->next = NULL; 521 last->wr_cqe = &mr->mr_cqe; 522 last->sg_list = NULL; 523 last->num_sge = 0; 524 last->opcode = IB_WR_LOCAL_INV; 525 last->send_flags = IB_SEND_SIGNALED; 526 last->ex.invalidate_rkey = mr->mr_handle; 527 528 last->wr_cqe->done = frwr_wc_localinv; 529 530 *prev = last; 531 prev = &last->next; 532 } 533 mr = container_of(last, struct rpcrdma_mr, mr_invwr); 534 535 /* Strong send queue ordering guarantees that when the 536 * last WR in the chain completes, all WRs in the chain 537 * are complete. 538 */ 539 last->wr_cqe->done = frwr_wc_localinv_wake; 540 reinit_completion(&mr->mr_linv_done); 541 542 /* Transport disconnect drains the receive CQ before it 543 * replaces the QP. The RPC reply handler won't call us 544 * unless re_id->qp is a valid pointer. 545 */ 546 bad_wr = NULL; 547 rc = ib_post_send(ep->re_id->qp, first, &bad_wr); 548 549 /* The final LOCAL_INV WR in the chain is supposed to 550 * do the wake. If it was never posted, the wake will 551 * not happen, so don't wait in that case. 552 */ 553 if (bad_wr != first) 554 wait_for_completion(&mr->mr_linv_done); 555 if (!rc) 556 return; 557 558 /* On error, the MRs get destroyed once the QP has drained. */ 559 trace_xprtrdma_post_linv_err(req, rc); 560 } 561 562 /** 563 * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC 564 * @cq: completion queue 565 * @wc: WCE for a completed LocalInv WR 566 * 567 */ 568 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc) 569 { 570 struct ib_cqe *cqe = wc->wr_cqe; 571 struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe); 572 struct rpcrdma_rep *rep; 573 574 /* WARNING: Only wr_cqe and status are reliable at this point */ 575 trace_xprtrdma_wc_li_done(wc, &mr->mr_cid); 576 577 /* Ensure that @rep is generated before the MR is released */ 578 rep = mr->mr_req->rl_reply; 579 smp_rmb(); 580 581 if (wc->status != IB_WC_SUCCESS) { 582 if (rep) 583 rpcrdma_unpin_rqst(rep); 584 rpcrdma_flush_disconnect(cq->cq_context, wc); 585 return; 586 } 587 frwr_mr_put(mr); 588 rpcrdma_complete_rqst(rep); 589 } 590 591 /** 592 * frwr_unmap_async - invalidate memory regions that were registered for @req 593 * @r_xprt: controlling transport instance 594 * @req: rpcrdma_req with a non-empty list of MRs to process 595 * 596 * This guarantees that registered MRs are properly fenced from the 597 * server before the RPC consumer accesses the data in them. It also 598 * ensures proper Send flow control: waking the next RPC waits until 599 * this RPC has relinquished all its Send Queue entries. 600 */ 601 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 602 { 603 struct ib_send_wr *first, *last, **prev; 604 struct rpcrdma_ep *ep = r_xprt->rx_ep; 605 struct rpcrdma_mr *mr; 606 int rc; 607 608 /* Chain the LOCAL_INV Work Requests and post them with 609 * a single ib_post_send() call. 610 */ 611 prev = &first; 612 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) { 613 614 trace_xprtrdma_mr_localinv(mr); 615 r_xprt->rx_stats.local_inv_needed++; 616 617 last = &mr->mr_invwr; 618 last->next = NULL; 619 last->wr_cqe = &mr->mr_cqe; 620 last->sg_list = NULL; 621 last->num_sge = 0; 622 last->opcode = IB_WR_LOCAL_INV; 623 last->send_flags = IB_SEND_SIGNALED; 624 last->ex.invalidate_rkey = mr->mr_handle; 625 626 last->wr_cqe->done = frwr_wc_localinv; 627 628 *prev = last; 629 prev = &last->next; 630 } 631 632 /* Strong send queue ordering guarantees that when the 633 * last WR in the chain completes, all WRs in the chain 634 * are complete. The last completion will wake up the 635 * RPC waiter. 636 */ 637 last->wr_cqe->done = frwr_wc_localinv_done; 638 639 /* Transport disconnect drains the receive CQ before it 640 * replaces the QP. The RPC reply handler won't call us 641 * unless re_id->qp is a valid pointer. 642 */ 643 rc = ib_post_send(ep->re_id->qp, first, NULL); 644 if (!rc) 645 return; 646 647 /* On error, the MRs get destroyed once the QP has drained. */ 648 trace_xprtrdma_post_linv_err(req, rc); 649 650 /* The final LOCAL_INV WR in the chain is supposed to 651 * do the wake. If it was never posted, the wake does 652 * not happen. Unpin the rqst in preparation for its 653 * retransmission. 654 */ 655 rpcrdma_unpin_rqst(req->rl_reply); 656 } 657